时间序列分析实验
“时间序列分析实验”相关的资料有哪些?“时间序列分析实验”相关的范文有哪些?怎么写?下面是小编为您精心整理的“时间序列分析实验”相关范文大全或资料大全,欢迎大家分享。
时间序列分析实验报告
时间序列分析实验报告
P185#1、某股票连续若干天的收盘价如表5-4(行数据)所示。
表5-4
304 303 307 299 296 293 301 293 301 295 284 286 286 287 284 282 278 281 278 277 279 278 270 268 272 273 279 279 280 275 271 277 278 279 283 284 282 283 279 280 280 279 278 283 278 270 275 273 273 272 275 273 273 272 273 272 273 271 272 271 273 277 274 274 272 280 282 292 295 295 294 290 291 288 288 290 293 288 289 291 293 293 290 288 287 289 292 288 288 285 282 286 286 287 284 283 286 282 287 286 287 292 292 294 291 288 289 选择适当模型拟合该序列的发展,并估计下一天的收盘价。 解:
(1)通过SAS软件画出上述序列的时序图如下
时间序列分析实验报告
Harbin Institute of Technology
课程名称:设计题目:院 系:班 级:设 计 者:学 号:指导教师:设计时间:实验报告
时间序列分析 非平稳时间序列建模 电信学院 冀振元 2010-05-07
一、绪论
稳序列的直观含义就是序列中不存在任何趋势性和周期性,其统计意义就是一阶矩为常数,二阶矩存在且为时间间隔t的函数。但是在实际问题中,我们常遇到的序列,特别是反映社会、经济现象的序列,大多数并不平稳,而是呈现出明显的趋势性或周期性。这时,我们就不能认为它是均值不变的平稳过程,需要用如下更一般的模型——Xt??t?Yt来描述。其中,?t表示Xt中随时间变化的均值,它往往可以用多项式、指数函数、正弦函数等描述,而Yt是Xt中剔除趋势性或周期性?t后余下的部分,往往可以认为是零均值的平稳过程,因而可以用ARMA模型来描述。具体的处理方法可分为两大类:一类是通过某
《时间序列分析》讲义
第1章 差分方程和滞后算子
第一节 差分方程
一.一阶差分方程
假定t期的y(输出变量)和另一个变量w(输入变量)和前一期的y之间存在如下动态方程:
yt??yt?1?w (1)
则此方程为一阶线性差分方程,这里假定w为一个确定性的数值序列。差分方程就是关于一个变量与它的前期值之间关系的表达式。一阶差分方程的典型应用为美国货币需求函数:
mt?0.27?0.72mt?1?0.19It?0.045rbt?0.019rct
wt?0.27?0.19It?0.045rbt?0.019rct
其中mt为货币量,It为真实收入,rbt为银行账户利率,rct为商业票据利率。 1)用递归替代法解差分方程 根据方程(1),可以得到
012?ty0??y?1?w0y1??y0?w1y2??y1?w2 (2) ?yt??yt?1?wt如果我们知道t??1期的初始值y?1和w的各期值,则可以通过动态系统得到任何一个时期的值。即
yt??t?1y?1??tw0??t?1w1?....?wt (3)
这个过程称为差分方程的
时间序列建模分析
1、ARIMA模型 1.1 模型的适用条件与构建过程 1.2 EVIEWS操作简单说明 1.3 模型构建实例2、季节时间序列模型 2.1 确定性季节时间序列模型 2.2 随机性季节时间序列模型
时间序列建模分析 及EVIEWS应用
1、ARIMA模型 1.1 模型的适用条件与构建过程 1.2 EVIEWS操作简单说明 1.3 模型构建实例2、季节时间序列模型 2.1 确定性季节时间序列模型 2.2 随机性季节时间序列模型
目录1、ARIMA模型1.1 模型的适用条件与构建过程 1.2 EVIEWS操作简单说明 1.3 模型构建实例
2、季节时间序列模型2.1 确定性季节时间序列模型 2.2 随机性季节时间序列模型
1、ARIMA模型 1.1 模型的适用条件与构建过程 1.2 EVIEWS操作简单说明 1.3 模型构建实例2、季节时间序列模型 2.1 确定性季节时间序列模型 2.2 随机性季节时间序列模型
时间序列的预处理:拿到一个时间序列后,首先要对它的平 稳性和纯随机性进行检
《时间序列分析》讲义
1 第1章 差分方程和滞后算子
第一节 差分方程
一.一阶差分方程
假定t 期的y (输出变量)和另一个变量w (输入变量)和前一期的y 之间存在如下动态方程:
1t t y y w φ-=+ (1)
则此方程为一阶线性差分方程,这里假定w 为一个确定性的数值序列。差分方程就是关于一个变量与它的前期值之间关系的表达式。一阶差分方程的典型应用为美国货币需求函数:
10.270.720.190.0450.019t t t bt ct m m I r r -=++--
0.270.190.0450.019t t bt ct w I r r =+--
其中t m 为货币量,t I 为真实收入,bt r 为银行账户利率,ct r 为商业票据利率。
1)用递归替代法解差分方程
根据方程(1),可以得到
010********
1
2
t t t
y y w y y w y y w t y y w φφφφ--=+=+=+=+
(2) 如果我们知道1t =-期的初始值1y -和w 的各期值,则可以通过动态系统得到任何一个时期的值。即
11101....t t t t t y y w w w φφφ+--=++++
《时间序列分析》讲义
第1章 差分方程和滞后算子
第一节 差分方程
一.一阶差分方程
假定t期的y(输出变量)和另一个变量w(输入变量)和前一期的y之间存在如下动态方程:
yt??yt?1?w (1)
则此方程为一阶线性差分方程,这里假定w为一个确定性的数值序列。差分方程就是关于一个变量与它的前期值之间关系的表达式。一阶差分方程的典型应用为美国货币需求函数:
mt?0.27?0.72mt?1?0.19It?0.045rbt?0.019rct
wt?0.27?0.19It?0.045rbt?0.019rct
其中mt为货币量,It为真实收入,rbt为银行账户利率,rct为商业票据利率。 1)用递归替代法解差分方程 根据方程(1),可以得到
012?ty0??y?1?w0y1??y0?w1y2??y1?w2 (2) ?yt??yt?1?wt如果我们知道t??1期的初始值y?1和w的各期值,则可以通过动态系统得到任何一个时期的值。即
yt??t?1y?1??tw0??t?1w1?....?wt (3)
这个过程称为差分方程的
传统时间序列分析
第九章 传统时间序列分析
时间序列的变动主要是由长期趋势、循环波动、季节变动及不规则变动而形成的,其中前三种变动有一个共同的特点,就是依一定的规则而变化,不规则变动则在综合中可以消除。基于这种认识,本章主要是介绍设法消除不规则变动,拟合确定型趋势,因而形成了一系列确定型时间序列分析方法。
实验一 季节模型
实验目的:
掌握季节调整的方法。 实验内容:
对时间序列进行季节调整。 知识准备:
经济时间序列的变化受许多因素的影响,概括地讲,可以将影响时间序列变化的因素分为四种,即长期趋势(T,随着时间的变化,按照某种规律稳步地增长、下降或保持在某一水平上)、季节变动因素(S,在一个年度内依一定周期规则性变化)、周期变动因素(C,以若干年为周期的波动变化)和不规则变动因素(I,许多不可控的偶然因素共同作用的结果)。传统时间序列分析应是设法消除不规则变动,指拟合确定性趋势,因而形成了长期趋势分析、季节变动分析和循环波动测定等一系列确定型时间序列分析方法。
季节变动是一种较为普遍的现象,其按照一定的周期循环进行,而且每个周期变化强度大体一致。研究季节变动的目的在于了解季节变动的规律,并进行季节预测。分析季节变动的方法有很多,其中常用的方法有两类:一是不考
时间序列实验报告
第三章 平稳时间序列分析
选择合适的模型拟合1950-2008年我国邮路及农村投递线路每年新增里程数序列,见表1:
表1 1950-2008年我国邮路及农村投递线路每年新增里程数序列
单位:万公里 年份 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
新增里程 15.71 24.43 18.23 22.50 12.53 9.94 7.19 41.13 79.03 119.32 -12.10 -89.71 -52.26 20.01 19.92 42.81 18.78 -0.75 -1.08 5.09 年份 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 新增里程 26.39 31.09 19.
实验五用excel进行时间序列分析
实验五用EXCEL进行时间序列分析
一、测定增长量和平均增长量
例5-1:下图为我国2000-2011年各年就业人数数据,计算逐期增长量和累计增长量。
计算逐期增长量:在C3中输入公式:=B3-B2,并用鼠标拖曳将公式复制到C3:C13区域。
计算累计增长量:在D3中输入公式:=B3-$B$2,并用鼠标拖曳公式复制到D3:D13区域。
1
计算平均增长量(水平法):在C10中输入公式:=(B13-B2)/11,(n-1=11)按回车键,即可得到平均增长量。
由以上分析可知,除2001年比2000年就业人口数有大幅增长外,此后近十年间,就业人口数目保持稳定增长,且2000-2011年平均增长量为万人。
2
二、测定发展速度和平均发展速度
仍以我国2000-2011年各年就业人数数据为例,计算定基发展速度、环比发展速度和平均发展速度。数据录入如下:
计算定基发展速度:在C3中输入公式:=B3/$B$2,并用鼠标拖曳将公式复制到C3:C13区域。
计算环比发展速度:在D3中输入公式:=B3/B2,并用鼠标拖曳将公式复制到D3:D13区域。
3
计算平均发展速度(水平法):选中C10单元格,单击插入菜单,选择函数选项,出现插入函数对话框后,选择GEOMEAN(返回几何平均值)函
时间序列实验报告
第三章 平稳时间序列分析
选择合适的模型拟合1950-2008年我国邮路及农村投递线路每年新增里程数序列,见表1:
表1 1950-2008年我国邮路及农村投递线路每年新增里程数序列
单位:万公里 年份 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
新增里程 15.71 24.43 18.23 22.50 12.53 9.94 7.19 41.13 79.03 119.32 -12.10 -89.71 -52.26 20.01 19.92 42.81 18.78 -0.75 -1.08 5.09 年份 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 新增里程 26.39 31.09 19.