同济大学机械振动答案
“同济大学机械振动答案”相关的资料有哪些?“同济大学机械振动答案”相关的范文有哪些?怎么写?下面是小编为您精心整理的“同济大学机械振动答案”相关范文大全或资料大全,欢迎大家分享。
2009机械振动习题集(同济大学)
机械振动习题集
同济大学机械设计研究所
2009.2
第一章 概论
1-1概念
1. 机械振动系统由哪几部分组成?其典型元件有哪些?
构造振动系统力学模型的元件,其典型元件有惯性元件、弹性元件、阻尼元件 2. 机械振动研究哪三类基本问题?
振动分析:已知激励和系统求响应;系统识别:已知激励和响应求系统;载荷识别或环境预测:已知系统和响应求激励。 3. 对机械振动进行分析的一般步骤是什么?
第一步:把工程实际问题简化为振动分析的力学模型;第二部:根据力学模型,运用力学原理导出数学模型(即系统的运动微分方程);第三步:求解系统微分方程,得到系统响应;第四步:对求解的结果进行讨论分析,从中获得解决工程实际问题的有用信息;第五步:实验验证上述理论分析结果。
4. 在振动分析中,什么叫力学模型,什么叫数学模型?
力学模型:对实际问题的近似,使用简化的、理想的元件和输入、输出元素构造的假象模型;数学模型:在力学模型的基础上建立的能够完全确定系统运动规律的数学方程式。
5. 惯性元件、弹性元件、阻尼元件的基本特性各是什么?
惯性元件的基本特性:在运动时将产生与加速度呈线性关系的惯性力(矩);弹性元件的基本特性:在变形时将产生与变形相关、抵抗变形的弹性恢复
2009机械振动习题集(同济大学) - 图文
机械振动习题集
同济大学机械设计研究所
2009.2
第一章 概论
1-1概念
1. 机械振动系统由哪几部分组成?其典型元件有哪些?
构造振动系统力学模型的元件,其典型元件有惯性元件、弹性元件、阻尼元件 2. 机械振动研究哪三类基本问题?
振动分析:已知激励和系统求响应;系统识别:已知激励和响应求系统;载荷识别或环境预测:已知系统和响应求激励。 3. 对机械振动进行分析的一般步骤是什么?
第一步:把工程实际问题简化为振动分析的力学模型;第二部:根据力学模型,运用力学原理导出数学模型(即系统的运动微分方程);第三步:求解系统微分方程,得到系统响应;第四步:对求解的结果进行讨论分析,从中获得解决工程实际问题的有用信息;第五步:实验验证上述理论分析结果。
4. 在振动分析中,什么叫力学模型,什么叫数学模型?
力学模型:对实际问题的近似,使用简化的、理想的元件和输入、输出元素构造的假象模型;数学模型:在力学模型的基础上建立的能够完全确定系统运动规律的数学方程式。
5. 惯性元件、弹性元件、阻尼元件的基本特性各是什么?
惯性元件的基本特性:在运动时将产生与加速度呈线性关系的惯性力(矩);弹性元件的基本特性:在变形时将产生与变形相关、抵抗变形的弹性恢复
2009机械振动习题集(同济大学) - 图文
机械振动习题集
同济大学机械设计研究所
2009.2
第一章 概论
1-1概念
1. 机械振动系统由哪几部分组成?其典型元件有哪些?
构造振动系统力学模型的元件,其典型元件有惯性元件、弹性元件、阻尼元件 2. 机械振动研究哪三类基本问题?
振动分析:已知激励和系统求响应;系统识别:已知激励和响应求系统;载荷识别或环境预测:已知系统和响应求激励。 3. 对机械振动进行分析的一般步骤是什么?
第一步:把工程实际问题简化为振动分析的力学模型;第二部:根据力学模型,运用力学原理导出数学模型(即系统的运动微分方程);第三步:求解系统微分方程,得到系统响应;第四步:对求解的结果进行讨论分析,从中获得解决工程实际问题的有用信息;第五步:实验验证上述理论分析结果。
4. 在振动分析中,什么叫力学模型,什么叫数学模型?
力学模型:对实际问题的近似,使用简化的、理想的元件和输入、输出元素构造的假象模型;数学模型:在力学模型的基础上建立的能够完全确定系统运动规律的数学方程式。
5. 惯性元件、弹性元件、阻尼元件的基本特性各是什么?
惯性元件的基本特性:在运动时将产生与加速度呈线性关系的惯性力(矩);弹性元件的基本特性:在变形时将产生与变形相关、抵抗变形的弹性恢复
大学物理机械振动
篇一:大学物理——机械振动
第十章 机械振动
基本要求
1.掌握简谐振动的基本概念和描述简谐振动的特征量的意义及相互关系。 2.掌握和熟练应用旋转矢量法分析与解决有关简谐振动的问题。
3.掌握简谐振动的动力学与运动学特征,从而判定一个运动是否为简谐振动。 4.理解简谐振动的能量特征,并能进行有关的计算。 5.理解两个同振动方向、同频率的简谐振动的合成。
6.了解同振动方向不同频率的简谐振动的合成和相互垂直的两个振动的合成。
7.了解频谱分析、阻尼振动与受迫振动。 8.了解混沌的概念和电磁振荡。
10-1简谐振动
一. 弹簧振子
??
f??kx1. 弹性力: 2.运动学特征:
dxdt
22
特征方程:
2
??x?0式中 ?2?K
m
其解: x?Acos(?t??)
二. 描述谐振动的物理量 1. 2.
振幅:A 角频率:??
km
3.
频率:??
?
2?2?
4. 5. 6. 三.
周期:T?
?
相位:?t?? 初相位:?
谐振动中的速度和加速度
v?
dxdt
??A?sin(?t??)?vmcos(?t???
?
2
)
a?
dvdt
?
dxdt
2
2
??A?
2
cos(?t??)?amcos(?t????)
四.
决定?,A,?的因素
1.? 决定于振动系统,与振动方式无关; 2.A,?决定于初始条件:
同济大学机械原理总结
机械原理各部分要求绪论 平面机构结构分析 平面机构运动分析 机械的平衡 机器的运转及其速度波动的调节 平面连杆机构及其设计 凸轮机构及其设计 齿轮机构及其设计 轮系及其设计 其它常用机构 考试安排 综合练习1 综合练习1 综合练习2 综合练习2
通知考试带直尺、圆规、 考试带直尺、圆规、量角 器等作图工具和计算器
讲课结束, 讲课结束,谢谢大家
绪论
理解以下概念 1.机械: 机器和机构的总称。 1.机械: 机器和机构的总称。 机械 2.机构: 由构件组成, 2.机构: 由构件组成,且各构件之间具有确定的 机构相对运动。 相对运动。
3.构件: 由零件组成,它是运动的单元体. 3.构件: 由零件组成,它是运动的单元体. 构件
平面机构结构分析 1、理解运动副、高副、低副概念, 、理解运动副、高副、低副概念, 能够画出简单机构运动简图。 能够画出简单机构运动简图。 2、掌握平面机构自由度的计算 、
F = 3n 2 PL PH注意:局部自由度、复合铰链、 注意:局部自由度、复合铰链、虚约 束 例:。 3、理解机构具有确定运动的条件 、理解机构具有确定运动的条件: 原动件数目等于机构自由度数目。 原动件数目等于机构自由度数目。 4、掌握机构高副低代和结
机械振动基础
大学物理课件
机械振动基础第1 节一、定义
简谐振动运动学
x = Acos(ωt + ),
A O x A x A > 0 , ω > 0 , :常数
——简谐振动方程 简谐振动方程 正弦交流电: 正弦交流电: u = Um cos(ωt + ) 二、描述简谐振动的物理量
圆频率,单位: ω = 2πv, ω :圆频率,单位: rad / s
x = Acos(ωt +) ≤ A , A > 0 :振幅 2π T= > 0 :周期 ω 1 ω 单位: 频率 v, 单位: Hz ,v = = T 2π2π t +) x = Acos(ωt + ) = Acos(2πvt +) = Acos( T
大学物理课件
2π t +) x = Acos(ωt + ) = Acos(2πvt +) = Acos( T Φ(t) = ωt + :位相, t = 0 ,Φ(0) = , :初相 位相,
A、 (或 或 )、 :描述简谐振动的物理量,三要素 ω v T 描述简谐振动的物理量,
三、振动曲线(位移时间曲线,不是运动轨迹) 振动曲线(位移时间曲线,不是运动轨迹)
xAO
xA
kT t
T
t
O
切线斜率 k = dx / dt = V :速度 画法
机械振动基础习题
机械振动分析与应用习题
第一部分 问答题
1.一简谐振动,振幅为0.20cm,周期为0.15s,求最大速度和加速度。
2.一加速度计指示结构谐振在80HZ时具有最大加速度50g,求振动的振幅。
3.一简谐振动,频率为10Hz,最大速度为4.57m/s,求谐振动的振幅、周期、最大加速度。
4.阻尼对系统的自由振动有何影响?若仪器表头可等效为具有黏性阻尼的单自由度系统,欲使其在受扰动后尽快回零,最有效的办法是什么?
5.什么是振动?研究振动的目的是什么?简述振动理论分析的一般过程。
6.何为隔振?一般分为哪几类?有何区别?试用力法写出系统的传递率,画出力传递率的曲线草图,分析其有何指导意义。
第二部分 计算题
1.求图2-1所示两系统的等效刚度。
图2-1 图2-2 图2-3
2.如图2-2所示,均匀刚性杆质量为m,长度为l,距左端O为l0处有一支点,求O点等效质量。 3.如图2-3所示系统,求轴1的等效转动惯量。
图2-4 图2-5 图2-6
机械振动基础习题
机械振动分析与应用习题
第一部分 问答题
1.一简谐振动,振幅为0.20cm,周期为0.15s,求最大速度和加速度。
2.一加速度计指示结构谐振在80HZ时具有最大加速度50g,求振动的振幅。
3.一简谐振动,频率为10Hz,最大速度为4.57m/s,求谐振动的振幅、周期、最大加速度。
4.阻尼对系统的自由振动有何影响?若仪器表头可等效为具有黏性阻尼的单自由度系统,欲使其在受扰动后尽快回零,最有效的办法是什么?
5.什么是振动?研究振动的目的是什么?简述振动理论分析的一般过程。
6.何为隔振?一般分为哪几类?有何区别?试用力法写出系统的传递率,画出力传递率的曲线草图,分析其有何指导意义。
第二部分 计算题
1.求图2-1所示两系统的等效刚度。
图2-1 图2-2 图2-3
2.如图2-2所示,均匀刚性杆质量为m,长度为l,距左端O为l0处有一支点,求O点等效质量。 3.如图2-3所示系统,求轴1的等效转动惯量。
图2-4 图2-5 图2-6
机械振动和机械波
1.一质量为m的物体置于水平台面上,台面沿竖直方向作简谐运动,其频率为?,振幅为A,求
(1)若振动中物体与平台不分离,振动中物体对平台压力的最大值和最小值各为多少?
(2)为使物体不与平台分离,振幅A的最大值为多少? 2.如图所示,在倾角为?的光滑斜面上放置一质量为m的物体,物体与一轻弹簧相连,弹簧的另一端固定在斜面的上端,弹簧的劲度系数为k。今将重物从其平衡位置沿斜面向下拉下一小距离然后由静止释放,重物将在斜面上作简谐运动,试求其振动周期。
3.如图所示,劲度系数为k的轻弹簧连着一个质量为M的物体在光滑水平面上振动,其振幅为A。若一块质量为优的粘土由静止状态粘到振子上,随后系统继续进行振动,试求在下列两种情况下系统继续振动的周期和振幅: (1)当振子通过平衡位置时与粘土相粘;
(2)当振子在最大位移处时与粘土相粘。
_4.质量分别为M和m的两物块用劲度系数为忌的轻弹簧相连而置于光滑水平面上,弹簧的自然长度为l。今将两物体拉开使弹簧长度变为(l?l0),然后同时将两物体由静止释放。试求释放后两物块振动的周期和振幅。
5.如图所示,一列火车以惯性向前行驶,冲上一个与水平面成?角的山坡,火车的速度逐渐减小。当火
机械振动基础课后习题答案
习题答案
第一章习题
习题答案
P57.1-1: 一物体作简谐振动, 当它通过距平衡位置为0.05m, 0.1m处时的速度分别为0.2m/s和0.08m/s。 求其振动周期、振幅和最大速度。
u (t ) = a sin(ω t + ) u (t ) = aω cos(ωt + )
两边平方,相加
[a u (t )]ω = u (t )2 2 2 2
代入已知条件
[a2 0.052 ]ω 2 = 0.22 2 2 2 2 [a 0.1 ]ω = 0.08解出
振动周期: = 2π / ω = 2π / 2.1167 = 2.9684 T 振幅: = 0.1069 a 最大速度=aω = 0.1069 × 2.1167 = 0.2263
a = 0.1069, ω =2.1167
P57.1-2: 一物体放在水平台面上, 当台面沿铅垂方向作频率为5Hz的简谐振动时, 要使物体不跳离平台, 对台面的振幅有何限制?m
u
质量m运动方程: mg = mu(t ) N
N = mu(t ) + mg
不跳离条件: N ≥ 0
a sin(ω t + ) ≤
g
ω2
u(t ) ≤
g
ω2
mu(t ) + mg ≥