油相合成的纳米颗粒
“油相合成的纳米颗粒”相关的资料有哪些?“油相合成的纳米颗粒”相关的范文有哪些?怎么写?下面是小编为您精心整理的“油相合成的纳米颗粒”相关范文大全或资料大全,欢迎大家分享。
金纳米颗粒的合成方法
金纳米颗粒的盐酸羟胺种子合成法
摘要:本文描述了粒径在30nm到100nm的金纳米颗粒合成方法。通过种子生长法盐酸羟胺作为还原剂合成不同大小的金纳米颗粒。其大小由种子和氯金酸的浓度决定。此方法合成的金纳米颗粒单分散性优于柠檬酸钠作还原剂的一步合成法。重要的是,表面被修饰过的金纳米颗粒也可通过上述方法长大。
许多科学家和工程师都在关注金纳米颗粒的特殊的物理性质。在颗粒组装和膜的形成方面,单分散的金纳米颗粒有着很重要的地位。厚度为45-60nm的金膜表现出角度相关的等离子体共振。柠檬酸钠合成的10-20nm金纳米颗粒单分散性很好。但是此方法合成的更大的金纳米颗粒(粒径在40nm到120nm)单分散性变差,其颗粒浓度小,而且颗粒的真实粒径与预测的粒径相差比较大。
我们所提供的方法是通过种子生长发盐酸羟胺还原氯金酸合成金纳米颗粒。在热力学上,盐酸羟胺是能够还原氯金酸为金单质,金纳米颗粒表面可以加速这个反应的发生。这样,实现了成核和生长两个阶段分离,如图1。此方法的优势在于:ⅰ 此方法合成的金纳米颗粒单分散性优于Frens的柠檬酸钠合成法合成的;ⅱ 能很好的预测金纳米颗粒的粒径;ⅲ 能很好的应用到表面修饰的金纳米颗粒。
图1 金纳米颗粒的生长过程
紫外
固相合成
多肽固相合成的一般方法
1.1 材料与试剂 1.1.1 树脂
二氯三苯甲基树脂(以下简称二氯树脂)和Wang树脂在多肽的固相合成中应用最为广泛,反应条件温和,价格低廉。将这两种树脂与Fmoc-氨基酸通过共价键连接,得到相应的氨基酸树脂。其中二氯树脂与氨基酸的连接反应是一个不可逆的取代反应,Wang树脂与氨基酸的连接反应是一个可逆的酯化反应,因此理论上要比二氯树脂的性能要优于Wang树脂。孙立枢等通过实验也发现以二氯树脂作载体,第一个氨基酸的连接率,以及目标肽的纯度和产率都要明显高于Wang树脂。郑彦慧等对Rink Amide(氨基树脂)的研究发现合成多肽时低取代度(即树脂的loading值低)、高溶胀度的树脂能获得较好的肽收率。
1.1.2 氨基酸
根据氨基酸的α-氨基的保护基不同,可分为Fmoc-氨基酸和Boc-氨基酸两种,本实验室采用的是Fmoc-氨基酸。很多氨基酸不仅α-氨基需要保护,其侧链上的氨基也要保护以有利于合成环肽或避免干扰反应。例如:Fmoc-Lys(alloc)-OH,Fmoc-Trp(Boc)-OH,Fmoc-Asp(oall)-OH等等。
1.1.3 溶剂
实验中主要使用的溶剂有DMF,DCM,MeOH。DMF能很好地
固相合成
多肽固相合成的一般方法
1.1 材料与试剂 1.1.1 树脂
二氯三苯甲基树脂(以下简称二氯树脂)和Wang树脂在多肽的固相合成中应用最为广泛,反应条件温和,价格低廉。将这两种树脂与Fmoc-氨基酸通过共价键连接,得到相应的氨基酸树脂。其中二氯树脂与氨基酸的连接反应是一个不可逆的取代反应,Wang树脂与氨基酸的连接反应是一个可逆的酯化反应,因此理论上要比二氯树脂的性能要优于Wang树脂。孙立枢等通过实验也发现以二氯树脂作载体,第一个氨基酸的连接率,以及目标肽的纯度和产率都要明显高于Wang树脂。郑彦慧等对Rink Amide(氨基树脂)的研究发现合成多肽时低取代度(即树脂的loading值低)、高溶胀度的树脂能获得较好的肽收率。
1.1.2 氨基酸
根据氨基酸的α-氨基的保护基不同,可分为Fmoc-氨基酸和Boc-氨基酸两种,本实验室采用的是Fmoc-氨基酸。很多氨基酸不仅α-氨基需要保护,其侧链上的氨基也要保护以有利于合成环肽或避免干扰反应。例如:Fmoc-Lys(alloc)-OH,Fmoc-Trp(Boc)-OH,Fmoc-Asp(oall)-OH等等。
1.1.3 溶剂
实验中主要使用的溶剂有DMF,DCM,MeOH。DMF能很好地
纳米颗粒添加剂在润滑油中的应用
纳米颗粒添加剂在润滑油中的应用
黄昆
(广西大学材料科学与工程学院材卓121)
摘要:纳米材料科学的发展推动了纳米润滑技术的发展,纳米级材料作为润滑油添加剂的研究已受到广泛关注。已经发现的纳米金属、纳米氧化物、纳米硫化物、碳纳米管、富勒烯、金刚石以及纳米磁性颗粒等都能使润滑油的润滑性能大幅提高。该文综述了各种纳米颗粒润滑油添加剂的摩擦学性能,探究了它们的润滑机理。基于大量的实验研究结果比较了他们性能的优劣,提出纳米磁性颗粒作润滑油添加剂有其它材料不可比拟的优势,指出如何提高添加剂的分散稳定性是提高润滑油润滑性能的关键问题。
关键词:纳米颗粒;添加剂;润滑油
The Application of Nano—Particle Additives in Lubricating Oil
Huangkun
( Zhuo 121 Guangxi university of materials science and engineering materials)
Abstract:The development of nanomaterials science to promote the development of the nanometer lubr
纳米颗粒团聚的原因及解决措施
纳米颗粒团聚的原因及解决措施
摘要:分析了纳米颗粒团聚的影响因素及形成机理,指出了纳米颗粒的形成原因分别讨论了在气体介质和液体介质两种环境中纳米颗粒团聚的控制方法,并对几种特殊的团聚控制方法进行了重点探讨。
关键词:纳米颗粒;团聚;形成机理;控制方法 1 引言
团聚现象是纳米粉体制备及收集过程中的一个难题,目前已经得到了越来越多有关人士的重视。纳米颗粒由于粒度小,表面原子比例大,比表面积大,表面能大,处于能量不稳定状态[1],因而很容易凝并、团聚,形成二次粒子,使粒子粒径变大,失去纳米颗粒所具备的特性,给纳米粉体的制备和保存带来了很大困难。在当今的纳米粉体制备工艺中,防止粒子团聚作为一项重要工作,其目的就是收集粒度分布范围窄、分布均匀且无团聚大颗粒出现的高纯粉体。颗粒的团聚可分为两种:软团聚和硬团聚[2]。软团聚主要是由颗粒间的静电力和范德华力所致,由于作用力较弱可以通过一些化学作用或施加机械能的方式来消除;硬团聚形成的原因除了静电力和范德华力之外,还存在化学键作用,因此硬团聚体不易破坏,需要采取一些特殊的方法进行控制。
2 纳米颗粒团聚的形成机理
纳米粒子具有特殊的表面结构,其表面缺少邻近配位原子,具有很高的活性,因而很容易发生团聚。
蒸汽冷凝法制备纳米颗粒
蒸汽冷凝法制备纳米颗粒
一. 实验目的
1.学习和掌握利用蒸汽冷凝法制备金属纳米微粒的基本原理和实验方法,研究微粒尺寸与惰性气体气压之间的关系。
2. 学习利用电子成像法、X射线衍射峰宽法或其它方法测量微粒的粒径。
二. 实验原理
1. 微粒制备
利用宏观材料制备微粒,通常有两条路径。一种是由大变小,即所谓粉碎法;一种是由小变大,即由原子气通过冷凝、成核、生长过程,形成原子簇进而长大为微粒,称
为聚集法。由于各种化学反应过程的介入,实际上已发展了多种制备方法。 (一)粉碎法
图8.4-3示意几种最常见的粉碎法。实验室使用得最多的是球磨粉碎。球磨粉碎一开始粒径下降很快,但粉碎到一定程度时,由冷焊或冷烧结引起的颗粒重新聚集过程与粉碎过程之间达到动态平衡,粒径不再变小。进一步细化的关键是阻止微晶的冷焊,这往往通过添加助剂完成。1988年,Shingu等利用高能球磨法成功地制备了Al-Fe纳米晶。发展至今,对于bcc结构的材料(如Cr、Fe、W等)和hcp
结构的材料(如Zr、Ru等)的纳米微粒较易制备,但具有fcc的材料(如Cu)难以形成纳米微晶。球磨粉碎法的缺点是微粒尺寸的均匀性不够,同时可能会引入杂质成分。但相对而言工艺较简单,产率较高,而且还能
纳米材料的合成及其应用
纳米材料的合成及其应用
摘要:本文介绍了几种纳米材料的合成制备的方法,主要是固相法、液相法和气相法,并且简单的介绍了其应用领域。 关键词:纳米材料、固相法、液相法、气相法 引言:
纳米级结构材料简称为纳米材料,是指其结构单元的尺寸介于1纳米~100纳米范围之间。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性。纳米材料出现的重要科学意义在于它引领人们认识自然的新层次,是知识创新的亮点。在纳米领域发现新现象,提出新概念,认识新规律,建立新理论,为构建纳米材料科学体系新框架奠定基础[1]。材料的结构决定材料的性质。
纳米材料产生的特殊效应,具有常规材料所不具备的性能,使得它在各个方面的潜在应用极为广泛,并且非常普遍[2~4]。 一、纳米材料的制备方法 1. 固相法
传统的固相合成法反应温度较高,能耗太,而且难以得到高纯度、各组分完全均匀、物相单一的产物,因而不宜用来制各纳米氧化物。 传统的固相法是将金属盐和金属氢氧化物按一定的比例充分混合,发生复分解反应生成前驱物,多次洗涤后充
聚苯胺纳米纤维的合成
微生物燃料电池
Polymer49(2008)4413–4419
ContentslistsavailableatScienceDirect
Polymer
journalhomepage:
/locate/polymer
Electrorheological uidsbasedonnano- brouspolyaniline
JianboYin,XiaopengZhao*,XiangXia,LiqinXiang,YinpoQiao
InstituteofElectrorheologicalTechnology,DepartmentofAppliedPhysics,NorthwesternPolytechnicalUniversity,Xi’an710072,PRChina
articleinfo
Articlehistory:
Received26February2008
Receivedinrevisedform25June2008Accepted5August2008
Availableonline13August2008Keywords:PolyanilineNano- brous
Electrorheological uid
abstract
Usingamodi
成都生物所等发现一种荧光碳纳米颗粒合成新方法
科学家研发出可净化核废水纳米材料
相关研究成果日前在线发表于《应用化学》。彭慧胜设计的旋转平移法可有效结合高分子的弹性及碳纳米管的优异电学和机械性能,首次成功
中科院东北地理与农业生态研究所科研人员成功制备出一种新型纳米材料,可用于高效吸附核废水中的放射性铯元素。相关成果在线发表于《材料化学杂志 A》。 核泄漏造成的核辐射污染是目前已知核能应用
制备出可拉伸的线状超级电容器。这种电容器可弯曲、折叠和拉伸 .且在拉伸 7 5%的情况下仍能 1 0 0%保持电容器的各项性能。这种线状电容器可进一步编织成各种形状的织物,并可集成于各种微型电子器件上 .从而满足未来对于微型能源的需
中最大的安全和环保隐患,如何有效消除核污染一直是科学家关注的热点。此前的研究表明,核污染成分包括铯、锶及碘等多种放射性元素,其中放射性铯 (半衰期约为 3 0年 )为主要成分之一。此次研究人员制备的“磁性普鲁士蓝/氧化石墨烯”纳米材料,可用于高效吸附放射性铯元素,对 5 0 p p m ( p p m为百万分率 )污水中铯的快速去除率达 9 0%以上;对铯离子的饱和吸附容量达 5 5 . 5 6毫克/克。
求。来源:《中国科学报》 北航在规则形貌非晶纳米材料制备方面获突破
在国家自
醋酸丁酸纤维素的非均相合成法
CAB
第38卷第6期2008年6月涂料工业
PAINT&COATINGSINDUSTRYVol.38 No.6
Jun.2008
醋酸丁酸纤维素的非均相合成法
1,211,211
黄彩结,张容丽,姜 玉,廖 兵,庞 浩 (1.中国科学院广州化学研究所纤维素化学重点实验室,广州510650;2.中国科学院研究生院,北京100049)
摘 要:醋酸丁酸纤维素是一种广泛应用于涂料工业的添加剂,由于纤维素具有分子内与分子间强氢键作用以及纤维素纤维的局部规整的结晶序列等特征,工业上的合成方法一般都在有机酸以及酸酐中进行的。本文是在丁酸/乙酸/丁酸酐反应体系中,添加一定量的硫酸作为催化剂下合成出从高丁酯含量到低丁酯含量的醋酸丁酸纤维素(CAB),研究混和有机酸组成(不同比例的丁酸/乙酸)、酯化反应时间以及CAB的丁酯和乙酯含量、产品对热性能及溶解性的影响。
关键词:涂料添加剂;纤维素;纤维素醋酸丁酸酯;酯化作用;热性能
中图分类号:TQ63014 文献标识码:A 文章编号:0253-4312(2008)06-0040-04
HeterogeneousSynthesisofCelluloseAcetateButyrate
HuangCaijie
1,2
,Zhan