初一数学几何知识点总结
“初一数学几何知识点总结”相关的资料有哪些?“初一数学几何知识点总结”相关的范文有哪些?怎么写?下面是小编为您精心整理的“初一数学几何知识点总结”相关范文大全或资料大全,欢迎大家分享。
初一数学上册知识点总结
冀教版初一上册数学知识点总结 有理数
1.有理数:
(1)凡能写成 形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数; (2)有理数的分类: ① ②
(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;
(4)自然数? 0和正整数;a>0 ? a是正数;a<0 ? a是负数;
a≥0 ? a是正数或0 ? a是非负数;a≤ 0 ? a是负数或0 ? a是非正数. 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b; (3)相反数的和为0 ? a+b=0 ? a、b互为相反数. 4.绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距
苏教版初一数学知识点总结
苏教版初一数学知识点总结
【导语】以下是wo为您整理的苏教版初一数学知识点总结,供大家学习参考。
代数
1.代数式:用运算符号“+-×÷……”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式.
2.列代数式的几个注意事项(数学规范):
(1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写;
(2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号;
(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;
(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;
(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成
的形式;
(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b 时,则应分类,写做a-b和b-a.
3.几个重要的代数式:(m、n表示整数)
(1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2;
(2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;
(3)若m、n是整数,则
北京初一数学知识点
北京初一数学知识点
1.正数和负数以前学过的0以外的数前面加上负号“-”的书叫做负数。以前学过
的0以外的数叫做正数。数0既不是正数也不是负数,0是正数与负数的分界。在同一
个问题中,分别用正数和负数表示的量具有相反的意义
2.有理数 1有理数正整数、0、负整数统称整数,正分数和负分数统称分数。整数
和分数统称有理数。
2数轴规定了原点、正方向、单位长度的直线叫做数轴。数轴的作用:所有的有理
数都可以用数轴上的点来表达。注意事项:⑴数轴的原点、正方向、单位长度三要素,
缺一不可。⑵同一根数轴,单位长度不能改变。一般地,设是一个正数,则数轴上表示
a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原
点的距离是a个单位长度。
3相反数只有符号不同的两个数叫做互为相反数。数轴上表示相反数的两个点关于
原点对称。在任意一个数前面添上“-”号,新的数就表示原数的相反数。
4绝对值一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。一个正数
的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。在数轴上表示有
理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。比较有
理数的大小:⑴正数大于0,0大于负数,正数大于负数。⑵
初一数学知识点上册
中小学在线作业辅导:http://www.52woxue.com
初一数学(上)应知应会的知识点
代数初步知识
2.列代数式的几个注意事项:
(1)数与字母相乘,或字母与字母相乘通常使用“· ” 乘,或省略不写; (2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号; (3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a; 13(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×1应写成a;
223(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;
a(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做
a-b和b-a .
3.几个重要的代数式:(m、n表示整数)
(1)a与b的平方差是: a-b ; a与b差的平方是:(a-b) ;
(2)若a、b、c是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c;
(3)若m、n是整数,则被5除商m余n的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数
是: n-1、n、n+1 ;
(4)若b>0,则正数是
初一数学上册知识点总结及练习
荣升教育----------初中数学一对一辅导中心
初一数学(上)知识点
代数初步知识
1. 代数式:用运算符号+ - 3 ÷ 连接数及字母的式子称为代数式(单独一个数或一个字母也是代数式)
2.几个重要的代数式:(m、n表示整数)
(1)a与b的平方差是: a2-b2 ; a与b差的平方是:(a-b)2 ;
(2)若a、b、c是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c; (3)若m、n是整数,则被5除商m余n的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;
三个连续整数是: n-1、n、n+1 ; 有理数 1.有理数:
(1)凡能写成(p,q为整数且p?0)形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;?不是有理数;
???正整数?正整数?整数?零?正有理数?正分数?????(2)有理数的分类: ① 有理数?零 ② 有理数??负整数 ???负整数?正分数负有理数?分数???负分数??负分数??qp(3)注意:有理数中,1、0、-1是三个特殊
初一数学下册 知识点(详细版)
初一数学(下)
平面几何部分
第五章 《相交线与平行线》 一、知识点
5.1相交线
5.1.1相交线
有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。 两条直线相交有4对邻补角。
有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。 两条直线相交,有2对对顶角。 对顶角相等。 5.1.2
两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
注意:⑴垂线是一条直线。
⑵具有垂直关系的两条直线所成的4个角都是90。 ⑶垂直是相交的特殊情况。 ⑷垂直的记法:a⊥b,AB⊥CD。 画已知直线的垂线有无数条。
过一点有且只有一条直线与已知直线垂直。
连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。 直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
5.2平行线 5.2.1平行线
在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。 在同一平面内两条直线的关系只有两种:相交或平行。
平行公理:经过直线外一点,有且只有一条直线与这条直线平行。 如果两条直线都与第三条直线平行,那么这两条直线也互相平行。 5.2.2直线平
新人教版初一数学下册第一单元知识点总结
新人教版初一数学下册第一单元知识点总
结
一、相交线
1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角,
相交线与平行线知识点总结。
2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
3.对顶角和邻补角的关系
4.垂直:两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。
二、平行线及其判定
1.平行:在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。
2.平行线:在同一平面内,不相交的两条直线叫做平行线。
3.命题:判断一件事情的语句叫命题。
4.真命题:正确的命题,即如果命题的题设成立,那么结论一定成立。
5.假命题:条件和结果相矛盾的命题是假命题。
三、平行线的性质
平行线的性质定理,即存在两条平行直线的图形中所具有的性质,共有三条:
(1)两条平行线被第三条直线所截,同位角相等.
(2)两条平行线被第三条直线所截,内错角相等.
(3) 两条平行线被第三条直线所截,同旁内角互补.
四、平移
1、物体在同一平面上沿直线运动,这种现象叫做平移。注意:平移只是沿水平方向左右移动(×) 平移不仅仅局限于左右运动。
2、平移二要素:
(1)平移方向
(2)
高一数学集合知识点总结
高一数学集合知识点总结
一、知识点总结
1.集合的有关概念。
1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素
注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。
②集合中的元素具有确定性、互异性和无序性({a,b}与{b,a}表示同一个集合)。
③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件
2)集合的表示方法:常用的有列举法、描述法和图文法
3)集合的分类:有限集,无限集,空集。
4)常用数集:N,Z,Q,R,N*
2.子集、交集、并集、补集、空集、全集等概念。
1)子集:若对x∈A都有x∈B,则A B(或A B);
2)真子集:A B且存在x0∈B但x0 A;记为A B(或 ,且 )
3)交集:A∩B={x| x∈A且x∈B}
4)并集:A∪B={x| x∈A或x∈B}
5)补集:CUA={x| x A但x∈U}
3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号。
4.有关子集的几个等价关系
①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;
④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。
5.交、并
初一知识点总结
第一章 有理数
1.1 正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。
与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。
1.2 有理数
正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。
整数和分数统称有理数(rational number)。
通常用一条直线上的点表示数,这条直线叫数轴(number axis)。
数轴三要素:原点、正方向、单位长度。
在直线上任取一个点表示数0,这个点叫做原点(origin)。
只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0) 数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
1.3 有理数的加减法
有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为
鲁教版初一数学下册期末复习知识点
基本平面图形
一、知识点总结
1、线段:绷紧的琴弦,人行横道线都可以近似的看做线段。线段有两个端点。
2、射线:将线段向一个方向无限延长就形成了射线。射线有一个端点。
3、直线:将线段向两个方向无限延长就形成了直线。直线没有端点。
一条直线上有n个点,则在这条直线上一共有
2)1
(-
?n
n
条线段,一共有2n条射线。
平面内的n条直线相交,最多也只有
2)1
(-
?n
n
个交点。
4、点、直线、射线和线段的表示
在几何里,我们常用字母表示图形。
一个点可以用一个大写字母表示。
一条直线可以用一个小写字母表示或用直线上两个点的大写字母表示。
一条射线可以用一个小写字母表示或用端点和射线上另一点来表示(端点字母写在前面)。
一条线段可以用一个小写字母表示或用它的端点的两个大写字母来表示。
5、点和直线的位置关系有两种:
①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
6、直线的性质
(1)直线公理:经过两个点有且只有一条直线。(或者说两点确定一条直线。)
(2)过一点的直线有无数条。
(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
(4)直线上有无穷多个点。
(5)两条不同的直线至多有一个公共点。
7、线段的性质
(1)线段公理:两点之间的所有连线中,