均匀物质的热力学性质典型例题
“均匀物质的热力学性质典型例题”相关的资料有哪些?“均匀物质的热力学性质典型例题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“均匀物质的热力学性质典型例题”相关范文大全或资料大全,欢迎大家分享。
均匀物质的热力学性质
第二章 均匀物质的热力学性质
2.1 已知在体积保持不变时,一气体的压强正比于其热力学温度. 试证明在温度保质不变时,该气体的熵随体积而增加.
解:根据题设,气体的压强可表为
p?f?V?T, (1)
式中f(V)是体积V的函数. 由自由能的全微分
dF??SdT?pdV
得麦氏关系
将式(1)代入,有
由于p?0,,故有??p??S???p???f(V)?. (3) ????T??V?T??T?V?S???0?V??T??S???p??????. (2) ??V?T??T?VT?0. 这意味着,在温度保持不变时,该气体的熵
随体积而增加.
2.2 设一物质的物态方程具有以下形式:
p?f(V)T,
试证明其内能与体积无关.
解:根据题设,物质的物态方程具有以下形式:
故有
但根据式(2.2.7),有
??U???p??T?????p, ??V?T??T?V??p????f(V). (2) ?T??Vp?f(V)T,
均匀物质的热力学性质
第二章 均匀物质的热力学性质
2.1 已知在体积保持不变时,一气体的压强正比于其热力学温度. 试证明在温度保质不变时,该气体的熵随体积而增加.
解:根据题设,气体的压强可表为
p?f?V?T, (1)
式中f(V)是体积V的函数. 由自由能的全微分
dF??SdT?pdV
得麦氏关系
将式(1)代入,有
由于p?0,,故有??p??S???p???f(V)?. (3) ????T??V?T??T?V?S???0?V??T??S???p??????. (2) ??V?T??T?VT?0. 这意味着,在温度保持不变时,该气体的熵
随体积而增加.
2.2 设一物质的物态方程具有以下形式:
p?f(V)T,
试证明其内能与体积无关.
解:根据题设,物质的物态方程具有以下形式:
故有
但根据式(2.2.7),有
??U???p??T?????p, ??V?T??T?V??p????f(V). (2) ?T??Vp?f(V)T,
工程热力学例题
工程热力学例题
1.已知一闭口系统沿a c b途径从状态a变化到状态b时,吸入热量80KJ/kg,并对外做功 30KJ/Kg。 (1)、过程沿adb进行,系统对外作功10KJ/kg,问系统吸热多少?
(2)、当系统沿曲线从b返回到初态a、外界对系统作功20KJ/kg,则系统与外界交换热量的方向和大小如何?
(3)、若ua=0,ud=40KJ/Kg,求过程ad和db的吸热量。
解:对过程acb,由闭口系统能量方程式得:
(1)、对过程adb闭口系统能量方程得:
(2)、对b-a过程,同样由闭口系统能量方程得:
即,系统沿曲线由b返回a时,系统放热70KJ/Kg。
(3)、当ua=0,ud=40KJ/Kg,由ub-ua=50KJ/Kg,得ub=50KJ/Kg,且:
(定容过程过程中膨胀功wdb=0)
过程ad闭口系统能量方程得:
过程db闭口系统能量方程得:
2.安静状态下的人对环境的散热量大约为400KJ/h,假设能容纳2000人的大礼堂的通风系统坏了:(1)在通风系统出现故障后的最初20min内礼堂中的空气内能增加多少?(2)把礼堂空气和所有的人考虑为一个系统,假设对外界没有传热,系统内能变化多少?如何解释空气温度的升高。 解:(1)热
气体热力学性质
第二章 气体热力学性质
第一节 理想气体的性质
一、理想气体:
1、假设:①气体分子是弹性的、不占据体积的特点;
②气体分子间没有相互作用力。
对于气体分子的体积相对气体比容很小,分子间作用力相对于气体压力也很小时,可
作为理想气体处理。 2、状态方程
理想气体在任一平衡状态时的压力P、温度T、比容v之间的关系应满足状态方程,
即克拉佩龙方程 Pv= RT
mkg质量气体为: Pv=mRT=mR0T
R 气体常数,反映气体特征的物理量,和气体所处状态无关; n 物质的量(千克数或摩尔数); R0 通用气体常数,与气体状态、其他性质无关的普适恒量; R0??R?831415J/Kmol?K
CV,CP分别表示定压比容及定容比容,对于理想气体,他们仅是温度的单值函
数,CV?CP 其 CV?CP?R 比值CV/CP?k(绝热指数) 标准状态时(压力未101.325Kpa, 0℃) 单原子气体 k=1.66?1.67 双原子气体 k=1.40?1.41
气体热力学性质
第二章 气体热力学性质
第一节 理想气体的性质
一、理想气体:
1、假设:①气体分子是弹性的、不占据体积的特点;
②气体分子间没有相互作用力。
对于气体分子的体积相对气体比容很小,分子间作用力相对于气体压力也很小时,可
作为理想气体处理。 2、状态方程
理想气体在任一平衡状态时的压力P、温度T、比容v之间的关系应满足状态方程,
即克拉佩龙方程 Pv= RT
mkg质量气体为: Pv=mRT=mR0T
R 气体常数,反映气体特征的物理量,和气体所处状态无关; n 物质的量(千克数或摩尔数); R0 通用气体常数,与气体状态、其他性质无关的普适恒量; R0??R?831415J/Kmol?K
CV,CP分别表示定压比容及定容比容,对于理想气体,他们仅是温度的单值函
数,CV?CP 其 CV?CP?R 比值CV/CP?k(绝热指数) 标准状态时(压力未101.325Kpa, 0℃) 单原子气体 k=1.66?1.67 双原子气体 k=1.40?1.41
化工热力学 例题 与解答(14)
第5章 非均相体系热力学性质计算
一、是否题
1. 在一定温度T(但T 而不能从已知常数的状态方程(如PR方程)求出,因为状态方程有三个未知数(P、V、T)中,只给定了温度T,不可能唯一地确定P和V。(错,因为纯物质的饱和蒸汽压代表了汽液平衡时的压力。由相律知,纯物质汽液平衡状态时自由度为1,若已知T,其蒸汽压就确定下来了。已知常数的状态方程中,虽然有P、V、T三个变量,但有状态方程和汽液平衡准则两个方程,所以,就能计算出一定温度下的蒸汽压。) 2. 混合物汽液相图中的泡点曲线表示的是饱和汽相,而露点曲线表示的是饱和液相。(错 正好反了) 3. 在一定压力下,组成相同的混合物的露点温度和泡点温度不可能相同。(错,在共沸点 时相同) 4. 一定压力下,纯物质的泡点温度和露点温度是相同的,且等于沸点。(对) 5. 由(1),(2)两组分组成的二元混合物,在一定T、P下达到汽液平衡,液相和汽相组 成分别为x1,y1,若体系加入10 mol 的组分(1),在相同T、P下使体系重新达到汽液 ''''?y1。,y1?x1和y1平衡,此时汽、液相的组成分别为x1,则x1(错,二元汽液平衡系 统的自由度是2,在T,P给定的条件下,系统的状态就确定下来了。) 6. 在-2
热力学
热力学第一定律习题:
1. 封闭系统过程体积功为零的条件是( )。 封闭系统过程的ΔU=0的条件是( )。 封闭系统过程的ΔH=0的条件是( )。
封闭系统过程ΔU=ΔH的条件:(1)理想气体单纯pVT变化过程:( );
(2)理想气体化学变化过程:( )。
2. 一定量理想气体节流膨胀过程中:μJ-T=( );ΔH=( ); ΔU=( ); W=( )。
某状态下空气经过节流膨胀过程的Δ(pV)>0,则μJ-T ( );ΔH ( ); ΔU ( )。(判断大于0、等于0还是小于0.)
3. 一定量的单原子理想气体某过程的Δ(pV)=20kJ,则此过程的ΔU=( )kJ, ΔH=( )kJ。
4. 绝热恒容非体积功为0的系统,过程的??H/?p?V,Q?0?( )。 5. 在300K及常压下,2
热力学
2 热力学第一定律
本章学习要求:
1.掌握热力学的基本概念,重点掌握状态函数的特点。
2.明确热力学能(U)和焓(H)都是状态函数,热(Q)和功(W)都是与过程相关的物理量。
3.初步掌握用状态函数分析和处理问题的方法。 4.理解可逆过程与最大功的概念。
5.掌握热力学第一定律的表述与数学表达式,学会计算理想气体单纯状态变化过程、相变、化学变化过程的△U、△H、Q及W。
6.理解反应进度与反应热效应的概念,掌握热力学第一定律与黑斯定律的关系,能熟练地应用黑斯定律由生成热与燃烧热计算常温下的反应热。 7.学会应用基尔霍夫定律计算不同温度下的反应热。
在生产实践与科学研究中,我们常碰到这样一些问题:一个物理或化学过程发生后能量得失关系如何?是吸热还是放热?一个新的制备方案能否实现?如何反映最佳反应条件?在一定条件下反应的最高产量可达多少?热力学就是解决这些关系的。
热力学是研究能量互相转换所遵循规律的科学。将热力学基本原理用来研究化学现象以及与化学有关的物理现象就是化学热力学。它的主要内容是利用热力学第一定律计算化学反应的热效应;利用热力学第二定律解决化学反应的方向与限度以及与平衡有关的问题。
热力学两个定律在化学过程以及与化学有关的物理过程中
热力学
2 热力学第一定律
本章学习要求:
1.掌握热力学的基本概念,重点掌握状态函数的特点。
2.明确热力学能(U)和焓(H)都是状态函数,热(Q)和功(W)都是与过程相关的物理量。
3.初步掌握用状态函数分析和处理问题的方法。 4.理解可逆过程与最大功的概念。
5.掌握热力学第一定律的表述与数学表达式,学会计算理想气体单纯状态变化过程、相变、化学变化过程的△U、△H、Q及W。
6.理解反应进度与反应热效应的概念,掌握热力学第一定律与黑斯定律的关系,能熟练地应用黑斯定律由生成热与燃烧热计算常温下的反应热。 7.学会应用基尔霍夫定律计算不同温度下的反应热。
在生产实践与科学研究中,我们常碰到这样一些问题:一个物理或化学过程发生后能量得失关系如何?是吸热还是放热?一个新的制备方案能否实现?如何反映最佳反应条件?在一定条件下反应的最高产量可达多少?热力学就是解决这些关系的。
热力学是研究能量互相转换所遵循规律的科学。将热力学基本原理用来研究化学现象以及与化学有关的物理现象就是化学热力学。它的主要内容是利用热力学第一定律计算化学反应的热效应;利用热力学第二定律解决化学反应的方向与限度以及与平衡有关的问题。
热力学两个定律在化学过程以及与化学有关的物理过程中
第四章 溶液的热力学性质
第四章 溶液的热力学性质
一、选择题(共14小题,14分)
1.下列各式中,化学位的定义式是( )
??(nH)?A.?i????ni??p,nS,nj??(nA)?C.?i????ni??p,T,nj??(nG)?B.?i????ni?nV,nS,nj???(nU)?D.?i????ni??T,nS,nj
2.关于偏摩尔性质,下面说法中不正确的是( )
A.纯物质无偏摩尔量 B. T,p一定,偏摩尔性质就一定 C.偏摩尔性质是强度性质 D.强度性质无偏摩尔量 E.偏摩尔自由焓等于化学位
3.等温等压下,在A和B组成的均相体系中,若A的偏摩尔体积随A浓度的减小而减小,则B的偏摩尔体积将随A浓度的减小而( ) A.增加 B.减小 C.不变 D.不一定 4.对无热溶液,下列各式能成立的是( ) A. SE=0, VE=0 B. SE=0, AE=0 C. GE=0, AE=0 D. HE=0, GE=-TSE 5.苯(1)和环己烷(2)在303 K,0.1013 MPa下形成X1=0.9溶液。此条件下V1=89.96 cm3/mol,V2=109.4 cm3/mol,V1?