经典算法题
“经典算法题”相关的资料有哪些?“经典算法题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“经典算法题”相关范文大全或资料大全,欢迎大家分享。
JAVA经典算法50题
/*******************************************************************************
* @author DarkSee <gxlizq@>
*******************************************************************************/
JAVA经典算法50题
【程序1】 题目:古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第四个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少?
1.程序分析:兔子的规律为数列1,1,2,3,5,8,13,21....
public class Demo01 {
public static void main(String args[]) {
for (int i = 1; i <= 20; i++)
System.out.println(f(i));
}
public static int f(int x) {
if (x == 1||x == 2)
return 1;
else
return f(x - 1) + f(x - 2);
经典ACM算法合集经典ACM算法合集
经典ACM算法合集经典ACM算法合集
经典ACM算法合集经典ACM算法合集.txt“我羡慕内些老人羡慕他们手牵手一直走到最后。━交话费的时候,才发现自己的话那么值钱。实验一 统计数字问题
实验二 最大间隙问题
实验三 众数问题
实验四 半数集问题
实验五 集合划分问题
实验六 最少硬币问题
实验七 编辑距离问题
实验八 程序存储问题
实验九 最优服务次序问题
实验十 汽车加油问题
实验十一 工作分配问题
实验十二 0-1背包问题
实验十三 最小重量机器设计问题
实验十四 最小权顶点覆盖问题
实验十五 集合相等问题
实验十六 战车问题
实验一 统计数字问题
1、问题描述:
一本书的页码从自然数1 开始顺序编码直到自然数n。书的页码按照通常的习惯编排,每个页码都不含多余的前导数字0。例如,第6 页用数字6 表示,而不是06 或006 等。数字计数问题要求对给定书的总页码n,计算出书的全部页码中分别用到多少次数字0,1, 2,…,9。
2、题目分析:
考虑由0,1,2,…,9组成的所有n位数。从n个0到n个9共有个n位数,在这些n位数中,0,
经典ACM算法合集经典ACM算法合集
经典ACM算法合集经典ACM算法合集
经典ACM算法合集经典ACM算法合集.txt“我羡慕内些老人羡慕他们手牵手一直走到最后。━交话费的时候,才发现自己的话那么值钱。实验一 统计数字问题
实验二 最大间隙问题
实验三 众数问题
实验四 半数集问题
实验五 集合划分问题
实验六 最少硬币问题
实验七 编辑距离问题
实验八 程序存储问题
实验九 最优服务次序问题
实验十 汽车加油问题
实验十一 工作分配问题
实验十二 0-1背包问题
实验十三 最小重量机器设计问题
实验十四 最小权顶点覆盖问题
实验十五 集合相等问题
实验十六 战车问题
实验一 统计数字问题
1、问题描述:
一本书的页码从自然数1 开始顺序编码直到自然数n。书的页码按照通常的习惯编排,每个页码都不含多余的前导数字0。例如,第6 页用数字6 表示,而不是06 或006 等。数字计数问题要求对给定书的总页码n,计算出书的全部页码中分别用到多少次数字0,1, 2,…,9。
2、题目分析:
考虑由0,1,2,…,9组成的所有n位数。从n个0到n个9共有个n位数,在这些n位数中,0,
经典图论算法(good)
1/25
图论中的常用经典算法
第一节 最小生成树算法
一、生成树的概念
若图是连通的无向图或强连通的有向图,则从其中任一个顶点出发调用一次bfs或dfs后便可以系统地访问图中所有顶点;若图是有根的有向图,则从根出发通过调用一次dfs或bfs亦可系统地访问所有顶点。在这种情况下,图中所有顶点加上遍历过程中经过的边所构成的子图称为原图的生成树。
对于不连通的无向图和不是强连通的有向图,若有根或者从根外的任意顶点出发,调用一次bfs或dfs后不能系统地访问所有顶点,而只能得到以出发点为根的连通分支(或强连通分支)的生成树。要访问其它顶点则还需要从没有访问过的顶点中找一个顶点作为起始点,再次调用bfs或dfs,这样得到的是生成森林。
由此可以看出,一个图的生成树是不唯一的,不同的搜索方法可以得到不同的生成树,即使是同一种搜索方法,出发点不同亦可导致不同的生成树。如下图:
但不管如何,我们都可以证明:具有n个顶点的带权连通图,其对应的生成树有n-1条边。
二、求图的最小生成树算法
严格来说,如果图G=(V,E)是一个连通的无向图,则把它的全部顶点V和一部分边E’构成一个子图G’,即G’=(V, E’),且边集E’能将图中所有顶点连通又不形成
100个经典算法
语言的学习基础,100个经典的算法
C语言的学习要从基础开始,这里是100个经典的算法-1C语言的学习要从基础开始,这里是100个经典的算法
题目:古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔
子长到第三个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数
为多少?
__________________________________________________________________
程序分析:兔子的规律为数列1,1,2,3,5,8,13,21....
___________________________________________________________________
程序源代码: main() {
long f1,f2; int i; f1=f2=1;
for(i=1;i<=20;i++)
{ printf(\
if(i%2==0) printf(\控制输出,每行四个*/ f1=f1+f2;/*前两个月加起来赋值给第三个月*/ f2=f1+f2;/*前两个月加起来赋值给第三个月*/ } }
上题还可用一维数组处理,you try!
题目:判断101-20
常见经典排序算法
常见经典排序算法
1.希尔排序 2.二分插入法 3.直接插入法
4.带哨兵的直接排序法 5.冒泡排序 6.选择排序 7.快速排序 8.堆排序
一.希尔(Shell)排序法(又称宿小增量排序,是1959年由D.L.Shell提出来的) /* Shell 排序法 */ #include void sort(int v[],int n) { int gap,i,j,temp; for(gap=n/2;gap>0;gap /= 2) /* 设置排序的步长,步长gap每次减半,直到减到1 */ { for(i=gap;i for(j=i-gap;(j >= 0) && (v[j] > v[j+gap]);j -= gap ) /* 比较相距gap远的两个元素的大小,根据排序方向决定如何调换 */ { temp=v[j]; v[j]=v[j+gap]; v[j+gap]=temp; } } }
经典图论算法(good)
1/25
图论中的常用经典算法
第一节 最小生成树算法
一、生成树的概念
若图是连通的无向图或强连通的有向图,则从其中任一个顶点出发调用一次bfs或dfs后便可以系统地访问图中所有顶点;若图是有根的有向图,则从根出发通过调用一次dfs或bfs亦可系统地访问所有顶点。在这种情况下,图中所有顶点加上遍历过程中经过的边所构成的子图称为原图的生成树。
对于不连通的无向图和不是强连通的有向图,若有根或者从根外的任意顶点出发,调用一次bfs或dfs后不能系统地访问所有顶点,而只能得到以出发点为根的连通分支(或强连通分支)的生成树。要访问其它顶点则还需要从没有访问过的顶点中找一个顶点作为起始点,再次调用bfs或dfs,这样得到的是生成森林。
由此可以看出,一个图的生成树是不唯一的,不同的搜索方法可以得到不同的生成树,即使是同一种搜索方法,出发点不同亦可导致不同的生成树。如下图:
但不管如何,我们都可以证明:具有n个顶点的带权连通图,其对应的生成树有n-1条边。
二、求图的最小生成树算法
严格来说,如果图G=(V,E)是一个连通的无向图,则把它的全部顶点V和一部分边E’构成一个子图G’,即G’=(V, E’),且边集E’能将图中所有顶点连通又不形成
常见经典排序算法
常见经典排序算法
1.希尔排序 2.二分插入法 3.直接插入法
4.带哨兵的直接排序法 5.冒泡排序 6.选择排序 7.快速排序 8.堆排序
一.希尔(Shell)排序法(又称宿小增量排序,是1959年由D.L.Shell提出来的) /* Shell 排序法 */ #include void sort(int v[],int n) { int gap,i,j,temp; for(gap=n/2;gap>0;gap /= 2) /* 设置排序的步长,步长gap每次减半,直到减到1 */ { for(i=gap;i for(j=i-gap;(j >= 0) && (v[j] > v[j+gap]);j -= gap ) /* 比较相距gap远的两个元素的大小,根据排序方向决定如何调换 */ { temp=v[j]; v[j]=v[j+gap]; v[j+gap]=temp; } } }
算法10题
1.String/Array/Matrix
在Java中,String是一个包含char数组和其它字段、方法的类。如果没有IDE自动完成代码,下面这个方法大家应该记住:
toCharArray() //get char array of a String Arrays.sort() //sort an array Arrays.toString(char[] a) //convert to string charAt(int x) //get a char at the specific index length() //string length length //array size substring(int beginIndex) substring(int beginIndex, int endIndex) Integer.valueOf()//string to integer String.valueOf()/integer to string String/arrays很容易理解,但与它们有关的问题常常需要高级的算法去解决,例如动态编程、递归等。
下面列出一些需要高级算法才能解决的经典问题:
? ? ? ? ? ? ?
算法10题
1.String/Array/Matrix
在Java中,String是一个包含char数组和其它字段、方法的类。如果没有IDE自动完成代码,下面这个方法大家应该记住:
toCharArray() //get char array of a String Arrays.sort() //sort an array Arrays.toString(char[] a) //convert to string charAt(int x) //get a char at the specific index length() //string length length //array size substring(int beginIndex) substring(int beginIndex, int endIndex) Integer.valueOf()//string to integer String.valueOf()/integer to string String/arrays很容易理解,但与它们有关的问题常常需要高级的算法去解决,例如动态编程、递归等。
下面列出一些需要高级算法才能解决的经典问题:
? ? ? ? ? ? ?