高中数学公式及结论大全

“高中数学公式及结论大全”相关的资料有哪些?“高中数学公式及结论大全”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高中数学公式及结论大全”相关范文大全或资料大全,欢迎大家分享。

高中数学公式大全

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

高中数学常用公式及常用结论

1. 元素与集合的关系

x?A?x?CUA,x?CUA?x?A. 2.德摩根公式

CU(A?B)?CUA?CUB;CU(A?B)?CUA?CUB.

3.包含关系

A?B?A?A?B?B?A?B?CUB?CUA

?A?CUB???CUA?B?R

4.容斥原理

card(A?B)?cardA?cardB?card(A?B)

card(A?B?C)?cardA?cardB?cardC?card(A?B)

?card(A?B)?card(B?C)?card(C?A)?card(A?B?C).

5.集合{a1,a2,?,an}的子集个数共有2 个;真子集有2–1个;非空子集有2 –1个;非空的真子集有2–2个.

6.二次函数的解析式的三种形式

(1)一般式f(x)?ax2?bx?c(a?0); (2)顶点式f(x)?a(x?h)2?k(a?0); (3)零点式f(x)?a(x?x1)(x?x2)(a?0). 7.解连不等式N?f(x)?M常有以下转化形式

nnnnN?f(x)?M?[f(x)?M][f(x)?N]?0

M?NM?Nf(x)?N|??0 ?|f(x)??22M?f(x)11?. ?f(x)?NM?N8

高中数学公式大全

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

高中数学常用公式及常用结论

1. 元素与集合的关系

x?A?x?CUA,x?CUA?x?A. 2.德摩根公式

CU(A?B)?CUA?CUB;CU(A?B)?CUA?CUB.

3.包含关系

A?B?A?A?B?B?A?B?CUB?CUA

?A?CUB???CUA?B?R

4.容斥原理

card(A?B)?cardA?cardB?card(A?B)

card(A?B?C)?cardA?cardB?cardC?card(A?B)

?card(A?B)?card(B?C)?card(C?A)?card(A?B?C).

5.集合{a1,a2,?,an}的子集个数共有2 个;真子集有2–1个;非空子集有2 –1个;非空的真子集有2–2个.

6.二次函数的解析式的三种形式

(1)一般式f(x)?ax2?bx?c(a?0); (2)顶点式f(x)?a(x?h)2?k(a?0); (3)零点式f(x)?a(x?x1)(x?x2)(a?0). 7.解连不等式N?f(x)?M常有以下转化形式

nnnnN?f(x)?M?[f(x)?M][f(x)?N]?0

M?NM?Nf(x)?N|??0 ?|f(x)??22M?f(x)11?. ?f(x)?NM?N8

高中数学公式及常用结论大全-高等数学宝典2

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

高中数学公式及常用结论大全

1. 元素与集合的关系

x?A?x?CUA,x?CUA?x?A.

2.德摩根公式

CU(A?B)?CUA?CUB;CU(A?B)?CUA?CUB.

3.包含关系

A?B?A?A?B?B?A?B?CUB?CUA

?A?CUB???CUA?B?R

4.容斥原理

card(A?B)?cardA?cardB?card(A?B)

card(A?B?C)?cardA?cardB?cardC?card(A?B)

?card(A?B)?card(B?C)?card(C?A)?card(A?B?C).

5.集合{annn1,a2,?,an}的子集个数共有2 个;真子集有2–1个;非空子集有2个;非空的真子集有2n–2个.

6.二次函数的解析式的三种形式 (1)一般式f(x)?ax2?bx?c(a?0); (2)顶点式f(x)?a(x?h)2?k(a?0); (3)零点式f(x)?a(x?x1)(x?x2)(a?0). 7.解连不等式N?f(x)?M常有以下转化形式

N?f(x)?M?[f(x)?M][f(x)?N]?0

?|f(x)?M?N2|?M?Nf(x)?N2?M?f(x)?0 1 –?11. ?f(x)?NM?N8

高中数学公式及常用结论大全-高等数学宝典2

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

高中数学公式及常用结论大全

1. 元素与集合的关系

x?A?x?CUA,x?CUA?x?A.

2.德摩根公式

CU(A?B)?CUA?CUB;CU(A?B)?CUA?CUB.

3.包含关系

A?B?A?A?B?B?A?B?CUB?CUA

?A?CUB???CUA?B?R

4.容斥原理

card(A?B)?cardA?cardB?card(A?B)

card(A?B?C)?cardA?cardB?cardC?card(A?B)

?card(A?B)?card(B?C)?card(C?A)?card(A?B?C).

5.集合{annn1,a2,?,an}的子集个数共有2 个;真子集有2–1个;非空子集有2个;非空的真子集有2n–2个.

6.二次函数的解析式的三种形式 (1)一般式f(x)?ax2?bx?c(a?0); (2)顶点式f(x)?a(x?h)2?k(a?0); (3)零点式f(x)?a(x?x1)(x?x2)(a?0). 7.解连不等式N?f(x)?M常有以下转化形式

N?f(x)?M?[f(x)?M][f(x)?N]?0

?|f(x)?M?N2|?M?Nf(x)?N2?M?f(x)?0 1 –?11. ?f(x)?NM?N8

高中数学公式大全(文科)

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

高中文科数学公式

高中数学常用公式及常用结论

1. 元素与集合的关系

x A x CUA,x CUA x A.

2. 德摩根公式

CU(A B) CUA CUB;CU(A B) CUA CUB.

3. 包含关系

A B A A B B A B CUB CUA

A CUB CUA B R

4. 容斥原理

card(A B) cardA cardB card(A B)

card(A B C) cardA cardB cardC card(A B)

card(A B) card(B C) card(C A) card(A B C).

5. 集合{a1,a2, ,an}的子集个数共有2n 个;真子集有2n–1个;非空子集

有2n –1个;非空的真子集有2n–2个. 6. 二次函数的解析式的三种形式

① 一般式f(x) ax2 bx c(a 0); ② 顶点式f(x) a(x h)2 k(a 0); ③ 零点式f(x) a(x x1)(x x2)(a 0). 7. 解连不等式N f(x) M常有以下转化形式:

N f(x) M [f(x) M][f(x) N] 0

|f(x)

f(x) NM NM N

0 |

M f(x)22

11

.

f(x) NM N

高中文科数学公式

8.

高中数学公式大全(文科)

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

高中文科数学公式

高中数学常用公式及常用结论

1. 元素与集合的关系

x A x CUA,x CUA x A.

2. 德摩根公式

CU(A B) CUA CUB;CU(A B) CUA CUB.

3. 包含关系

A B A A B B A B CUB CUA

A CUB CUA B R

4. 容斥原理

card(A B) cardA cardB card(A B)

card(A B C) cardA cardB cardC card(A B)

card(A B) card(B C) card(C A) card(A B C).

5. 集合{a1,a2, ,an}的子集个数共有2n 个;真子集有2n–1个;非空子集

有2n –1个;非空的真子集有2n–2个. 6. 二次函数的解析式的三种形式

① 一般式f(x) ax2 bx c(a 0); ② 顶点式f(x) a(x h)2 k(a 0); ③ 零点式f(x) a(x x1)(x x2)(a 0). 7. 解连不等式N f(x) M常有以下转化形式:

N f(x) M [f(x) M][f(x) N] 0

|f(x)

f(x) NM NM N

0 |

M f(x)22

11

.

f(x) NM N

高中文科数学公式

8.

高中数学 - 常用公式及常用结论大全

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

新课标:(高中数学)

新课标:高中数学常用公式及常用结论

1. 元素与集合的关系

x?A?x?CUA,x?CUA?x?A. 2.德摩根公式

CU(A?B)?CUA?CUB;CU(A?B)?CUA?CUB.

3.包含关系

A?B?A?A?B?B?A?B?CUB?CUA

?A?CUB???CUA?B?R

4.容斥原理

card(A?B)?cardA?cardB?card(A?B)

card(A?B?C)?cardA?cardB?cardC?card(A?B)

?card(A?B)?card(B?C)?card(C?A)?card(A?B?C).

5.集合{a1,a2,?,an}的子集个数共有2n 个;真子集有2n–1个;非空子集有2n –1个;非空的真子集有2n–2个.

6.二次函数的解析式的三种形式

(1)一般式f(x)?ax2?bx?c(a?0); (2)顶点式f(x)?a(x?h)2?k(a?0); (3)零点式f(x)?a(x?x1)(x?x2)(a?0). 7.解连不等式N?f(x)?M常有以下转化形式

N?f(x)?M?[f(x)?M][f(x)?N]?0

M?NM?Nf(x)?N|??0 ?|f(x)??22M?f(x)1

高中数学公式大全(高考必备)

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

高中数学公式大全(含初中常用公式)(高考必备)

1. 元素与集合的关系

U x A x C A ∈??,U x C A x A ∈??.

2.德摩根公式

();()U U U U U U C A B C A C B C A B C A C B ==.

3.包含关系

A B A A B B =?=U U A B C B C A ????

U A C B ?=ΦU C A B R ?=

4.容斥原理

()()card A B cardA cardB card A B =+-

()()card A B C cardA cardB cardC card A B =++-

()()()()card A B card B C card C A card A B C ---+.

5.集合12{,,

,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个.

6.二次函数的解析式的三种形式

(1)一般式2

()(0)f x ax bx c a =++≠;

(2)顶点式2()()(0)f x a x h k a =-+≠;

(3)零点式12()()()(0)f x a x x x x a =--≠.

7.解连不等式()N f x M

高中数学公式大全(必备版)

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

高中数学公式及知识点速记

1、函数的单调性

(1)设1212[,],x x a b x x ∈<、且那么 ],[)(0)()(21b a x f x f x f 在?<-上是增函数;

],[)(0)()(21b a x f x f x f 在?>-上是减函数.

(2)设函数)(x f y =在某个区间内可导,

若0)(>'x f ,则)(x f 为增函数;

若0)(<'x f ,则)(x f 为减函数;

)

若()=0f x ',则)(x f 有极值。

2、函数的奇偶性

若)()(x f x f =-,则)(x f 是偶函数;偶函数的图象关于y 轴对称。 若)()(x f x f -=-,则)(x f 是奇函数;奇函数的图象关于原点对称。

3、函数)(x f y =在点0x 处的导数的几何意义

函数)(x f y =在点0x 处的导数)(0x f '是曲线)(x f y =在))(,(00x f x P 处的切线的斜率,相应的切线方程是))((000x x x f y y -'=-.

4、几种常见函数的导数

①'C 0=; ②1')(-=n n nx x ; ③x x cos )(sin '=; ④x x sin )(cos '-=; 。

⑤a a a x x ln )('=; ⑥x x e e =')(; ⑦a x x a ln 1)(log '=; ⑧x x 1)

高中数学公式大全高考必看

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

高中数学常用公式及常用结论大全

1. 元素与集合的关系

x?A?x?CUA,x?CUA?x?A. 2.德摩根公式

CU(A?B)?CUA?CUB;CU(A?B)?CUA?CUB. 3.包含关系

A?B?A?A?B?B?A?B?CUB?CUA ?A?CUB???CUA?B?R

2.集合{a1,a2,?,an}的子集个数共有2 个;真子集有2–1个;非空子集有2 –1个;非空的真子集有2–2个.

3.二次函数的解析式的三种形式

(1)一般式f(x)?ax2?bx?c(a?0); (2)顶点式f(x)?a(x?h)2?k(a?0); (3)零点式f(x)?a(x?x1)(x?x2)(a?0).

4.充要条件

(1)充分条件:若p?q,则p是q充分条件. (2)必要条件:若q?p,则p是q必要条件.

(3)充要条件:若p?q,且q?p,则p是q充要条件.

注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.

5.若将函数y?f(x)的图象右移a、上移b个单位,得到函数y?f(x?a)?b的图象;若将曲线f(x,y)?0的图象右移a、上移b个单位,得到曲线f(x?a,y?b)?0的图象. 6.分数指数幂

(1)amnnnnn?1nam1mn(a