复变函数与积分变换讲的什么

“复变函数与积分变换讲的什么”相关的资料有哪些?“复变函数与积分变换讲的什么”相关的范文有哪些?怎么写?下面是小编为您精心整理的“复变函数与积分变换讲的什么”相关范文大全或资料大全,欢迎大家分享。

复变函数与积分变换第4讲

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

《复变函数与积分变换》(第三版)华中科技大学数学系课件

复变函数的积分

《复变函数与积分变换》(第三版)华中科技大学数学系课件

第三章 复变函数的积分

§3.1 复变函数积分的概念 §3.2 柯西-古萨基本定理 §3.3 基本定理的推广 §3.4 原函数与不定积分 §3.5 柯西积分公式 §3.6 解析函数的高阶导数 §3.7 解析函数与调和函数的关系

《复变函数与积分变换》(第三版)华中科技大学数学系课件

§3.1 复变函数积分的概念

1. 有向曲线2. 积分的定义

3. 积分存在的条件及其计算法4. 积分性质

《复变函数与积分变换》(第三版)华中科技大学数学系课件

1. 有向曲线 x x( t ) 设 C : ( t ) y y( t ) x' ( t )、y' ( t ) C [ , ], 且[ x' ( t )]2 [ y' ( t )]2 0

C : z(t ) x(t ) iy(t ) ( t ) (1)z' (t )连续且z' ( t ) 0

C z平面上的一条光滑曲线 .(因而可求

复变函数与积分变换第4讲

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

《复变函数与积分变换》(第三版)华中科技大学数学系课件

复变函数的积分

《复变函数与积分变换》(第三版)华中科技大学数学系课件

第三章 复变函数的积分

§3.1 复变函数积分的概念 §3.2 柯西-古萨基本定理 §3.3 基本定理的推广 §3.4 原函数与不定积分 §3.5 柯西积分公式 §3.6 解析函数的高阶导数 §3.7 解析函数与调和函数的关系

《复变函数与积分变换》(第三版)华中科技大学数学系课件

§3.1 复变函数积分的概念

1. 有向曲线2. 积分的定义

3. 积分存在的条件及其计算法4. 积分性质

《复变函数与积分变换》(第三版)华中科技大学数学系课件

1. 有向曲线 x x( t ) 设 C : ( t ) y y( t ) x' ( t )、y' ( t ) C [ , ], 且[ x' ( t )]2 [ y' ( t )]2 0

C : z(t ) x(t ) iy(t ) ( t ) (1)z' (t )连续且z' ( t ) 0

C z平面上的一条光滑曲线 .(因而可求

复变函数与积分变换第十讲

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

复变函数与积分变换,,西安交大版,,课件

第十讲 唯一决定分式线性映射的条件

复变函数与积分变换,,西安交大版,,课件

§3 唯一决定分式线性映射的条件1. 分式线性映射的存在唯一性 2. 举例

复变函数与积分变换,,西安交大版,,课件

1. 分式线性映射的存在唯一性az + b 虽然 w = 含有 a , b , c , d 四个常数 , 实际只 cz + d 有三个是独立的 .

所以 , 只需给定三个条件 , 就能决定一个分式 线性映射 , 我们有 : 定理 在z平面上任意给定三个相 异的点 1, z2 , z3 , zw 在w平面上也任意给定三个 相异的点 1, w2 , w3 存在唯一的分式线性映 f (z) : 射 f : zk →wk (k = 1,2,3) f

复变函数与积分变换,,西安交大版,,课件

az + b (ad bc ≠ 0), 将z k ( k = 1,2,3)依次 证明 设w = cz + d az k + b ( k = 1,2,3) → w k ( k = 1,2,3), 即w k = czk + d ( z z k )( ad bc ) , ( k = 1, 2 ) 因而有 w w k = ( cz

复变函数与积分变换试卷

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

重庆大学《复变函数与积分变换》(理工班)课程试卷 第 1 页 共 5 页

重庆大学 复变函数与积分变换(理工班) 课程试卷

s26.函数f(s)?2的拉氏逆变换L?1[f(s)]? 【 】

s?1A.?(t)?cost B.?(t)?cost

2009 ~2010学年 第 1 学期

课程号命题人: 名姓 密 弊号学作 绝 拒 、 纪 考 肃 严 级、年信 守 实封 诚 、 争 竞 平班、公业专 线 院学开课学院: 数理学院 :10020930

考试日期: 201001

考试方式:

考试时间: 120 分钟 题 号 一 二 三 四 五 六 七 八 九 十 总 分 得 分

一、单项选择题(每小题2分,共16分)

1.设z为复数,则方程z?z?2?i的解是 【 】 A.?34?i

复变函数与积分变换解读

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

复变函数与积分变换解

Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

复变函数与积分变换

课程名称:复变函数与积分变换

英文译名:Complex Function and Integral Transformation

课程编码:070102B06

适用专业:信息与计算科学

课程类别:专业必修

学时数:48 学分:3

编写执笔人:韩仲明审定人:刘晓华

编写日期:2005年4月

一、本课程的内容、目的和任务:

复变函数与积分变换是高等师范院校数学专业的基础课程之一,是数学分析的后续课程,其任务是使学生获得复变函数与积分变换的基本理论与方法。它在微分方程、概率论、力学等学科中都有应用,其方法是自动控制、自动化、信号处理的常用方法之一,本课程主要讨论复变函数和积分变换。内容主要包括:复数运算,解析函数,初等函数,复变函数积分理论,级数展开及留数理论,保形映射,拉普拉斯变换,富里叶变换。复变函数与积分变换是微积分学在复数域上的推广和发展,通过本课程的学习能使学生对微积分学的某些内容加深理解,提高认识。复变函数与积分变换在联系和指导中

复变函数与积分变换试卷

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

重庆大学《复变函数与积分变换》(理工班)课程试卷 第 1 页 共 5 页

重庆大学 复变函数与积分变换(理工班) 课程试卷

s26.函数f(s)?2的拉氏逆变换L?1[f(s)]? 【 】

s?1A.?(t)?cost B.?(t)?cost

2009 ~2010学年 第 1 学期

课程号命题人: 名姓 密 弊号学作 绝 拒 、 纪 考 肃 严 级、年信 守 实封 诚 、 争 竞 平班、公业专 线 院学开课学院: 数理学院 :10020930

考试日期: 201001

考试方式:

考试时间: 120 分钟 题 号 一 二 三 四 五 六 七 八 九 十 总 分 得 分

一、单项选择题(每小题2分,共16分)

1.设z为复数,则方程z?z?2?i的解是 【 】 A.?34?i

复变函数与积分变换 - 图文

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

www.4juan.com 自考及各类其他考试历年试题免费免注册下载 超过2万套word文档试题和答案

全国2009年4月自考复变函数与积分变换试题

一、单项选择题(本大题共10小题,每小题2分,共20分)

1.设z=1-i,则Im(1z2)=( )

A.-1 B.-12

C.12 D.1

2.复数z=3?i2?i的幅角主值是( )

A.0 B.π4

C.π2 D.3π4

3.设n为整数,则Ln(-ie)=( ) A.1-π2i

B.(2nπ?π2)i

C.1+2(nπ?π2)i

D.1+2(nπ?π2)i4.设z=x+iy.若f (z)=my3+nx2y+i(x3-3xy2)为解析函数,则( A.m=-3,n=-3 B.m=-3,n=1 C.m=1,n=-3 D.m=1,n=1

i5.积分?2ieπzdz?( )

A.1?(1?i) B.1+i C.

2i

D.

2??

6.设C是正向圆周z?1?1,则?sin(?z/3)Cz2?1dz=( ) A.?32?i B.?3?i C.

34?i D.

32?i 7.设C是正向圆周z?3,则

?sinzCdz=( ) (z??2)3A.?2?i B.??i C.?i

D.2?i

《复变函数与积分变换》习题册

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

第一章 复数与复变函数

本章知识点和基本要求

掌握复数的概念和它的各种表示方法及运算; 熟悉复平面、模与辐角的概念;

熟练掌握乘积与商的模、隶莫弗公式、方根运算公式; 了解区域的概念;理解复变函数的概念; 理解复变函数的极限和连续的概念。

一、填空题

1、若等式i(5?7i)?(x?i)(y?i)成立,则x?______, y?_______. 2、设(1?2i)x?(3?5i)y?1?3i,则x? ,y?

12+3i3、若z=-,则z=

i1-i4、若z=(3+i)(2-5i),则Rez= 2i45、若z?i?2?i,则z? 1?i6、设z?(2?i)(?2?i),则argz?

7复数z?1?i的三角表示式为 ,指数表示式为 。 8、复数z??12?2i的三角表示式为 _________________,指数表示式为

_________________. 9、设z1?2i,z2i?

复变函数与积分变换试题1

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

复变函数与积分变换试题

本试题分两部分,第一部分为选择题,1页至3页,第二部分为非选择题,4页至8页,共8页;选择题40分,非选择题60分,满分100分,考试时间150分钟。

第一部分 选择题

一、单项选择题(本大题共20小题,每小题2分,共40分)在每小题列出的四个选项中只有

一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。 1. 复数z?16-8i的辐角为( )

25252A. arctan1 B.-arctan1 C.π-arctan1 D.π+arctan1

2222.方程Rez2?1所表示的平面曲线为( )

A. 圆 B.直线 C.椭圆 D.双曲线 3.复数z?-3(cos)的三角表示式为( ) 54444A.-3(cos?,+isin?) B.3(cos?,-isin?)

55554444C.3(cos?,+isin?) D.-3(cos?,-isin?)

55554.设z=cosi,则( )

A.Imz=0 B.Rez=π

复变函数与积分变换 学习笔记

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

第二章 解析函数

一、复变函数的导数及微分 1、导数的定义 2、可导与连续 3、求导法则

实变函数的求导法则可以不加更改地推广到复变函数中来 4、微分的概念

与一元实变函数的微分概念完全一致

二、解析函数的概念 1、解析函数的定义

如果函数f(z)在z0及z0的邻域内处处可导,那么称f(z)在z0解析。

如果函数f(z)在区域D内每一点解析,则称f(z)在区域D内解析。或称f(z)是区域D内的一个解析函数(全纯函数或正则函数) 2、奇点的定义

如果函数f(z)在z0不解析,那么称z0为f(z)的奇点。

根据定义可知,函数在区域内解析和区域内可导是等价的。但是,函数在一点处解析和一点处可导是不等价的,即在一点处可导,不一定在该点处解析。 函数在一点处解析比在该点处可导的要求高得多。 定理

(1)在区域D内解析的两个函数f(z)和g(z)的和、差、积、商(除去分母为零的点)在D内解析。

(2)设函数h=g(z)在z平面上的区域D内解析,函数w=f(h)在h平面上的区域G内解析。如果对于D内的每个点z,函数g(z)的对应值h都属于G,那么复合函数w=f|g(z)|在D内解析。 根据定理可知:

(1)所有多项式在复平面内是处处解析的。

(2)任