近世代数作业南京廖华答案
“近世代数作业南京廖华答案”相关的资料有哪些?“近世代数作业南京廖华答案”相关的范文有哪些?怎么写?下面是小编为您精心整理的“近世代数作业南京廖华答案”相关范文大全或资料大全,欢迎大家分享。
近世代数作业
练 习 题
第一次作业
1、设A={x| x?R, |x|?5},B={x|x?R, -6?x<0}.求A?B,A?B,A?B,B?A。 2、设A,B是U的子集,规定A+B=(A?B)?(B?A)。证明: (1) A+B=B+A (2) A+?=A (3) A+A=?。
3、求下列集合的所有子集: (1) A={a, b, ?} (2) B={?} (3) C={1}
4、设f:A?B和g:B?C是映射,证明: (1) 如果f和g是单射,则gf是单射 (2) 如果f和g是满射,则gf是满射 (3) 如果gf是单射,则f是单射 (4) 如果gf是满射,则g是满射.
5、对于下面给出的整数集Z到整数集Z的映射f, g ,h: f: x?3x g: x?3x+1 h: x?3x+2 (1) 计算fg, gf, gh, hg, fgh (2) 分别求f, g, h的一个左逆映射 (3) 求f, g, h的一个共同的左逆映射
(4) 求f, g的一个共同的左逆映射,但不是h的左逆映射。 6、设R是实数集合,在R?R上规定二元关系“~”为:
(a, b)~ (c, d)?a+d=b+c
证明“~”是R上的一个等价关系。
7、设A={a, b, c, d, e}, S={{a},{b},{c, d, e}},求A上的一个等价关
近世代数作业
练 习 题
第一次作业
1、设A={x| x?R, |x|?5},B={x|x?R, -6?x<0}.求A?B,A?B,A?B,B?A。 2、设A,B是U的子集,规定A+B=(A?B)?(B?A)。证明: (1) A+B=B+A (2) A+?=A (3) A+A=?。
3、求下列集合的所有子集: (1) A={a, b, ?} (2) B={?} (3) C={1}
4、设f:A?B和g:B?C是映射,证明: (1) 如果f和g是单射,则gf是单射 (2) 如果f和g是满射,则gf是满射 (3) 如果gf是单射,则f是单射 (4) 如果gf是满射,则g是满射.
5、对于下面给出的整数集Z到整数集Z的映射f, g ,h: f: x?3x g: x?3x+1 h: x?3x+2 (1) 计算fg, gf, gh, hg, fgh (2) 分别求f, g, h的一个左逆映射 (3) 求f, g, h的一个共同的左逆映射
(4) 求f, g的一个共同的左逆映射,但不是h的左逆映射。 6、设R是实数集合,在R?R上规定二元关系“~”为:
(a, b)~ (c, d)?a+d=b+c
证明“~”是R上的一个等价关系。
7、设A={a, b, c, d, e}, S={{a},{b},{c, d, e}},求A上的一个等价关
《近世代数》作业参考答案
《近世代数》作业参考答案
一.概念解释
1.代数运算:一个集合A?B到集合D的映射叫做一个A?B到D 的代数运算。 2.群的第一定义:一个非空集合G 对乘法运算作成一个群,只要满足:
1)G对乘法运算封闭;
2)结合律成立:a(bc)?a(bc)对G中任意三个元a,b,c都成立。 3)对于G的任意两个元a,b来说,方程ax?b和ya?b都在G中有解。 3.域的定义:一个交换除环叫做一个子域。
4.满射:若在集合A到集合A的映射?下,A的每一个元至少是A中的某一个元的象,则称?为A到A的满射。
5.群的第二定义:设G为非空集合,G有代数运算叫乘法,若:(1)G对乘法封闭;
(2)结合律成立;(3)单位元存在;(4)G中任一元在G中都有逆元,则称G对乘法作成群。 6.理想:环R的一个非空子集N叫做一个理想子环,简称理想,假若: (1)a,b?N?a?b?N(2)a?N,r?N?ra?N,ar?N
7.单射:一个集合A到A的映射,?:a?a,a?A,a?A,叫做一个A到A的单射。
若:a?b?a?b。
8. 换:一个有限集合的一个一一变换叫做一个置换。
9. 环:一个环R若满足:(1)R至少包含一个不等于零的元。 (2)R有单位元。
(3)R的每
近世代数答案
1:证明::实数域R上全体n阶方阵的集合Mn(R),关于矩阵的加法构成一个交换群。 证:(1)显然,Mn(R)为一个具有“+”的代数系统。 (2)∵矩阵的加法满足结合律,那么有结合律成立。 (3)∵矩阵的加法满足交换律,那么有交换律成立。 (4)零元是零矩阵。?A∈Mn(R),A+0=0+A=A。 (5)?A∈Mn(R),负元是-A。A+(-A)=(-A)+A=0。 ∴(Mn(R),+)构成一个Abel群。
2:证明:实数域R上全体n阶可逆方阵的集合GLn(R)关于矩阵的乘法构成群。这个群称为n阶一般线形群。
证明:显然GLn(R)是个非空集合。
对于任何的A,B∈GLn(R),令C=AB, 则C=|AB|=|A||B|≠0,所以C∈GLn(R)。
⑴因为举证乘法有结合律,所以结合律成立。 ⑵对任意A∈GLn(R),AE=EA,所以E是单位元。
⑶任意的A∈GLn(R),由于∣A∣≠0,∴A的逆矩阵A,满足
?1AA?1?A?1A?E且∴A的逆元是 A?1.所以,GLn(R)关于矩阵的乘法构成群。
3:证明:实数域R上全体n阶正交矩阵的集合On(R)关于矩阵的乘法构成群.这
近世代数的答案
近世代数习题解答
第二章 群论
1 群论
1. 全体整数的集合对于普通减法来说是不是一个群?
证 不是一个群,因为不适合结合律.
2. 举一个有两个元的群的例子.
证 G?{1,?1} 对于普通乘法来说是一个群.
3. 证明, 我们也可以用条件1,2以及下面的条件
4'. G至少存在一个右单位元e,能让ae?a 对于G的任何元a都成立
5'. 对于G的每一个元a,在G里至少存在一个右逆元a?1,能让 aa?1?e 证 (1) 一个右逆元一定是一个左逆元,意思是由aa?1?e 得a?1a?e 因为由4'G有元a'能使a?1a'?e 所以(a?1a)e?(a?1a)(a?1a')
?[a?1(aa?1)]a'?[a?1e]a'?a?1a'?e 即 a?1a?e
(2) 一个右恒等元e一定也是一个左恒等元,意即 由 ae?a 得 ea?a ea?(aa?14,5来作群的定义:
近世代数复习
近世代数复习
一、单项选择题(20分)
1、下面的代数系统(G,*)中,( )不是群。
A. G为整数集合,*为加法 B. G为偶数集合,*为加法 C.G为有理数集合,*为加法 D. G为有理数集合,*为乘法 2、设A={所有实数},A的代数运算a?b=a+2b( ) A.适合结合律但不适合交换律;B.不适合结合律但适合交换律; C.既适合结合律又适合交换律;D.既不适合结合律又不适合交换律 3、在整数加群Z中,不包含15Z的子群是( )。 (A) 3Z (B) 5Z (C) 3Z或5Z (D)13Z 4. 设a,b,c和x都是群G中的元素且xa?bxc,acx?xac,那么
2?1x?( )
A. bc?1a?1; B.c?1a?1; C.a?1bc?1; D.b?1ca。
5、设G=Z,对G规定运算o,下列规定中只有( )构成群。 (A) aob=a+b-2 (B) aob=a? b 数的乘法)
6、设H (B) ab1∈H (C) a1b∈H - - (C) aob=2? a+3?
近世代数试卷
安徽大学2008—2009学年第一学期 《近世代数》考试试卷(B卷)
一、分析判断题(请判断下列命题对错,并简要说明理由) 1、模n的同余关系是一个等价关系.
2、整数集Z对于普通的数的乘法作成一个群. 3、?x?是Z[x]的一个极大理想.
4、在同态映射下,正规子群的象是正规子群. 5、数域F上的多项式环F[x]是一个欧氏环. 二、计算分析题
1、设两个六次置换:??(134652),??(1235)(46)计算:??,?2?,????1. 2、求剩余类环Z12的所有可逆元和所有子环. 3、在Z8中计算:([4]x3?[3]x?[2])([5]x2?x?[3]) 三、举例题(对下列的各种情形,请各举一例) 1、环的素理想而非极大理想;
2、环和其一个子环均有单位元,但二者不相等; 3、正规子群的正规子群不是原来群的正规子群. 四、证明题(本题共6小题,每小题10分,共60分) 1、证明在一个有限群中:
1) 阶数大于2的元素的个数一定是偶数;
2) 偶数阶群里阶等于2的元素个数一定是奇数. 2、设H?G,证明:对?a?G,aHa?1?G且aHa?1?H.
????a2b??a,b?数域F3、证明:对集合R????关于普通的矩阵的加法和乘法
近世代数复习
近世代数复习
一、单项选择题(20分)
1、下面的代数系统(G,*)中,( )不是群。
A. G为整数集合,*为加法 B. G为偶数集合,*为加法 C.G为有理数集合,*为加法 D. G为有理数集合,*为乘法 2、设A={所有实数},A的代数运算a?b=a+2b( ) A.适合结合律但不适合交换律;B.不适合结合律但适合交换律; C.既适合结合律又适合交换律;D.既不适合结合律又不适合交换律 3、在整数加群Z中,不包含15Z的子群是( )。 (A) 3Z (B) 5Z (C) 3Z或5Z (D)13Z 4. 设a,b,c和x都是群G中的元素且xa?bxc,acx?xac,那么
2?1x?( )
A. bc?1a?1; B.c?1a?1; C.a?1bc?1; D.b?1ca。
5、设G=Z,对G规定运算o,下列规定中只有( )构成群。 (A) aob=a+b-2 (B) aob=a? b 数的乘法)
6、设H (B) ab1∈H (C) a1b∈H - - (C) aob=2? a+3?
《近世代数》复习
《近世代数》复习
一、 群论:基本结构有循环群,对称群与商群。基本内容有:元素的周期,置换的表示,子群,陪集,正规子群,同态(映射),同构(映射),群的类方程,Lagrange定理。基本技术:o(a)=||; o(ab)=o(ba), 特别,在交换群中, o(ab)=[o(a), o(b)]; 置换的周期=非交轮换周期的最小公倍数; 中心为正规子群; |G/N|=|G|/|N|; 所有不同的共轭类做成G的一个划分,故有类方程|G|=Σ[G:C(a)](其中a取自不同的共轭类)=|C(G)| +Σ[G:C(a)](其中a取自不同的非中心元素所在的共轭类即元素个数大于等于2的共轭类); o(a)| |G|; 若H?G,则|H| | |G|; 对称群Sn中奇偶置换各占一半即n!/2; 所有偶置换组成交错群An且是Sn的非平凡的最大的正规子群; Sn中的n-轮换?的中心化子(即能与?交换的所有元素构成的子群)就是它生成的循环子群,由此可知与其共轭的元素共有(n?1)!个.
二、 环论:基本结构有交换环,无零因子环,整环,主理想整环,唯一分解环,多项式环,域与商环。基本内容有:理想,环同态(映射),环同构(映射),不可约元,整环中的因子分解,多项式环中
近世代数一
www.4juan.com 专注于收集历年试题试卷和答案
一、单项选择题(每小题3分,共12分)
1.设A=R(实数集),B=R+(正实数集) υ:a→10a+1,?a∈A 则?是从A到B的( )。 A.满射而非单射 B.单射而非满射 C.一一映射 D.既非单射也非满射 2.剩余类加群Z6中,元素[1]的阶是( )。 A.1 B.2 C.3 D.6 3.7阶循环群的生成元个数是( )。 A.1 B.2 C.6 D.7
?a0??4.设R=??那么R关于矩阵的加法和乘法构成环,则这个矩阵环是( )。 ?0b?a、b?Z?,
????A.有单位元的可换环 B.无单位元的可换环 C.无单位元的非可换环 D.有单位元的非可换环 二、填空题(每小题3分,共24分)
1.设集合A含有m个元,则A的子集共有_____个. 2.每一个有限群都和一个_____群同构. 3.设a、b是群G的两个元,则(ab)-2=_____.
4.在3次对称群S3中与元(1 2 3)不可交换的元有_____个. 5.剩余类环Zm是无零因子环