上转换发光材料的研究背景

“上转换发光材料的研究背景”相关的资料有哪些?“上转换发光材料的研究背景”相关的范文有哪些?怎么写?下面是小编为您精心整理的“上转换发光材料的研究背景”相关范文大全或资料大全,欢迎大家分享。

上转换发光材料

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

上转换发光材料

上转换发光的概念:

上转换发光是在长波长光激发下,可持续发射波长比激发波长短的光。本质上是一种反-斯托克斯(Anti-Stokes)发光,即辐射的能量大于所吸收的能量。斯托克斯定律认为材料只能受到高能量的光激发,发出低能量的光,换句话说,就是波长短的频率高的激发出波长长的频率低的光。比如紫外线激发发出可见光,或者蓝光激发出黄色光,或者可见光激发出红外线。但是后来人们发现,其实有些材料可以实现与上述定律正好相反的发光效果,于是我们称其为反斯托克斯发光,又称上转换发光。 上转换发光技术的发展:

早在1959年就出现了上转换发光的报道,Bloembergc在Physical Review Letter上发表的一篇文章提出,用960nm的红外光激发多晶ZnS,观察到了525nm绿色发光。1966年Auzcl在研究钨酸镱钠玻璃时,意外发现,当基质材料中掺入Yb离子时,Er3+、Ho3+和Tm3+离子在红外光激发时,可见发光几乎提高了两个数量级,由此正式提出了―上转换发光‖的观点。整个60-70年代,以Auzal 为代表,系统地对掺杂稀土离子的上转换特性及其机制进行了深入的研究,提出掺杂稀土离子形成亚稳激发态是产生上转换功能的前提。迄今为

发光材料的制备

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

实验三 微波法制备蓝色荧光粉Ca1-xSrxF2:Eu

一、实验目的

1. 掌握共沉淀-微波法制备荧光粉的方法 2. 熟悉微波反应装置以及具体的实验操作 3. 制备纳米复合荧光粉 二、主要仪器与药品 1、仪器

烧杯,胶头滴管,瓷坩埚(100ml、20ml)各一个,分析天平,离心机,烘箱,微波炉,紫外灯 2、药品

硝酸钙,硝酸锶,三氧化二铕(Eu2O3),氟化铵,硝酸,活性炭(炭粒)

三 实验原理与技术

共沉淀法是将沉淀剂加入到混合金属盐溶液中,促使各组分均匀混合沉淀,然后加热分解以获得产物的方法。化学共沉淀法的优势在于它不仅可以将原料提纯与细化,而且可以在制备过程中完成反应及掺杂过程。这种方法具有工艺简单、经济,反应物混合均匀,焙烧温度较低、时间较短、产品性能良好等优点。但制备过程中仍有不少问题有待解决,例如过程中易引入杂质,形成的沉淀呈胶体状态导致洗涤和过滤方面的问题,如何选择适宜的沉淀剂和控制制备条件等。

微波合成法是近年来迅速发展起来的一种新合成方法,应用于光致发光材料的制备,已获得了多种粒度细小、分布均匀、色泽纯正、发光效率高的荧光粉 。这种方法是将原料按比例混合后研磨,装入特定的反应器,在微波炉中加热反应20—40min,取出后进

发光材料的制备方法

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

发光材料的制备方法

随着发光材料基质类型的不断发展,其制备方法也逐渐趋于多样化[7~10]针

对各种基质的特点,相应发展出了溶胶-凝胶法、高温固相法、燃烧合成法、微波加热法、水热法、喷雾热解法、化学沉淀法、电弧法等制备技术。这些制备方法的基本原理有着显著的差别,适用性也有所不同,具有较强的针对性。 1、溶胶—凝胶法

溶胶一凝胶法(Sol-Gel)是低温合成材料的一种新工艺,它最早是用来合成玻璃的,但近十多年来,一直是玻璃陶瓷等先进材料合成技术研究的热点,其原理是将组成元素的金属无机或有机化合物作为先驱体,经过水解形成凝胶,这些凝胶经过烘干成为玻璃粉末并进行成型,再在较低温度下进行烧结,形成玻璃陶瓷。溶胶一凝胶法是应用前景非常广泛的合成方法。它是采用特定的材料前驱体在一定条件下水解,形成溶胶,然后经溶剂挥发及加热等处理,使溶胶转变成网状结构的凝胶,再经过适当的后处理工艺形成纳米材料的一种方法。

利用溶胶一凝胶法(Sol-Gel)制备发光材料时,把选好的基质材料制成溶液,配以激活剂、助溶剂等的有机化合物溶液或化合物的水溶液,混合均匀,溶液静化数小时后形成凝胶,经干燥、灼烧除去有机物后,再在一定气氛下烧结成产品,得到发光材料粉体。范恩荣[11

OLED 材料的发光原理

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

掌握未来显示技术:OLED材料的发光原理

2016-11-11OLED新技术

众所周知,OLED显示器不需要背光源,在通电的情况下OLED材料可以主动发出红绿蓝三色光。那OLED发光的原理是什么呢?

首先上一张大家已经看腻的图:OLED器件结构。

OLED器件结构(来源:百度百科)

从图中可以看出,OLED器件自下而上分为:

玻璃基板(TFT)、阳极、空穴注入/传输层、有机发光层、电子注入/传输层和金属阴极(顺便吐槽一下百度百科里各层名字的叫法。。。)

发光的部位在器件中间的有机发光层(再具体点就是发光层中的掺杂材料),发光机理如下图所示:

有机发光层的发光机理(来源:网络)

OLED器件是电流驱动型,在通电的情况下,空穴从阳极进入器件,穿过空穴注入/传输层,电子从阴极进入器件,穿过电子注入/传输层,两者最终到达有机发光层。

接下来要讲解的内容可能会比较生涩,为便于不同层次读者的理解,小编用不同的内容分成基础班和进修班,请各位读者对号入座。 基础班:

空穴和电子在发光层中相遇,然后复合,形象一点讲的话,就像久未相见的恋人,一见面便紧紧抱在一起;电子空穴复合时会产生能量,释放出光子,你可以将光子理解为下图中情侣头上的心形;我们能看

稀土发光材料的合成方法

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

第24卷第1期稀  土Vol.24,No.1

                              

2003年2月ChineseRareEarthsFebruary2003

稀土发光材料的合成方法

1,2

3*

4

4

X

孙彦彬,邱关明,陈永杰,耿秀娟,代少俊

5

(1.东北大学,辽宁 沈阳 110006;2.吉林大学,吉林 长春 130026;

3.长春光机学院,吉林 长春 130022;4.沈阳化工学院,辽宁 沈阳 110021;5.盐城工学院,江苏 盐城 224003)

  摘 要:综述了目前国内外稀土发光材料的几种合成方法,包括传统的高温固相反应法、几种软化学法(溶胶-凝胶法、低温燃烧法、水热合成法、缓冲溶液沉淀法)和物理合成法(微波辐射合成法,CO2激光加热气相沉积合成法)。总结了每种合成方法的优缺点,并对稀土发光材料新的合成方法进行了展望。

关键词:稀土;发光材料;合成方法

中图分类号:O614.33  文献标识码:A  文章编号:1004-0277(2003)01-0043-06

  自从20世纪70年代灯用稀土荧光粉商品化以来,发光材料的研究进入了一个新的阶段。由于稀土发光材料具有许多优良的性能和广泛的用途,目前已成为发光材料研究的一个热点。新的稀

浅述稀土发光材料

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

浅述稀土发光材料

日新月异的现代技术的发展需要很多新型材料的支持。自从第三次科技浪潮席卷全球以来,新型材料同信息、能源一起,被称为现代科技的三大支柱。新材料的诞生会带动相关产业和技术的迅速发展,甚至会催生新的产业和技术领域。材料科学现已发展成为一门跨学科的综合性学科。根据我国当前及未来发展的实际情况,新材料领域值得注意的新发展方向主要有半导体材料、结构材料、无机发光材料、有机/高分子材料、敏感与传感转换材料、纳米材料、生物材料及复合材料。

1. 稀土发光材料简介

1.1 稀土发光材料的电子组态特征

稀土离子的发光特性来源于其电子构型的特殊性。发射与激发主要源于4f能级间或5d-4f能级间的电子跃迁。研究稀土发光材料,实际是研究4f轨道上与f电子的物理性质相关的材料。

稀土原子和离子的电子组态具有下列特征:

(1) 中性La系原子中,没有4f电子的La (4f0), 4f电子半充满的Gd (4f7)和4f电子全充满的Lu (4f14)都有一个5d电子,即m=1;此外,Ce原子也有一个5d电子,其他La系原子的 m 都为零。

(2) 对于一个具体的稀土元素,相对于6s和5d电子,4f 电子的能量要低一些,因此6s和5d最容易电离,如果没有5

长余辉发光材料概述

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

长余辉发光材料概述

摘要

本文综述了长余辉材料的发光机理及制备方法,并简单介绍了硫化物长余辉发光材料、铝酸盐长余辉发光材料及硅酸盐长余辉发光材料。 关键词:长余辉;发光材料

1.长余辉发光材料简介

长余辉发光材料简称长余辉材料,又称夜光材料、蓄光材料。它是一类吸收太阳光或人工光源所产生的光的能量后,将部分能量储存起来,然后缓慢地把储存的能量以可见光的形式释放出来,在光源撤除后仍然可以长时间发出可见光的物质[1]。

2.长余辉发光材料的基本机理

长余辉材料被激发以后,能长时间持续发光,其关键在于有适当深度的陷阱能态(即能量存储器)。光激发时产生的自由电子(或自由空穴)落入陷阱中储存起来,激发停止后,靠常温下的热扰动而释放出被俘的陷阱电子(或陷阱空穴)与发光中心复合产生余辉光。随着陷阱逐渐被腾空,余辉光也逐渐衰减至消失。而陷阱态来源于晶体的结构缺陷,换言之,寻求最佳的晶体缺陷以形成最佳陷阱(种类、深度、浓度等)是获得长余辉的主要因素。余辉时间的长短决定于陷阱深度与余辉强度,余辉光的强度依赖于陷阱浓度、容量与释放电子(或空穴)的速率。而晶体缺陷的产生除了材料制备过程中自然形成的结构缺陷外,主要是掺杂。

长余辉发光机理实际是发光中心与缺陷中心间如何进

发光学与发光材料课程教学大纲(精)

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

《发光学与发光材料》课程教学大纲

一、《发光学与发光材料》课程说明

(一)课程代码:08131106

(二)课程英文名称:Luminescence and Luminescent Materials (三)开课对象:材料物理专业 (四)课程性质:

《发光学与发光材料》是材料物理专业的一门专业任意选修课。本课程的目的在于介绍发光的基本理论和基本知识,掌握发光这一过程中的物理原理和规律,对目前发光材料在生产生活中的应用和发展有较深入的了解。 (五)教学目的

通过发光学与发光材料的教学,使学生了解发光的定义及分类、掌握发光基本物理过程及现象,对半导体发光、分立中心发光、特殊结构物质的发光有所了解,了解发光在照明、灯源、显示、探测领域的应用,了解发光材料制备、表征、测量、分析的基本方法。

(六)教学内容

本课程主要包括发光的定义及分类、基本物理过程及现象、半导体的发光、分立中心的发光、特殊结构物质的发光、发光动力学问题的计算机模拟、发光在照明和其他光源中的应用、显示技术、发光在探测中的应用、主要发光材料、发光材料的制备、发光材料的表征及测量技术、视觉与颜色、发光分析、同步辐射原理与应用简介等几个部分。通过教学的各个环节使学生达到各章中所提的基本要

发光稀土金属-有机骨架材料的设计合成及性能研究 - 图文

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

摘要

在过去的二十多年里,金属-有机骨架(MOFs)材料作为一类新型的分子基多功能材料,由于其兼具有多孔性、比表面积大、可剪裁、可设计、易功能化等特点,在光、电、磁、气体存储和分离、催化剂、传感器以及手性拆分等诸多领域均表现出了巨大的应用前景,受到了学术界和和工业界越来越多的关注。羧酸类配体配位方式灵活多样且配位能力强,由它构筑的金属-有机骨架材料已经成为当前配位化学研究的热点。由于镧系元素的电子结构中都有一个没有完全充满的4f 电子层,且各种镧系元素4f 层电子数的不同,这组元素的每一个元素又都具有各自特别的性质,特别是光学和磁学性质。近十几年来,镧系元素被越来越多的化学工作者选作金属有机骨架材料的金属中心。本论文采用对苯丙二烯酸和9,9-二甲基芴-2,7-二羧酸两种二羧酸配体分别与多种镧系金属盐,通过分子水热及溶剂热方法合成得到了12种结构新颖且具有独特发光性能的配位化合物。通过X-射线单晶衍射、粉末 X-射线衍射、元素分析、热重分析、荧光光谱和红外光谱等手段对晶体结构和光学性能进行了研究。具体成果概括为以下三点:

1. 以对苯丙二烯酸作为桥联配体,利用溶剂热法,与镧系金属离子进行配位自组装,设计合成得到了三种具有新颖结构的多孔配位聚合物

“我要上小学”主题背景下的环境创设与材料提供

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

解读文件 创设环境 有效衔接

——“我要上小学”主题背景下的环境创设与材料提供

从幼儿园到小学,是幼儿人生的一个转折点,也是学校生涯的“零起点”。幼小衔接,就是连接“幼儿园--小学”之间的一座桥梁,实现从幼儿园到小学两个阶段教育的平稳过渡。面对从“幼儿园”到“小学”环境的转变、从“小朋友”到“小学生”角色的转变、从“活动”到“上课”课程方式的转变,在转变过程中,我们如何实施“无缝衔接”?这既是我们幼儿园教师思考和实践着的话题,也是有效实施幼小衔接的关键问题。

“幼小衔接”对于幼儿来说,绝不仅仅是知识的衔接,更重要的是孩子学习习惯的养成,能力的培养;“幼小衔接”对于老师来说,环境的创设、教学的形式、情感的交流都值得我们大家思考。2008年5月《上海市幼儿园幼小衔接指导意见》的出台,进一步为我们指出了幼小衔接的重点、要点和方向。文本中内容丰富,案例鲜活,不仅有先进的理念,而且内容具体明了,更有助于我们系统、完整的理解“幼小衔接”的内涵。

结合文本,结合本班幼儿的实际情况,我们重新思考了课改背景下的“幼小衔接”,我们觉得:

1、要让幼儿快乐地期盼小学

(价值:有入小学的愿望和兴趣,向往小学的生活,具有积极的情感体验); 2、要让幼儿主动地感受小学

(价值:初步了