高一数学指数函数思维导图
“高一数学指数函数思维导图”相关的资料有哪些?“高一数学指数函数思维导图”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高一数学指数函数思维导图”相关范文大全或资料大全,欢迎大家分享。
苏教版高一数学指数函数1
§17指数函数
江苏省启东中学 黄群力
[教学目标]理解指数函数的概念和意义,观察指数函数图象变化规律和底
数的关系,结合函数定义域和值域加深对指数函数图象和性质的认识。
[学习指导]
重点:对指数函数图象和性质理解掌握,并能运用。 难点:对图象和性质的深刻认识和把握。 教材分析:
1、指数函数图象和性质:
函数y?ax(a?0,a?1,x?R)叫指数函数,它的图象和性质见表
指数函数y?ax?a?0,a?1?的性质 对应图象 y a?1 0 ?a?1 (0,1) x 0 y 0?a?1 a?1 x 0 y 0?a?1 a?1 (0,1) 定义域为???,???,值域为?0,??? x为任意实数,ax?0恒成立,图象位于 x轴上方 a0?1,y?ax的图象都经过点?0,1? 0 x 0?y?1 y a ?1,a? 1 a1?a 0 x 当a?1时,若x2?x1,则ax2?ax1,它是增函数;当0?a?1时,若x2?x1,则0?a?1 y a?1 ax2?a,它是减函数 xx10 x y 当a?1时,若x?0,则a?1; 若x?0,则0
高一数学_指数函数、对数函数、幂函数练习(含答案)
分数指数幂
1、用根式的形式表示下列各式(a 0) 1(1)a5
(2)a
32
2、用分数指数幂的形式表示下列各式: 2(1)x4
y3
(2)mm
(m 0)
3、求下列各式的值
3
3(1)252
(2)2
25
4
4、解下列方程 3
(1)x 13 1
8
(2)2x4 1 15
分数指数幂(第
9份)答案
1
33
2、x2
y2, m2
3、(1)125 (2)
8125
4、(1)512 (2)16
指数函数(第
10份)
1、下列函数是指数函数的是( 填序号) (1)y 4x
(2)y x4
(3)y ( 4)x
(4)y 4x2
。 2、函数y a
2x 1(a 0,a 1)的图象必过定点 。
3、若指数函数y (2a 1)x
在R上是增函数,求实数a的取值范围。4、如果指数函数f(x) (a 1)x
是R上的单调减函数,那么a取值范围是 (A、a 2 B、a 2 C、1 a 2 D、0 a 1
)
5、下列关系中,正确的是
高一数学测试题指数函数与对数函数(9)
一、选择题:
1、设f(x)满足f(x)=f(4-x),且当x>2 时f(x)是增函数,则 a=f(1.10.9),b = f(0.91.1),c
=f(log14)的大小关系
2
( )
D.c>b>a
( )
C.1或4 D.4 或
( )
D.3
A.a>b>c B.b>a>c C.a>c>b 2、已知2lg(x-2y)=lgx+lgy,则x的值为
y A.1
B.4
3、方程loga (x+1)+ x2=2 (0<a<1)的解的个数为
A.0 B.1 C.2 4、函数f(x)与g(x)=(
1x
)的图象关于直线y=x对称,则f(4-x2)的单调递增区间是 ( ) 2
B. ,0
C. 0,2
D. 2,0
( )
A. 0,
2
5、已知函数y=log1 (ax2+2x+1)的值域为R,则实数a的取值范围是 A.a > 1
B.0≤a< 1
2
C.0<a<1 D.0≤a≤1
2
6、设x≥0,y≥0,且x+2y=1 ,那么函数 u=log1 (8x
高一数学《指数函数与对数函数》测试题及答案
1 指数函数与对数函数检测题
一、选择题:
1、已知(10)x f x =,则(5)f =( )
A 、510
B 、10
5 C 、lg10 D 、lg 5
2、对于0,1a a >≠,下列说法中,正确的是( )
①若M N =则log log a a M N =; ②若log log a a M N =则M N =;
③若22log log a a M N =则M N =; ④若M N =则22log log a a M N =。 A 、①②③④ B 、①③ C 、②④ D 、②
3、设集合2{|3,},{|1,}x S y y x R T y y x x R ==∈==-∈,则S T 是 ( )
A 、?
B 、T
C 、S
D 、有限集
4、函数22log (1)y x x =+≥的值域为( )
A 、()2,+∞
B 、(),2-∞
C 、[)2,+∞
D 、[)3,+∞ 5、设 1.50.90.4812314,8,2y y y -??=== ???,则( )
A 、312y y y >>
B 、213y y y >>
C 、132y y y >>
D 、123y y y >>
6、在(2)log (5)a b
指数对数与幂函数(思维导图)
1、底数对图像的影响
2、平移变换对图像的影响1、底数对图像的影响
2、平移变换对图像的影响
1、先观察底数a与1大小,不确定时要分类讨论1、先观察底数a与1大小,不确定时要分类讨论
1
1
1
(六)指数函数
1.幂的有关概念
正整数指数幂:=??
n
a a a a n a ; 零指数幂:0a =1( ) ;
负整数指数幂:p a -= (0,a p N +≠∈); 正分数指数幂:m n a =
(0,1a m n N n +>∈>、且); 负分数指数幂:m
n a -=
(0,1a m n N n +>∈>、且);
0的正分数指数幂等于 ,0的负分数指数幂
2.幂的运算法则(0,0,a b r s Q >>∈、)
r s a a = ;()r s a = ;()r ab =
3.指数函数图像及性质
1
4.指数函数()x f x a =具有性质:
()()()(),1(0,1)f x y f x f y f a a a +==>≠
(七)对数函数
1.定义:如果)1,0(≠>a a a 且的b 次幂等于N ,就是b a N =,那么数b 称以a 为底N 的对数,记作log a b N =,其中a 称对数的底,N 称真数.
2019-2020学年高一数学必修一:3.1.2《指数函数》同步练习(含答案)
2019-2020学年苏教版数学精品资料
2.2.2 指数函数
1.下列以x为自变量的函数中,是指数函数的序号是__________.
+
①y=(-4)x ②y=πx ③y=-4x ④y=ax2(a>0且a≠1) ⑤y=(a+1)x(a>-1且a≠0)
1-
2.方程3x1=的解是__________.
9
3.指数函数y=f(x)的图象经过点(2,4),那么f(-1)·f(3)=__________. 4.指数函数y=(2m-1)x是单调减函数,则m的取值范围是__________. 5.设f(x)=3x+2,则函数f(x)的值域为__________. 6.函数y=1-3x的定义域是__________.
7.
右图是指数函数①y=ax;②y=bx;③y=cx;④y=dx的图象,则a、b、c、d与1的大小关系是__________.
-
8.(1)已知函数f(x)=4+ax2(a>0,a≠1)的图象恒过定点P,则点P的坐标是__________. (2)函数f(x)=ax2+2x-3+m(a>1)恒过点(1,10),则m=__________.
1-
9.设y1=40.9,y2=80.48,y3=()1.5,则y1、y2、y3的大小关系为____
《指数函数》
4.2.1 指数函数及其图像与性质
【教学目标】 1.知识与技能目标:
使学生理解指数函数的定义、图象及性质,培养学生正确使用几何画板工具。 2.过程与方法目标:
在实验活动过程中引领学生主动探索指数函数性质,启动观察、分析、归纳、总结、抽象概括等思 维活动,培养学生的思维能力,体会学习数学规律的方法。 3.情感态度与价值观:
让学生感受数学问题探索的乐趣,体验成功的喜悦,体会辨证的思维及数学图形的和谐美。
【教学重、难点】
教学重点:理解指数函数的定义、图象及性质。 教学难点:指数函数性质的归纳与运用。
【教学方法】
我校汽修专业的学生数学基础比较薄弱,学生对数学普遍不感兴趣。本节课概念性比较强,而且突出数学图形的运用,这恰是学生学习的弱项,但是思想比较活跃的他们对新事物具有强烈的好奇心,动手能力、观察能力比较强。因此本节课主要采用数学实验教学活动的方法,通过结合计算机软件工具,让学生在实验活动过程中来去体验、感悟知识,让学习成为一种愉悦的主动认知过程,切实做到将数学课堂还给学生。
【教学过程】 1.流程 (1)教学流程:
创设情境 激发兴趣引出新知 形成概念深入探究 引导发现巩固提高 灵活运用归纳总结 新知梳理分层作业共同提高
人教B版高一数学上学期第三单元:指数与指数函数-word文档资料
人教B版高一数学上学期第三单元:指数与指数
函数
内容 ? ?人教B版高一数学上学期第三单元一共有4个课题,为了帮助大家学习,小编整理了人教B版高一数学上学期第三单元知识点总结,一起来看看吧! 指数与指数函数
一般地,形如y=a^x(a>0且a≠1) (x∈R)的函数叫做指数函数(exponential function) 。也就是说以指数为自变量,底数为大于0且不等于1的常量的函数称为指数函数,它是初等函数中的一种。
人教B版高一数学上册第三单元指数与指数函数知识点 对数与对数函数
对数的定义:一般地,如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。
其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函??数里对于a的规定,同样适用于对数函数。
人教B版高一数学上册第三单元知识点:对数与对数函数
第 1 页
幂函数
一般地,形如y=xα(α为实数)的函
2015高一数学第3章 指数函数、对数函数和幂函数作业题及答案解析3.1.2(一)
3.1.2 指数函数(一)
课时目标 1.理解指数函数的概念,会判断一个函数是否为指数函数.2.掌握指数函数的图象和性质.
1.指数函数的概念
一般地,______________________叫做指数函数,其中x是自变量,函数的定义域是____.
2
x
一、填空题
1.下列以x为自变量的函数中,是指数函数的是______.(填序号)
+
①y=(-4)x;②y=πx;③y=-4x;④y=ax2(a>0且a≠1). 2.函数f(x)=(a2-3a+3)ax是指数函数,则a的值为________. 3.函数y=a|x|(a>1)的图象是________.(填序号)
4.已知f(x)为R上的奇函数,当x<0时,f(x)=3,那么f(2)=________.
x
5.如图是指数函数 ①y=ax; ②y=bx; ③y=cx;
④y=dx的图象,则a、b、c、d与1的大小关系是________.
1
6.函数y=(x-2的图象必过第________象限.
2
7.函数f(x)=ax的图象经过点(2,4),则f(-3)的值为____.
8.若函数y=ax-(b-1)(a>0,a≠1)的图象不经过第二象限,则a,b需满足的条件为________.
-
9.函数y=8-
2.6 指数与指数函数
指数与指数函数
要点梳理1. 根式的概念根式的概念
忆一忆知识要点
符号表示
备注
如果xn=a,那么 x 叫做 a 的n次方根. n为奇数时,正数的奇 次方根是正数;负数的奇次 方根是负数. n为偶数时,正数的偶 次方根有两个且互为相反 数.n
n>1,且 n∈N*.
a
零的n次方根是零
n a (a 0) 负数没有偶次方根
要点梳理2. 两个重要公式
忆一忆知识要点
公式 (1) ( a ) a.n n
适用范围: ①当n为大于1的奇数时, a∈R.
②当n为大于1的偶数时, a≥0.公式 (2)n
a , n 2k 1, k N , a = | a |, n 2k , k N .
n
要点梳理3. 幂的有关概念 幂指数 正整数 指数
忆一忆知识要点
a a a a n
定义
条件
零指数 负整数 指数 正分数 指数 负分数 指数
a 10
n个a
n N ,a R
a 0n N ,a 0 m
a 1n a n
aa m n
m n
n
an
a>0,m,n N*,n>1a>0,m,n N*,n>1
1 m an
1 am
规定: 0的正分数指数幂为0, 0的负分数指数幂没有