数学建模拟合模型
“数学建模拟合模型”相关的资料有哪些?“数学建模拟合模型”相关的范文有哪些?怎么写?下面是小编为您精心整理的“数学建模拟合模型”相关范文大全或资料大全,欢迎大家分享。
数学建模实验拟合
曲线拟合
某年美国旧车价格的调查资料如下表所示,其中下xi表示轿车的使用年数,
yi表示相应的平均价格。试分析用什么形式的曲线来拟合上述的数据,并计算使用4.5年后轿车的平均价格大致为多少?
xi yi 1 2 3 4 5 6 538 7 484 8 290 9 226 10 204 2615 1943 1494 1087 765 (1)画粗糙曲线 运行程序
x1=[1,2,3,4,5,6,7,8,9,10];
y1=[2615,1943,1494,1087,765,538,484,290,226,204]; plot(x1,y1,'o') 运行结果
假设曲线方程y=a*e?kx方程两边取对数lny=lna-kx
令t=lny,m=-k,n=lna,拟和曲线t=n+mx 执行以下程序拟和求得参数 x1=[1,2,3,4,5,6,7,8,9,10];
y1=[2615,1943,1494,1087,765,538,484,290,226,204]; t=log(y1); aa=polyfit(x1,t,1) 运行结果 aa =
-0.2969 8.1591 即得y1=e^(-0.2969*x+8.1591) 运行程序得到精确曲线 x
数学建模 插值与拟合方法
插值与拟合方法
数学建模社团活动
主讲人:赵振刚
第一章 插值与拟合方法一般插值方法; 样条函数与样条插值方法; 磨光法与B样条函数; 最小二乘拟合方法; 应用案例分析与应用练习.
2
2013年11月24日
一、一般插值方法1.一般问题的提出实际中不知道函数 y f (x) 的具体表达式, 由实验 测量对于 x xi 有值 y yi (i 0,1,2, , n) ,寻求另一 函数 (x) 使满足: ( x i ) yi f ( xi ) 。此问题称为插值问题, 并称 (x) 为 f (x) 的插值 函数; x 0 , x1 , x2 , , xn 称为插值节点;
( x i ) yi (i 0,1,2, , n) 称 为 插 值 条 件 , 即 ( x i ) yi f ( xi ) ,且 ( x) f ( x) 。3 2013年11月24日
一、一般插值方法2. Lagrange插值公式设函数 y f (x) 在 n 1 个相异点 x 0 , x1 , x2 , , xn 上的值为 y 0 , y1 , y 2 , , yn ,要求一个次数
数学建模插值及拟合详解
. . . . .
插值和拟合
实验目的:了解数值分析建模的方法,掌握用Matlab进行曲线拟合的方法,理解用插值法建模的思想,运用Matlab一些命令及编程实现插值建模。
实验要求:理解曲线拟合和插值方法的思想,熟悉Matlab相关的命令,完成相应的练习,并将操作过程、程序及结果记录下来。
实验内容:
一、插值
1.插值的基本思想
·已知有n +1个节点(xj,yj),j = 0,1,…, n,其中xj互不相同,节点(xj, yj)可看成由某个函数y= f (x)产生;
·构造一个相对简单的函数y=P(x);
·使P通过全部节点,即P (xk) = yk,k=0,1,…, n ;
·用P (x)作为函数f ( x )的近似。
2.用MA TLAB作一维插值计算
yi=interp1(x,y,xi,'method')
注:yi—xi处的插值结果;x,y—插值节点;xi—被插值点;method—插值方法(‘nearest’:最邻近插值;‘linear’:线性插值;‘spline’:三次样条插值;‘cubic’:立方插值;缺省时:线性插值)。注意:所有的插值方法都要求x是单调的,并且xi不能够超过x的范围。
练习1:机床加工问题
x 0 3 5 7 9 11 12
数学建模 人口模型
中国人口增长预测模型的建立与分析
摘要
针对我国人口发展过程中出现的老龄化进程加快,出生人口性别比持续升高,乡村人口城镇化的新特点,我们基于LESLIE 矩阵,着重考虑城镇与乡村间的人口迁移及女性人口比例变化对我国人口增长的影响,经过两次改进建立了便于计算机求解的差分方程模型,对我国2005年以后45年的人口增长进行了预测。随后利用时间段参数设置法,对差分方程模型又进行了一次改进。然后运用等维灰色系统预测法对该差分方程模型的中短期预测进行了检验,同时根据2001年人口基本数据运用此模型对2001年~2005年进行了预测,并用实际数据对预测结果进行了检验。
我们将预测区间分为2006~2020年、2021~2035年、2036~2050年三个区间,以量化短期、中期与长期。通过调整模型中相关参数及输入条件,定量地分析了男女性别比例、老龄化和乡村人口城镇化对我国人口增长的影响。预测结果表明,从短期来看,我国的出生性别比变化不明显,将在短期内维持基本不变,老龄化进程在15年内在上升了8个百分点,人口扶养比持续升高,这将加重我国的人口压力,乡村人口城镇化水平进展缓慢;从中期来看,总人口性别比将保持在1与1.1之间,老龄化进程将呈线性增加趋势,乡村人口城镇化水
数学建模插值与拟合实验题
数学建模插值与拟合实验题
1. 处理2007年大学生数学建模竞赛A题:“中国人口增长预测”附件中的数据,得到以下几个问题的拟合结果,并绘制图形
(1)对1994-2005年出生婴儿的性别比进行拟合,并以此预测2006-2015年间的性别比。
(2)生育率随年龄的变化而变化,试以生育年龄为自变量,生育率为因变量,对各年的育龄妇女生育率进行拟合;
(3)按时间分布对城、镇、乡生育率进行分析,以时间为自变量,生育率为因变量,对城、镇、乡的生育率进行拟合,并预测2006-2015年间的生育率。
(4)将某年的城镇化水平PU(t)定义为当年的城镇人口数与总人口数之
比,Karmeshu(1992年)研究发现20世纪50年代以来发达国家随着经济发展水平的提高,城镇人口的增长相对农村要快一些,但是随着城镇化水平的提高,并趋向100%时,速度会减缓,城镇化水平的增长曲线大致表现为一条拉伸的“S”型Logistic曲线[4],对附录2中所给出2001年—2005年中国人口1%调查数据进行曲线拟合,求得该曲线,并绘制2001-2050年的城镇化水平的曲线图。
2. 处理2011年大学生数学建模竞赛A题:“城市表层土壤重金属污染分析”附件中的数据,完成下列问题
(1
数学建模之随机性模型与模拟方法
适合数学建模的人看下
随机性模型与模拟方法
适合数学建模的人看下
随机变量 蒙特卡罗方法 随机数的生成 模拟
适合数学建模的人看下
一、随机变量
何谓随机变量?随机变量是一个其值不可 预测的变量。虽然一个随机变量在个别试验 中其结果不确定,但在大量重复试验中其结 果是具有统计规律的。正是随机变量的这种 规律性使我们可以利用它来建模。例如我们 可以利用下述的数据:时间t(秒) 0 变量X 1 1 2 0 2 3 2 4 1 5 2 6 0 7 1 8 0 9 2
得出一个模型。
适合数学建模的人看下
X是一个离散的随机变量并取值于 0,1和2。我们 不可能给出 X 与 t 的确定的关系式,但是可以通 过数 X 的不同值出现次数来描述这随机型 的规律列表如下:频数 频率
X
0 3 0.3
1 3 0.3
2 4 0.4
这个表给出了随机变量 X 的变化规律,频率告 诉某个特定的事件发生的频繁程度。如果我们需要 构造一个含有随机变量的模型,可以假设这个规律 总是成立的,模型的假设可以基于这几个数据之上。 实际操作时可以把频率分布当作概率函数来处理, 但应注意概率是频率的极限值,这两者是有差异的。 在处理一个简单的理论模型时,对概率函数
适合数学建模的人看下
必须作出合适的选择
数学建模(模型)概述(上)
教 案
课题 名称 第一节 数学建模(模型)概述(上) 进 度 时 数 2 教学目标 应知应会重点难点本课程主要内容、学习目标、学习方法 数学建模的基本概念 简单数学模型的分析 数学模型概念的理解 数学模型的建立 讲授 教学教学资源 内容 教材 教具 时间分配 30’ 15’ 45’ 教材分析教学方法 一、数学模型的概念 二、一个简单的数学模型实例 实例分析、求解 第一节 数学建模(模型)概述 教学后记作业
1
内容 备 注 第5章 数学建模简介 最近几十年,随着各种科学技术尤其是计算机技术的发展,数学正以其神奇的魅力进入各种领域。它的功效显著,其解决问题的卓越能力甚至使它渗透到一些非物理领域,诸如交通、生态、社会学等。数学作为一种“技术”,日益受到人们的重视。 在新的形式下,大学的数学教学也面临着改革。为了使毕业生尽快地适应工作岗位,能够较好地解决各种实际问题,数学课程的设置不能仅仅只为了教会学生们一些数学的定理和方法,更重要的是,要教会他们怎样运用手中的数学武器去解决实际中的问题,这便是数学建模这门课程的目的。作为一门新型的学科,数学建模正日益焕发出其独特的魅力。 第一节 数学建
数学建模 医院评价模型
2010大学生数学建模竞赛
承 诺 书
我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员 (打印并签名) :1. LI 2. JIANG
数学建模~~微分方程模型
求实
创新
团结
奉献
第六章
微分方程模型
求实
创新
团结
奉献
本章内容 微分方程基本概念及建模方法 一阶微分方程(组)模型 稳定性模型
求实
创新
团结
奉献
一、微分方程基本概念及建模方法
微分方程的阶 解:特解、通解、解析解、数值解 初值问题 在实际问题中,“改变”、“变化”、“增加”、“减少 ”等关键词提示我们什么量在变化,关键词“速率”、“增 长”、“衰变”、“边际的”等常涉及导数。
求实
创新
团结
奉献
建立微分方程常用方法
运用已知物理定理 利用平衡与增长式 运用微元法
应用分析法
求实
创新
团结
奉献
1、运用已知物理定律
例1、物体冷却过程将物体放置在空气中,在时刻t=0时,测量得它的温度为u0=1500C,10分 钟后测量得温度为u1=1000C.我们要求此物体的温度u和时间t的关系,并计 算20分钟后物体的温度。这里我们假定空气的温度保持在ua=240C. Newton冷却定律:将温度为T的物体放入处于常温m的介质中时,T的 变化速率正比于 T与周围介质的温度差。解:设物体在 t 时刻的温度为 u u t , t 0 , 根据牛顿冷却定律知, 成正比,建立模型如下: du k (u u a ) dt
数学建模常见评价模型简介.
评价类数学模型是全国数学建模竞赛中经常出现的一类模型,如 2005 年全国赛 A 题长江水质的评价问题, 2008 年 B 题高校学费标准评价体系问题等。主要介绍三种比较常用的评价模型:层次分析模型,模糊综合评价模型,灰色关联分析模型,以期帮助大家了解不同背景下不同评价方法的应用。
层次分析模型
层次分析法 (AHP) 是根据问题的性质和要求,将所包含的因素进行分类,一般按目标层、准则层和子准则层排列,构成一个层次结构,对同层次内诸因素采用两两比较的方法确定出相对于上一层目标的权重,这样层层分析下去,直到最后一层,给出所有因素相对于总目标而言,按重要性程度的一个排序。其主要特征是,它合理地将定性与定量决策结合起来,按照思维、心理的规律把决策过程层次化、数量化。
运用层次分析法进行决策,可以分为以下四个步骤:
步骤 1 建立层次分析结构模型
深入分析实际问题,将有关因素自上而下分层 ( 目标 — 准则或指标 — 方案或对象 ) ,上层受下层影响,而层内各因素基本上相对独立。
步骤 2 构造成对比较阵
对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比 较 ,借助 1~9 尺度, 构造比较矩阵;
步骤 3 计算权向量并作一致性检验
由判断矩阵计算被比较元