中学数学不等式的证明方法
“中学数学不等式的证明方法”相关的资料有哪些?“中学数学不等式的证明方法”相关的范文有哪些?怎么写?下面是小编为您精心整理的“中学数学不等式的证明方法”相关范文大全或资料大全,欢迎大家分享。
浅谈中学数学不等式的证明方法
本 科 生 毕 业 论 文
学 院 数学与计算机科学学院
专 业 数 学 与 应 用 数 学
届 别 2015 届
题 目 浅谈中学数学不等式的证明方法
学生姓名 徐 亚 娟
学 号 201111401138
指导教师 吴 万 勤
教 务 处 制
云南民族大学毕业论文(设计)原创性声明
本人郑重声明:所呈交的毕业论文(设计),是本人在指导教师的指导下进行研究工作所取得的成果。除论文中已经注明引用的内容外,本论文没有抄袭、剽窃他人已经发表的研究成果。本声明的法律结果由本人承担。
毕业论文(设计)作者签名:
不等式证明的方法
安庆师范学院数学与计算科学学院2013届毕业论文
不等式证明的若干方法
作者:金克川 指导老师:杨翠
摘要 无论在初等数学还是高等数学中,不等式都是十分重要的内容.而不等式的证明则是不等式知识的
重要组成部分.在本文中,我总结了一些数学中证明不等式的方法.在初等数学不等式的证明中经常用到的有比较法、作商法、分析法、综合法、数学归纳法、反证法、放缩法、换元法、判别式法、函数法、几何法等等.在高等数学不等式的证明中经常利用中值定理、泰勒公式、拉格朗日函数、以及一些著名不等式,如:均值不等式、柯西不等式、詹森不等式、赫尔德不等式等等.从而使不等式的证明方法更加的完善,有利于我们进一步的探讨和研究不等式的证明. 通过学习这些证明方法,可以帮助我们解决一些实际问题,培养逻辑推理论证能力和抽象思维的能力以及养成勤于思考、善于思考的良好学习习惯.
关键词 不等式 比较法 数学归纳法 函数
1引言 在数学的学习过程中,不等式证明是一个非常重要的内容,这些内容在初等数学和
高等数学中都有很好的体现.在数量关系上,虽然不等关系要比相等关系更加广泛的存在于现实的世界里,但是人们对于不等式的
不等式的证明方法
中原工学院
1 常用方法
1.1比较法(作差法)[1]
在比较两个实数a和b的大小时,可借助a?b的符号来判断.步骤一般为:作差——变形——判断(正号、负号、零).变形时常用的方法有:配方、通分、因式分解、和差化积、应用已知定理、公式等.
例1 已知:a?0,b?0,求证:证明
a?b2a?b2?ab.
b)2?ab?a?b?2ab2a?b2?ab?(a?2?0,
故得 1.2作商法
.
在证题时,一般在a,b均为正数时,借助作商——变形——判断(大于1或小于1).
例2 设a?b?0,求证:aabb?abba. 证明 因为 a?b?0, 所以 而
abaab?1或
ab?1来判断其大小,步骤一般为:
?1,a?b?0.
baababb?a?????b?a?b?1,
故 aabb?abba. 1.3分析法(逆推法)
从要证明的结论出发,一步一步地推导,最后达到命题的已知条件(可明显成立的不等式、已知不等式等),其每一步的推导过程都必须可逆.
例3 求证:
均值不等式的证明方法
均值不等式的证明方法
柯西证明均值不等式的方法 by zhangyuong(数学之家)
本文主要介绍柯西对证明均值不等式的一种方法,这种方法极其重要。 一般的均值不等式我们通常考虑的是An Gn: 一些大家都知道的条件我就不写了
x1 x2 ... xn
n
x1x2...xn
我曾经在《几个重要不等式的证明》中介绍过柯西的这个方法,现在再次提出:
二维已证,四维时:
a b c d (a b) (c d) 2ab 2cd 4八维时:
(a b c d) (e f g h) 4abcd 4efgh 8abcdefgh
abcd
4abcd
这样的步骤重复n次之后将会得到
x1 x2 ... x2n
2
n
2
n
x1x2...x2n
令x1 x1,...,xn xn;xn 1 xn 2 ... x2
n
x1 x2 ... xn
n
A
由这个不等式有
A
nA (2 n)A
2
nn
1
2
n
x1x2..xnA
2 n
n
(x1x2..xn)2A
n
1
n2
n
即得到
x1 x2 ... xn
n
n
x1x2...xn
这个归纳法的证明是柯西首次使用的,而且极其重要,下面给出几个竞赛题的例子:
例1:
n
若0 ai 1(i 1,2,...,n)证明
i 1
11 ai
n
1
1 (a1a2...an)n
例2:
均值
积分不等式的证明方法
南通大学毕业论文
摘 要
在高等数学的学习中,积分不等式的证明一直是一个无论在难度还是技巧性方面都很复杂的内容.对积分不等式的证明方法进行研究不但能够系统的总结其证明方法,还可以更好的将初等数学的知识和高等数学的结合起来.并且可以拓宽我们的视野、发散我们的思维、提高我们的创新能力,因此可以提高我们解决问题的效率.本文主要通过查阅有关的文献和资料的方法,对其中的内容进行对比和分析,并加以推广和补充,提出自己的观点.本文首先介绍了两个重要的积分不等式并给出了证明,然后分类讨论了证明积分不等式的八种方法,即利用函数的凹凸性、辅助函数法、利用重要积分不等式、利用积分中值定理、利用积分的性质、利用泰勒公式、利用重积分、利用微分中值定理,最后对全文进行了总结.
关键词:积分不等式,定积分,中值定理,柯西-施瓦兹不等式,单调性
1
南通大学毕业论文
ABSTRACT
When we study mathematics,the proof of integer inequality has always been seen as a complex content both in difficulty and skill.In this paper th
浅谈中学几种常用证明不等式的方法
江西科技师范大学
毕业论文
题 目:浅谈中学几种常用证明不等式的方法
(外文):On the method commonly used in
Middle School to prove inequality
院(系): 数学与计算机科学学院 专 业: 数学与应用数学 学生姓名: 吴丹 学 号: 20091741 指导教师: 樊陈
2013年3月20日
目录
1引言 ................................................................................................................................................. 1 2放缩法证明不等式...........................................................................................
不等式证明
第四章 微积分中值定理与证明 4.1 微分中值定理与证明
一 基本结论
1.零点定理:若f(x)在[a,b]连续,f(a)f(b)?0,则???(a,b),使得f(?)?0. 2.最值定理:若f(x)在[a,b]连续,则存在x1,x2使得f(x1)?m,f(x2)?M.其中
m,M分别是f(x)在[a,b]的最小值和最大值.
3.介值定理:设f(x)在[a,b]的最小值和最大值分别是m,M,对于?c?[m,M], 都存在???[a,b]使得f(?)?c.(或者:对于?c?(m,M),都存在???(a,b)使得
f(?)?c)
4.费玛定理:如果x0是极值点,且f(x)在x0可导, 则 f?(x0)?0.
5.罗尔定理:f(x)在[a,b]连续,在(a,b)可导,f(a)?f(b),则???(a,b)使得
f?(?)?0.
6.拉格朗日定理:f(x)在[a,b]连续,在(a,b)可导,,则???(a,b)使得
f(b)?f(a)?(b?a)f?(?).
) 7.柯西定理:f(x),g(x)在[a,b]连续,在(a,b)可导,且g?(x)?0,则???(a,b使得
f(b)?f(a)f?(?)?.
g(b)?g(a)g?(?)8.泰勒公
考研数学中的不等式证明
考研数学中的不等式证明
陈玉发
郑州职业技术学院基础教育处 450121
摘要:在研究生入学考试中,中值定理是一项必考的内容,几乎每年都有与中值定理相关的证明题.不等式的证明就是其中一项.在不等式的证明中,利用函数的单调性,构造辅助函数是一种常用并且非常有效的方法.但是,有时这种方法非常繁琐.巧用中值定理可使一些不等式的证明简化. 关键词:考研数学 不等式 中值定理 幂级数
(作者简介:陈玉发,男,汉族,出生于1969年5月工作单位:郑州职业技术学院,副教授,硕士,从事数学教育研究.邮编:450121)
微分中值定理是微积分学中的一个重要定理,在研究生入学考试中,几乎每年都会有与中值定理相关的证明题.不等式就是其中一项。下面就考研数学中的不等式证明谈一下中值定理的应用.
在不等式的证明中,利用函数的单调性,构造辅助函数是一种常用并且非常有效的方法.但是,有时这种方法非常繁琐.巧用中值定理可以使一些不等式的证明过程得到简化.下面就历年考研数学中的不等式证明题谈一下.
例1 (1993年全国硕士研究生入学统一考试数学(一)试卷第六题)
(2)设b?a?e,证明a?b
xaba对此不等式的证明,一般我们会想到构造辅助函数,
定积分不等式证明方法的研究
高校论坛2011年第5期 102定积分不等式证明方法的研究张 瑞(宝鸡文理学院 数学系) 摘 要 通过若干范例总结有关定积分不等式的证明方法及规律。主要有定积分的定义、泰勒公式、积分中值定理以及辅助函数 法等方法。 关键词 定积分 积分性质 中值定理 含定积分的不等式的证明是数学分析学习中的一个重点也是一个 难点,一般可以利用定积分的性质、积分中值定理、辅助函数等方法 来证明定积分不等式。证明方法多种多样,本文归纳并列举了几种定 积分不等式的证明方法,主要有利用定积分的定义、泰勒公式、积分 中值定理以及辅助函数法等方法。 1 利用定积分的定义 主要是利用定积分的定义,将闭区间 通过分割、求和、并 时和的极限,比较积分大小则可通过比较和的极限来实 例1 证明: 在 上连续,且 , 。 分析:题中所给的已知条件较少,在这种条件下利用定积分的定 义将区间分割求极限比较简单。 证明:将 等分,可得分割 , 取 ,并记 ,则 由于 , , 当且仅当 号成立。 由于 因而 等号成立。 2 利用定积分的性质 分析:由预证不等式中被积函数 式。 证明:由柯西不等式知 与 联想到柯西不等 可积,故令 ,即函数 得 , 为常值函数时,上式等 , 为常值函数时,上
证明基本不等式的方法
2.2 证明不等式的基本方法——分析法与综合法
●教学目标:1、理解综合法与分析法证明不等式的原理和思维特点.
2、理解综合法与分析法的实质,熟练掌握分析法证明不等式的方法与步骤. ●教学重点:综合法与分析法证明不等式的方法与步骤
●教学难点:综合法与分析法证明不等式基本原理的理
●教学过程:
一、复习引入:
1、复习比较法证明不等式的依据和步骤?
2、今天学习证明不等式的基本方法——分析法与综合法
二、讲授新课:
1、综合法:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫做综合法 综合法又叫顺推证法或由因导果法。
用综合法证明不等式的逻辑关系是: 例1、已知a,b,c是不全相等的正数,求证: . 分析:观察题目,不等式左边含有“a2+b2”的形式,我们可以创设运用基本不等式:a2+b2≥2ab;还可以这样思考:不等式左边出现有三次因式:a2b,b2c,c2a,ab2,bc2,ca2的“和”,右边有三正数a,b,c的“积”,我们可以创设运用重要不等式:a3+b3+c3≥3abc.(教师引导学生,完成证明)
解:∵a>0,b2+c2≥2bc ∴由不等式的性质定理4,得a(b2+c2)≥2abc.