数学选修极坐标与参数方程
“数学选修极坐标与参数方程”相关的资料有哪些?“数学选修极坐标与参数方程”相关的范文有哪些?怎么写?下面是小编为您精心整理的“数学选修极坐标与参数方程”相关范文大全或资料大全,欢迎大家分享。
极坐标系与参数方程
极坐标系与参数方程
编稿:侯彬 审稿:安东明 责编:辛文升 一、基础知识回顾 1.极坐标系
(1)建系:如图所示,在平面上取一个定点O,由O点出发的一条射线Ox,一个长度单位及计算角度的 正方向(通常取逆时针方向)合称为一个极坐标系。O点称为极点,Ox称为极轴。
平面上任意点M的位置可以由线段OM的长度度来刻画,这两个数组 成的有序数对下,我们用弧度制度 量。
称为点M的极坐标。
(
≥0)和从Ox到OM的角
称为极径,称为极角。多数情况
注意:平面上的点与其极坐标之间不具有一一对应关系,因为若点M的一组极坐标为
,则
(k∈Z)也是点M的极坐标。若限定
,则除原点
外,点其极坐标一
一对应。
(2)极坐标系与直角坐标系的互化
在平面上取定了一个极坐标系,以极轴作为直角坐标系的x轴的正半轴,以的射线作y轴的
正半轴,以极点为坐标原点,长度单位不变,建立一个直角坐标系。 设M为平面上的一点,它的直角坐标为(x,y),极坐标为
。画图可知:
,或。
(3)曲线的极坐标方程的概念
在给定的平面上的极坐标系下,
极坐标与参数方程单元练习
极坐标与参数方程单元练习一
一、选择题(每小题5分,共25分)
1、已知点M的极坐标为??5,???
?3?
,下列所给出的四个坐标中能表示点M的坐标是( )。
A. ???5,???3??B. ???5,4??3??C. ???5,?2???5??3??D. ??5,?3??
2、直线:3x-4y-9=0与圆:??x?2cos?,(θ为参数)的位置关系是( ?y?2sin?)
A.相切 B.相离 C.直线过圆心 D.相交但直线不过圆心
3、在参数方程??x?a?tcos??y?b?tsin?(t为参数)所表示的曲线上有B、C两点,它们对应的参
数值分别为t1、t2,则线段BC的中点M对应的参数值是( )
4、曲线的参数方程为??x?3t2?2t?1(t是参数),则曲线是( )?y?2
A、线段 B、双曲线的一支 C、圆 D、射线 5、实数x、y满足3x2+2y2=6x,则x2+y2的最大值为( )
- 1 -
A、
72 B、4 C、92 D、5 二、填空题(每小题5分,共30分)
1、点?2,?2?的极坐标为
极坐标与参数方程-题型归纳
- 1 - 高考高频题型整理汇总
——《极坐标与参数方程》
除了简单的极坐标与直角坐标的转化、参数方程与普通方程的转化外,还涉及以下部分问题。
(一)有关圆的题型
题型一:圆与直线的位置关系(圆与直线的交点个数问题)----利用圆心到直线的距离与半径比较
相离,无交点;:r d > 个交点;相切,1:r d = 个交点;相交,2:r d <
用圆心(x 0,y 0)到直线Ax+By+C=0的距离2200B A C
By Ax d +++=,算出d ,在与半径比较。
题型二:圆上的点到直线的最值问题(不求该点坐标,如果求该点坐标请参照距离最值求法) 思路:第一步:利用圆心(x 0,y 0)到直线Ax+By+C=0的距离2200B A C
By Ax d +++=
第二步:判断直线与圆的位置关系
第三步:相离:代入公式:r d d +=max ,r d d -=min
相切、相交:r d d +=max min 0d =
题型三:直线与圆的弦长问题 弦长公式222d r l -=,d 是圆心到直线的距离
延伸:直线与圆锥曲线(包括圆、椭圆、双曲线、抛物线)的弦长问题
(弦长:直线与曲线相交两点,这两点之间的距离就是弦长) 弦长公式21t t l -=,解
参数方程、极坐标讲义
参数方程、极坐标 一.直线的参数方程
l(1)标准式 过点P0(x0,y0),倾斜角为?的直线(如图)的参数方程是
?x?x0?tcos? (t为参数)?y?y?tsin?0?????这里直线l的方向向量可以选定为(cos?,sin?),由P0P?t(cos?,sin?)引出直线的标准式参数方程,进而引入参数t的几何意义 (2)一般式 过定点P0(x0,y0)斜率k?tan??b的直线l的参数方程是 a?x?x0?at(t为参数) ② ?y?y?bt0?在一般式②中,参数t不具备标准式中t的几何意义,若a?b?1,②即为标准式,此时, t表示直线
22a?bt a?b?1,则动点P到定点P上动点P到定点P的距离;若00的距离2222?x?x0?tcos?l直线参数方程的应用:设过点P (t为参数)0(x0,y0),倾斜角为?的直线的参数方程是?y?y?tsin?0?l若P1,P2是上的两点,它们所对应的参数分别为t1,t2,则
(1) P1,P2两点的坐标分别是(x0?t1cos?,y0?t1sin?) ,(x0?t2cos?,y0?t2sin?) ; (2) PP12?t1?t2;
P所对应的参数为t,则t?(3)线段PP12的中
高考文科数学复习专题极坐标与参数方程
高考文科数学复习专题极坐标与参数方程
Newly compiled on November 23, 2020
1.曲线的极坐标方程.
(1)极坐标系:一般地,在平面上取一个定点O,自点O引一条射线Ox,同时确定一个长度单位和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系.其中,点O称为极点,射线Ox称为极轴.
(2)极坐标(ρ,θ)的含义:设M是平面上任一点,ρ表示OM的长度,θ表示以射线Ox为始边,射线OM为终边所成的角.那么,有序数对(ρ,θ)称为点M的极坐标.显然,每一个有序实数对(ρ,θ),决定一个点的位置.其中ρ称为点M的极径,θ称为点M的极角.
极坐标系和直角坐标系的最大区别在于:在直角坐标系中,平面上的点与有序数对之间的对应关系是一一对应的,而在极坐标系中,对于给定的有序数对(ρ,θ),可以确定平面上的一点,但是平面内的一点的极坐标却不是唯一的.
(3)曲线的极坐标方程:一般地,在极坐标系中,如果平面曲线C上的任意一点的极坐标满足方程f(ρ,θ)=0,并且坐标适合方程f(ρ,θ)=0的点都在曲线C上,那么方程f(ρ,θ)=0叫做曲线C的极坐标方程.
2.直线的极坐标方程.
(1)过极点且与极轴成φ
0角的直线方程是θ=φ
2013极坐标、参数方程资料
2013极坐标、参数方程
5、选修44:-坐标系与参数方程
极坐标系中,已知圆心C (3,)6π
,半径r=1.
(1)求圆的极坐标方程;(2)若直线为参数)t t y t x (21231???
????=+-=与圆交于B A ,两点,求AB 的中点M 与点P (-1,0)的距离.
(1、1)23(23322=-+???
? ??-y x 2
、1232t t PC +==+
解:(1)由已知得圆心)6sin 3,6cos 3(π
πC ,半径1,圆的方程为1)23(23322=-+???
? ??-y x 2分 即0833322=+--+y x y x 所以极坐标方程为08sin 3cos 332=+--θρθρρ 5分
(1)
把直线方程代入圆方程得26)90,30t t -++=?=> 7分 设21,t t 是方程两根
126)t t ∴+=-
所以1232t t PC +=
= 10分
5、已知极坐标系的极点在直角坐标系的原点O处,极轴与x轴的正半轴重合,直线l的参
数方程为
cos,
sin,
x t
y t
α
α
=
?
?
=
?
(t为参数,α为直线l的倾斜角)。圆C的极坐标方程为
28cos120.
ρρθ
-+=
(1)若直线l与圆C相切,求α的值;
(2)若
2015年极坐标与参数方程专题
2015年极坐标与参数方程专题
1.在极坐标系中,已知直线过点(1,0),且其向上的方向与极轴的正方向所成的最小正角为
?,则直线的极坐标方程为________. 3?x?4cos?2.平面直角坐标系中,将曲线? (α为参数)上的每一点纵坐标不变,横坐标
y?sin??变为原来的一半,然后整个图象向右平移1个单位长度,最后横坐标不变,纵坐标变为原来
的2倍得到曲线C1.以坐标原点为极点,x轴的非负半轴为极轴建立的单位长度相同的极坐标系中的曲线C2的方程为ρ=4sinθ,则C1和C2公共弦的长度为________.
3.直角坐标系xOy中,以原点为极点,x轴的正半轴为极轴建立极坐标系,设点A,B分别
?x?4?sin?在曲线C1:? (θ为参数)和曲线C2:ρ=2上,则|AB|的最小值为________.
y?3?cos??224.如图, 以过原点的直线的倾斜角?为参数, 则圆x?y?x?0的参数方程
为 .
yPθOx
2
5.设曲线C的参数方程为:x=t,y=t (t为参数),若以直角坐标系的原点为极点,x轴的正半轴为极轴建立极坐标系,则曲线C的极坐标方程为_______.
??x?2cost??y?2sint(t为参数),C
极坐标与参数方程测试题
极坐标与参数方程测试题
一.选择题(每小题5分,共50分) 1.曲线的极坐标方程 4sin
化为直角坐标为( )。
A.x
2
(y 2)2 4 B. x2 (y 2)2 4 C. (x 2)2 y2 4 D. (x 2)2 y2 4
2.已知点P的极坐标是(1, ),则过点P且垂直极轴的直线方程是( )。 A.
1 B. cos C.
1
cos
D.
1cos
3.直线
y 2x 1的参数方程是( )
。 A.
x t2 x 2t 1 x t 1 x sin y 2t2
B. 1
y 4t 1 C. 2t 1 D.
y y 2sin 14.方程 x t 1表示的曲线是(。
y 2t
)
A.一条直线 B.两条射线 C.一条线段 D.抛物线的一部分
5.参数方程
x 2 sin2
( 为参数)化为普通方程是( )。
y 1 cos2
A.2x y 4 0 B. 2x y 4 0 C. 2x y 4 0 x [2,3] D. 2x y 4 0 x [2,3]6.设点P对应的复数为-3+3i,以原点为极点,实轴正半轴为
2015年极坐标与参数方程专题
2015年极坐标与参数方程专题
1.在极坐标系中,已知直线过点(1,0),且其向上的方向与极轴的正方向所成的最小正角为
?,则直线的极坐标方程为________. 3?x?4cos?2.平面直角坐标系中,将曲线? (α为参数)上的每一点纵坐标不变,横坐标
y?sin??变为原来的一半,然后整个图象向右平移1个单位长度,最后横坐标不变,纵坐标变为原来
的2倍得到曲线C1.以坐标原点为极点,x轴的非负半轴为极轴建立的单位长度相同的极坐标系中的曲线C2的方程为ρ=4sinθ,则C1和C2公共弦的长度为________.
3.直角坐标系xOy中,以原点为极点,x轴的正半轴为极轴建立极坐标系,设点A,B分别
?x?4?sin?在曲线C1:? (θ为参数)和曲线C2:ρ=2上,则|AB|的最小值为________.
y?3?cos??224.如图, 以过原点的直线的倾斜角?为参数, 则圆x?y?x?0的参数方程
为 .
yPθOx
2
5.设曲线C的参数方程为:x=t,y=t (t为参数),若以直角坐标系的原点为极点,x轴的正半轴为极轴建立极坐标系,则曲线C的极坐标方程为_______.
??x?2cost??y?2sint(t为参数),C
极坐标和参数方程2
极坐标和参数方程训练二
一、选择题
1.直线l的参数方程为??x?a?t(t为参数),则点Pl上的点P1对应的参数是t1,1与P(a,b)?y?b?t之间的距离是( )
A.t1 B.2t1 C.2t21 D.2t1 ?2.参数方程为??x?t?1t(t为参数)表示的曲线是( )
??y?2A.一条直线 B.两条直线 C.一条射线 D.两条射线
??3.直线?x?1?1?2t3(t为参数)和圆x2?y2?16交于A,B两点, ???y??33?2t则AB的中点坐标为( )
A.(3,?3) B.(?3,3) C.(3,?3) D.(3,?3) 4.圆??5cos??53sin?的圆心坐标是( )
A.(?5,?4?3) B.(?5,??5?3) C.(5,3) D.(?5,3) 5.与参数方程为???x?t(t为参数)等价的普通方程为( )
??y?21?tA.x2?y24?1 B.x?y224?1(0?x?1) C.x2?y2y24?1(0?y?2) D.x2?4?1(0?x?1,0?y?2) 6.直线??x??2?t?y?