初中数学最难二次函数题
“初中数学最难二次函数题”相关的资料有哪些?“初中数学最难二次函数题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“初中数学最难二次函数题”相关范文大全或资料大全,欢迎大家分享。
初中数学二次函数复习专题(1)
试题宝典 http://www.shitibaodian.com 试题、教案、课件、论文,免费提供!
初中数学二次函数复习专题
〖知识点〗二次函数、抛物线的顶点、对称轴和开口方向 〖大纲要求〗
1.理解二次函数的概念;
2.会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,
会用描点法画二次函数的图象; 3.会平移二次函数y=ax2(a≠0)的图象得到二次函数y=a(ax+m)2+k的图象,了
解特殊与一般相互联系和转化的思想; 4.会用待定系数法求二次函数的解析式;
5.利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x轴的
交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之
间的联系。
内容
(1)二次函数及其图象
如果y=ax+bx+c(a,b,c是常数,a≠0),那么,y叫做x的二次函数。 二次函数的图象是抛物线,可用描点法画出二次函数的图象。 (2)抛物线的顶点、对称轴和开口方向 抛物线y=ax+bx+c(a≠0)的顶点是(?22
b2a,4ac?b4a2对称轴是x??),
b2a,当a>0时,
抛物线开口向上,当a<0时,抛物线开口向下。
抛物线y=a(x+h)2+k(a≠0)的顶点是(-h,k),对称轴是
初中数学二次函数专题复习教案
初中数学二次函数专题复习
初中数学二次函数复习专题
〖知识点〗二次函数、抛物线的顶点、对称轴和开口方向 〖大纲要求〗
1. 理解二次函数的概念;
2. 会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会
用描点法画二次函数的图象;
3. 会平移二次函数y=ax2(a≠0)的图象得到二次函数y=a(ax+m)2+k的图象,了解特殊与一般相互联系和转化的思想;
4. 会用待定系数法求二次函数的解析式;
5. 利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x轴的交点
坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系。
内容
(1)二次函数及其图象
如果y=ax2+bx+c(a,b,c是常数,a≠0),那么,y叫做x的二次函数。 二次函数的图象是抛物线,可用描点法画出二次函数的图象。 (2)抛物线的顶点、对称轴和开口方向 抛物线y=ax+bx+c(a≠0)的顶点是(
2
b2a
,
4ac b4a
2
),对称轴是x
b2a
,当a>0时,
抛物线开口向上,当a<0时,抛物线开口向下。 抛物线y=a(x+h)2+k(a≠0)的顶点是(-h,k),对称轴是x=-h. 〖考查重点与常见题型〗
1. 考查二次函数的
二次函数初中数学中考题汇总
二次函数初中数学中考题汇总
三、解答题:(共x分)
(2011?岳阳市)26.(本题满分l0分)九(1)班数学课题学习小组,为了研究学习二次函数问题,他们经历了实践一应用——探究的过程:
(1)实践:他们对一条公路上横截面为抛物线的单向双车道的隧道(如图①)进行测量,测得一隧道的路面宽为10m.隧道顶部最高处距地面6.25m,并画出了隧道截面图.建立了如图②所示的直角坐标系.请你求出抛物线的解析式. (2)应用:按规定机动车辆通过隧道时,车顶部与隧道顶部在竖直方向上的高度差至少为0.5m.为了确保安全.问该隧道能否让最宽3m.最高3.5m的两辆厢式货车居中并列行驶(两车并列行驶时不考虑两车间的空隙)?
(3)探究:该课题学习小组为进一步探索抛物线的有关知识,他们借助上述抛物线模型塑.提出了以下两个问题,请予解答:
Ⅰ.如图③,在抛物线内作矩形ABCD,使顶点C、D落在抛物线上.顶点A、B落在x轴上.设矩形ABCD的周长为l,求l的最大值。
Ⅱ.如图④,过原点作一条y?x的直线OM,交抛物线于点M.交抛物线对称轴于点N,P为直线OM上一动点,过P点作x轴的垂线交抛物线于点Q。问在直线OM上是否存在点P,使以P、N、Q为顶点的三角形是
最新2018届初中数学中考复习专题【二次函数压轴题】
2018年中考数学冲刺复习资料:二次函数压轴题
面积类
【例1】.如图1,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式.(2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长.
(3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由.【考点:二次函数综合题. 专题:压轴题;数形结合.】
图1
【巩固1】.如图2,抛物线y?ax?23x?2?a?0?的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐2标为(4,0).
(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;
(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标. 【考点:二次函数综合题.专题:压轴题;转化思想.】
第 1 页 共 9 页
图2
平行四边形类
【例2】.如图3,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,﹣3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横
最新2018届初中数学中考复习专题【二次函数压轴题】
2018年中考数学冲刺复习资料:二次函数压轴题
面积类
【例1】.如图1,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式.(2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长.
(3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由.【考点:二次函数综合题. 专题:压轴题;数形结合.】
图1
【巩固1】.如图2,抛物线y?ax?23x?2?a?0?的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐2标为(4,0).
(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;
(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标. 【考点:二次函数综合题.专题:压轴题;转化思想.】
第 1 页 共 9 页
图2
平行四边形类
【例2】.如图3,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,﹣3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横
最新2018届初中数学中考复习专题【二次函数压轴题】
2018年中考数学冲刺复习资料:二次函数压轴题
面积类
【例1】.如图1,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式.(2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长.
(3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由.【考点:二次函数综合题. 专题:压轴题;数形结合.】
图1
【巩固1】.如图2,抛物线y?ax?23x?2?a?0?的图象与x轴交于A、B两点,与y轴交于C点,已2知B点坐标为(4,0). (1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;
(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标. 【考点:二次函数综合题.专题:压轴题;转化思想.】
第 1 页 共 9 页
图2
平行四边形类
【例2】.如图3,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,﹣3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横
最新2018届初中数学中考复习专题【二次函数压轴题】
2018年中考数学冲刺复习资料:二次函数压轴题
面积类
【例1】.如图1,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式.(2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长.
(3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由.【考点:二次函数综合题. 专题:压轴题;数形结合.】
图1
【巩固1】.如图2,抛物线y?ax?23x?2?a?0?的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐2标为(4,0).
(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;
(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标. 【考点:二次函数综合题.专题:压轴题;转化思想.】
第 1 页 共 9 页
图2
平行四边形类
【例2】.如图3,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,﹣3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横
二次函数学案
二次函数学案
【例1】 函数y=(m+2)x+2x-1是二次函数,则m= . 【例2】 下列函数中是二次函数的有( )
m2?211222
①y=x+;②y=3(x-1)+2;③y=(x+3)-2x;④y=2+x.
xxA.1个 B.2个 C.3个 D.4个
【例3】正方形的边长是5,若边长增加x,面积增加y,求y与x之间的函数表达式.
1.已知正方形的周长为20,若其边长增加x,面积增加y,求y与x之间的表达式.
2.已知正方形的周长是x,面积为y,求y与x之间的函数表达式.
3.已知正方形的边长为x,若边长增加5,求面积y与x的函数表达式.
【例4】某商场将进价为40元的某种服装按50元售出时,每天可以售出300套.据市场调查发现,这种服装每提高1元售价,销量就减少5套,如果商场将售价定为x,请你得出每天销售利润y与售价的函数表达式.
【例6】如图2-1-1,正方形ABCD的边长为4,P是BC边上一点,QP⊥AP交DC于Q,如果BP=x,△ADQ的面积为y,用含x的代数式表示y.
课堂练习一:
1.已知函数y=ax+bx+c(其中a,b,c是常数),当a 时,是二次
初中数学中考要点及二次函数试题精要
初中数学二次函数做题技巧
初中数学中考要点及二次函数试题精要
I.定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系:
y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式一般式:y=ax^2;+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2;+k [抛物线的顶点P(h,k)] 交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线] 注:在3种形式的互相转化中,有如下关系: h=-b/2a k=(4ac-b^2;)/4a x1,x2=(-b±√b^2;-4ac)/2a
III.二次函数的图像在平面直角坐标系中作出二次函数y=x2的图像,可以看出,二次函数的图像是一条抛物线。 IV.抛物线的性质
1.抛物线是轴对称图形。对称轴为直线 x = -b/2a。对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为 P [ -b/2a ,(4ac-b^2;)/4a ]。当-b/2a=0时,P在y轴上
重庆中考数学二次函数26题
1、如图1,抛物线y?1213x?x?3与x轴相交于A、B两点(点A在点B的右侧),已知C(0,)。连接2222FH,求l的最大值。(3)如图2,3AC。(1)求直线AC的解析式。(2)点P是x轴下方的抛物线上一动点,过点P作PE⊥x轴交直线AC于点E,交x轴于点F,过点P作PG⊥AE于点G,线段PG交x轴于点H。设l=EP—
在(2)的条件下,点M是x轴上一动点,连接EM、PM,将△EPM沿直线EM折叠为△EP1M,连接AP,AP1。当△APP1是等腰三角形时,试求出点M的坐标。
2.已知抛物线y??x2?2x?c与x轴交于A、B两点,其中点A (-1,0).抛物线与y 轴交于点C,顶点为D,点N在抛物线上,其横坐标为
5. http://www.lhjy.net.cn/ 2(1)如图1,连接BD,求直线BD的解析式;
(2)如图2,连接BC,把△OBC沿x轴正方向平移,记平移后的三角形为△O′B′C ′,当点C ′ 落在△BCD内部时,线段B′C ′与线段DB交于点M,设△O′B′C ′与△BCD重叠面积为T,若T=http://www.lhjy.net.cn/
(3)如图3,连接CN,点P为直线CN上的动点,点Q在抛物线上,连接CQ、PQ得