对数

“对数”相关的资料有哪些?“对数”相关的范文有哪些?怎么写?下面是小编为您精心整理的“对数”相关范文大全或资料大全,欢迎大家分享。

对数与对数函数

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

???线????○???? ???线????○????

绝密★启用前

2013-2014学年度???学校5月月考卷

试卷副标题

考试范围:xxx;考试时间:100分钟;命题人:xxx 题号 得分 一 二 三 总分 注意事项:

1.答题前填写好自己的姓名、班级、考号等信息 ??○ __○?___?_?__?_?__?:?号?订考_订_?___??___??___??:级?○班_○?___?_?__?_?___??:名?装姓装_?__?_?___??___??_:校?○学○????????外内????????○○????????2.请将答案正确填写在答题卡上

第I卷(选择题)

请点击修改第I卷的文字说明 评卷人 得分 一、选择题(题型注释)

1.若f(x)??12x2?bln(x?2)在(?1,??)上是减函数,则b的取值范围是( ) A. [?1,??) B. (?1,??) C. (??,?1] D. (??,?1) 【答案】C 【解析】

试题分析:因为f(x)??12x2?bln(x?2)在(?1,??)上是减函数,所以f?(x)?0在(?1,??)恒成立,而f?(x)??x?bbx?2,所以?x?x

对数与对数运算学案

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

对数与对数运算

学习目标:知道对数的定义及其表示,知道常用对数.自然对数及其表示;会运用对数式与指数式的相互关系及其转化求值;知道对数的运算性质及其推导过程,能运用对数运算法则解决问题;会应用换底公式解决问题. 学习重点:对数的运算性质,用换底公式将一般对数转化成自然对数或常用对数 学习难点:对数的运算性质和换底公式的熟练运用 学习过程: 一 探究新知

1.思考下列问题:已知底数为2,指数为3,幂为8.

①已知底数2和指数3,得幂8,这种运算是什么运算?表示形式是什么? ②已知幂8和指数3,得底数2,这种运算是什么运算?表示形式是什么? ③已知底数2和幂8,得指数3,这种运算是什么运算?表示形式是什么?

2.归纳:一般地,如果a=b(a>0,且a≠1),那么数x叫做以a为底b的_____,记作x=logab,其中a叫做对数的________,b叫做_________. 因而,指数式a=b与对数式x=logab是等价的,本质是相同的,求对数就是求指数的运算.

对应练习:2=8转化为对数式为____________;lg100=2转化指数式为____________.

3.对于指数函数y=a (a>0,且a≠1)的定义域、值域是什么?那么对数式x

对数函数和对数运算

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

对数函数和对数运算

开心一刻

四十出头的莉莲心脏病突发,被送往医院急救。病情十分糟糕,莉莲感觉自己几乎都已经死了。

抢救中,莉莲突然听见了上帝的声音:“不,你不会死的,你还可以活45年6个月零两天,鼓起勇气活下去!”

当然,结果是莉莲奇迹般地被救活了。

身体复原后,莉莲想到自己还能活40多年,便没有急着出院,先是修脸,接着是补唇,然后是隆胸,最后是瘦腹,一古脑儿连续做了4个美容手术,然后又叫了专业美发师上门服务,改换了发色、做了个新潮发型,整个儿看起来年轻了十几岁。

当最后一个整形手术完成后,莉莲便高高兴兴地办理了出院手续,没想到在门口却被一辆急速驶过的救护车撞死了。

到了天堂后,莉莲生气地质问上帝:“既然你说过我还可以活45年,那么你就不应该食言。”

上帝尴尬地耸了耸肩,答道:“真是对不起,当时,车子撞你时……我没认出是你。”

一、知识点回顾

如果 a > 0,a 1,M > 0, N > 0 有:

loga(MN) logaM logaN

Mloga logaM logaN

Nn

logaM nlogaM(n R)

(1)(2) (3)

公式: 证明:设

log

b

N

log

a

N

logab

x logbN,则bx N,两边取以a为底的对数,得 logab logaN

对数与对数运算、对数函数教案(含答案)

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

对数与对数运算

一、

复习

1.对数的定义 logaN?b 其中 a?(0,1)?(1,??)与 N?(0,??) 2.指数式与对数式的互化 ab?N?logaN?b (a?0且a?1)

3.重要公式:

⑴负数与零没有对数; ⑵loga1?0,logaa?1 ⑶对数恒等式alogaN?N am?an?am?n(m,n?R)4.指数运算法则 (a)?amnmn(m,n?R) (ab)n?an?bn(n?R)二、新授内容

1.积、商、幂的对数运算法则:

如果 a > 0,a ? 1,M > 0, N > 0 有:

loga(MN)?logaM?logaN(1)Mloga?logaM?logaN(2)

NlogaMn?nlog(3)aM(n?R)证明⑴:设logaM=p, logaN=q. 由对数的定义可以得:M=a,N=a. ∴MN= aa=aN.

证明⑵:设logaM=p,logaN=q. 由对数的定义可以得M=a,N=a .

p

qp

qp?qp

q ∴logaMN=logaap?q ∴logaMN=p+q, 即证得logaMN=logaM + logaMMMMap?p?q ∴loga?p?q

对数与对数运算、对数函数教案(含答案)

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

对数与对数运算

一、

复习

1.对数的定义 logaN?b 其中 a?(0,1)?(1,??)与 N?(0,??) 2.指数式与对数式的互化 ab?N?logaN?b (a?0且a?1)

3.重要公式:

⑴负数与零没有对数; ⑵loga1?0,logaa?1 ⑶对数恒等式alogaN?N am?an?am?n(m,n?R)4.指数运算法则 (a)?amnmn(m,n?R) (ab)n?an?bn(n?R)二、新授内容

1.积、商、幂的对数运算法则:

如果 a > 0,a ? 1,M > 0, N > 0 有:

loga(MN)?logaM?logaN(1)Mloga?logaM?logaN(2)

NlogaMn?nlog(3)aM(n?R)证明⑴:设logaM=p, logaN=q. 由对数的定义可以得:M=a,N=a. ∴MN= aa=aN.

证明⑵:设logaM=p,logaN=q. 由对数的定义可以得M=a,N=a .

p

qp

qp?qp

q ∴logaMN=logaap?q ∴logaMN=p+q, 即证得logaMN=logaM + logaMMMMap?p?q ∴loga?p?q

对数与对数运算测试题

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

高一数学必修1

对数与对数运算@测试题

时间:50分钟 满分:100分

姓名 班级 学号 分数

(每小题5分,共30分)

1.下列指数式与对数式互化中错误的一组是

A.e

1与ln1 0

1

B.8

13

12

与log

1

8

2

13

C.log

3

9 2

与9

2

3

D.log

12

7

7 1与7 7

1

2.如果log7[log3(log2x)]=0,那么x等于( ) A.

3

2

1

B.

123

C.

122

D.

133

3.

5

log

5

( a)

(a≠0)化简得结果是( )

B.a2

C.|a|

D.a

A.-a

4.已知 ab=M (a>0, b>0, M≠1), 且logM b=x,则logM a=( )。 A.1-x B.1+x C. D.x-1

x1

5.若b≠1,则 loga b等于( )。 A.-logb a B.6.

loglog

82

lgalgb

C.lg b-lg a D.

1log

b

a

93

的值为( )。

1

32

A.2 B. C. D.

2

3

2

(每小题5分,共30分)

7.若logx (2+1)=-1, 则x 8.已知f(ex)=x,则f(5)等于。

第6讲 对数与对数函数

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

第6讲 对数与对数函数

【高考会这样考】

1.考查对数函数的定义域与值域. 2.考查对数函数的图象与性质的应用.

3.考查以对数函数为载体的复合函数的有关性质. 4.考查对数函数与指数函数互为反函数的关系. 【复习指导】

复习本讲首先要注意对数函数的定义域,这是研究对数函数性质.判断与对数函数相关的复合函数图象的重要依据,同时熟练把握对数函数的有关性质,特别注意底数对函数单调性的影响.

基础梳理

1.对数的概念 (1)对数的定义 (2)几种常见对数 2.对数的性质与运算法则 (1)对数的性质

①alogaN=N;②logaaN=N(a>0且a≠1). (2)对数的重要公式

logaN

①换底公式:logbN=logb(a,b均大于零且不等于1);

a

1

②logab=loga,推广logab·logbc·logcd=logad.

b(3)对数的运算法则

如果a>0且a≠1,M>0,N>0,那么

M

①loga(MN)=logaM+logaN;②logaN=logaM-logaN; n

③logaMn=nlogaM(n∈R);④log amMn=mlogaM. 3.对数函数的图象与性质 4.反函数

指数函数y=ax与对数函数y=logax互为反函数,它

第五讲对数及对数函数

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

小太阳数学辅导班

第五讲:对数及对数函数

1.对数的定义

如果a?N?a?0,a?1?,那么b叫做以a为底N的对数,记作logaN?b,N叫真数.

b2.对数恒等式:a3.对数的性质

logaN?N.

(1)负数与零没有对数,即N?0; (2)1的对数等于0,即loga1?0; (3)底数的对数等于1,即logaa?1. 4.对数的运算性质

(1)loga(MN)?logaM?logaN (2)loganM?logaM?logaN N1n logab (5)logab?logbamn(3)logaM?nlogaM(n?R) (4)logamb=5.换底公式

logaN?logmN?a?0,a?1,m?0,m?1,N?0?

logma6.常用对数与自然对数

以10为底的对数叫做常用对数,记作lgN;以e?e?2.71828????为底的对数叫做自然对数,记作lnN. 7.对数函数的定义

函数y?logax(a?0且a?1)叫做对数函数,它的定义域是正实数集,值域是实数集. 8.对数函数的图象和性质 32.5a?1 32.5220?a?1 1.51.5111110.50.5图象 -10-0.512345

第7讲 对数与对数函数

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

对数与对数函数第一轮复习学案

第7讲 对数与对数函数

考纲解读: (1)理解对数与对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点. (2)知道对数函数是一类重要的函数模型.

(3)了解指数函数y ax与对数函数y logax(a 0,且a 1)互为反函数.

学习目标:

1. 学生能写出对数函数的定义,能画出对数函数的图像并能根据图像说出对数函数的性质. 2. 知道对数函数是一类重要的函数模型.

3. 能说出指数函数和对数函数互为反函数及图像间的对称关系.

学习重点:能画出对数函数的图像并能根据图像说出对数函数的性质. 学习难点:利用对数函数性质解决一些综合题. 知识梳理: 一、对数

1、定义: 如果ab N(a 0,a 1),那么b叫做以a为底N的对数,记

b logaN(a 0,a 1)

即有:a N b logaN(a 0,a 1)

2、性质:①零与负数没有对数 ②loga1 0 ③logaa 1;

b

blogaN

loga b(a 0,a 1) a N3、恒等式:;a

4、运算法则:

(1)logaMN logaM logaN

M

(2)loga logaM logaN

N

(3)logaMn nlogaM 其中a>0,a≠0,M>0,

高考学案:对数与对数函数

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

全国名校高三数学优质复习、自学专题汇编(附详解)

对数与对数函数

1.对数的概念 一般地,如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中__a __叫做对数的底数,__N __叫做真数.

2.对数的性质与运算法则

(1)对数的运算法则

如果a >0,且a ≠1,M >0,N >0,那么:

①log a (MN )=

log

a M +log a N ;

②log a M N

=log a M -log a N ; ③log a M n =n log a M (n ∈R ).

(2)对数的性质

①log a N a =__N __;②log a a N =__N __(a >0,且a ≠1).

(3)对数的换底公式

全国名校高三数学优质复习、自学专题汇编(附详解)

log a b =log c b log c a

(a >0,且a ≠1;c >0,且c ≠1;b >0). 3.对数函数的图象与性质

(1)(0,+∞)

4.反函数

指数函数y =a x (a >0且a ≠1)与对数函数y =log a x (a >0且a ≠1)互为反函数,它们的图象关于直线y =x 对称.

知识拓展

1.换底公式的两个重要结论

(1)lo