Non-polynomial splines approach to the solution of sixth-order boundary-value problems
更新时间:2023-07-24 16:32:01 阅读量: 实用文档 文档下载
Numerical solution,artificial boundary conditions
Non-polynomial splines approach to the solution
of sixth-order boundary-value problems
Siraj-ul-Islam a ,Ikram A.Tirmizi
b,*,Fazal-i-Haq b ,M.Azam Khan c a
University of Engineering &Technology,Peshawar (NWFP),Pakistan b GIK Institute of Engineering Sciences &Technology,Topi (NWFP),Pakistan
c Nescom Islamabad,Pakistan
Abstract
Non-polynomial splines,which are equivalent to seven-degree polynomial splines,are used to develop a class of numer-ical methods for computing approximations to the solution of sixth-order boundary-value problems with two-point boundary conditions.Second-,fourth-and sixth-order convergence is obtained by using standard procedure.It is shown that the present methods give approximations,which are better than those produced by other spline and domain decom-position methods.Numerical examples are given to illustrate practical usefulness of the new approach.
Ó2007Elsevier Inc.All rights reserved.
Keywords:Sixth-order BVP;Finite-di?erence methods;Non-polynomial splines
1.Introduction
In this paper,non-polynomial spline functions are applied to develop numerical methods for obtaining smooth approximations for the following boundary-value problem:
D 6y ðx Þ¼f ðx ;y Þ;a <x <b ;D d =d x ;
ð1:1Þsubject to the boundary conditions:y ða Þ¼A 0;
D 2y ða Þ¼A 2;
D 4
y ða Þ¼A 4;
y ðb Þ¼B 0;D 2y ðb Þ¼B 2;D 4y ðb Þ¼B 4;)
ð1:2Þwhere y (x )and f (x ,y )are continuous functions de?ned in the interval x 2½a ;b .It is assumed that f ðx ;y Þ2C 6½a ;b is real and that A i ;B i ;i ¼0;2;4,are ?nite real numbers.The literature on the numerical solu-tion of sixth-order boundary-value problems is sparse.Such problems are known to arise in astrophysics;the 0096-3003/$-see front matter Ó2007Elsevier Inc.All rights reserved.doi:10.1016/j.amc.2007.04.093*Corresponding author.
E-mail addresses:sirajuet@ (Siraj-ul-Islam),tirmizi_giki@ (I.A.Tirmizi),fhaq2002@ (Fazal-i-Haq),Azam_giki@ (M.A.Khan).
Available online at
Applied Mathematics and Computation 195(2008)
270–284
Numerical solution,artificial boundary conditions
narrow convecting layers bounded by stable layers,which are believed to surround A-type stars,may be mod-eled by sixth-order boundary-value problems(Toomre et al.[12]).Also in Glatzmaier[9]it is given that dy-namo action in some stars may be calculated by such equations.Chandrasekhar[6]determined that when an in?nite horizontal layer of?uid is heated from below and is under the action of rotation,instability sets in. When this instability is as ordinary convection,the ordinary di?erential equation is sixth order.
Theorems,which list the conditions for the existence and uniqueness of solutions of sixth-order boundary-value problems,are thoroughly discussed in the book by Agarwal[1].Non-numerical techniques for solving such problems are contained in papers by Baldwin[3,4].Numerical methods of solution are contained implic-itly in the paper by Chawla and Katti[7],although those authors concentrated on numerical methods for fourth-order problems.Twizell[13]developed a second-order method for solving special and general sixth-order problems and in later work Twizell and Boutayeb[14]developed?nite-di?erence methods of order two,four,six and eight for solving such problems.Siddiqi and Twizell[11]used sixth-degree splines,where spline values at the mid knots of the interpolation interval and the corresponding values of the even order derivatives were related through consistency relations.M.E Gamel et al.[8]used Sinc-Galerkin method for the solutions of sixth order boundary-value problems.Wazwaz[15]used decomposition and modi?ed domain decomposition methods to investigate solution of the sixth-order boundary-value problems.
The spline function proposed in this paper has the form T7¼Span f1;x;x2;x3;x4;x5;cos kx;sin kx g where k is the frequency of the trigonometric part of the splines function.Thus in each subinterval x i6x6x i+1,we have:
Span f1;x;x2;x3;x4;x5;cos kx;sin kx g;
Span f1;x;x2;x3;x4;x5;cosh kx;sinh kx g or
Span f1;x;x2;x3;x4;x5;x6;x7g;ðwhen k!0Þ:
The above correlation can be better explained by the following equation:
T7¼Span f1;x;x2;x3;x4;x5;sinðkxÞ;cosðkxÞg¼Span
1;x;x2;x3;x4;x5;7!
k7
kxÀsinðkxÞÀðkxÞ3
6
þðkxÞ5
120
;
8!
k8
cosðkxÞÀ1þðkxÞ2ÀðkxÞ4þðkxÞ6
:
8
><
>:
9
>=
>;
ð1:3Þ
In Section2of the present paper the special sixth-order,boundary-value problem to be solved is transformed using non-spline polynomial techniques into linear or non-linear algebraic system.In Section3methods of di?erent orders are categorized.In Section4,properties of the inverse of coe?cient matrix are discussed.In Section5,convergence of the method is established and numerical results are reported in Section6.
2.Numerical method
To develop the spline approximation to the problem(1.1)and(1.2),the interval[a,b]is divided into n equal subintervals,using the grid points x i¼aþih;i¼0;1;...;n,where h¼bÀa.For each segment½x iÀ1;x i ,the polynomial P iÀ1/2(x)has the form:
P iÀ1=2ðxÞ¼a iÀ1=2sin kðxÀx iÀ1=2Þþb iÀ1=2cos kðxÀx iÀ1=2Þþc iÀ1=2ðxÀx iÀ1=2Þ5þd iÀ1=2ðxÀx iÀ1=2Þ4þe iÀ1=2ðxÀx iÀ1=2Þ3þf iÀ1=2ðxÀx iÀ1=2Þ2þg iÀ1=2ðxÀx iÀ1=2Þþr iÀ1=2;ð2:1Þwhere a iÀ1=2;b iÀ1=2;c iÀ1=2;d iÀ1=2;e iÀ1=2;f iÀ1=2;g iÀ1=2and r iÀ1/2are constants and k is free parameter.
Let y iÀ1/2be an approximation to y(x iÀ1/2),obtained by the segment P iÀ1/2(x)of the mixed splines function
passing through the pointsðx iÀ1=2;y
iÀ1=2Þandðx iþ1=2;y iþ1=2Þ.To determine the coe?cients in(2.1)at the com-
mon nodesðx iÀ1=2;y
iÀ1=2
Þ,we?rst de?ne:
P iÀ1=2ðx iÆjÞ¼y iÆj;P0
iÀ1=2ðx iÆjÞ¼Z iÆj;P00
iÀ1=2
ðx iÆjÞ¼M iÆj;PðviÞ
iÀ1=2
ðx iÆjÞ¼S iÆj;where j¼1=2:
Siraj-ul-Islam et al./Applied Mathematics and Computation195(2008)270–284271
Numerical solution,artificial boundary conditions
From algebraic manipulation we get the following expressions for coe?cients:
a iÀ1=2¼1
k6
ðS iÀ1=2cosðhÞÀS iþ1=2ÞcscðhÞ;
b iÀ1=2¼ÀS iÀ1=2
k6
;
c iÀ1=2¼ÀcscðhÞ
2h5k6
h2k2sinðhÞS iþ1=2Àh2S iÀ1=2k2sinðhÞþh2M iÀ1=2k6sinðhÞ
Àh2k6sinðhÞM iþ1=2À6hS iÀ1=2kþ6hk cosðhÞS iþ1=2À6hkS iÀ1=2cosðhÞ
þ6hkS iþ1=2þ6hZ iÀ1=2k6sinðhÞþ6hk6Z iþ1=2sinðhÞÀ12S iþ1=2sinðhÞ
þ12S iÀ1=2sinðhÞþ12y iÀ1=2k6sinðhÞÀ12y iþ1=2k6sinðhÞ
B B
B B
B@
1
C C
C C
C A;
d iÀ1=2¼cscðhÞ
2h4k6
2h2k2sinðhÞS iþ1=2À3h2S iÀ1=2k2sinðhÞþ3h2M iÀ1=2k6sinðhÞ
À2h2k6sinðhÞM iþ1=2À14hS iÀ1=2kþ14hk cosðhÞS iþ1=2À16hkS iÀ1=2cosðhÞþ16hkS iþ1=2þ16hZ iÀ1=2k6sinðhÞþ14hk6Z iþ1=2sinðhÞÀ30S iþ1=2sinðhÞ
þ30S iÀ1=2sinðhÞþ30y iÀ1=2k6sinðhÞÀ30y iþ1=2k6sinðhÞ
B B
B B
B@
1
C C
C C
C A;
e iÀ1=2¼ÀcscðhÞ
2h3k6
20y
iÀ1=2
k6sinðhÞÀ20y
iþ1=2
k6sinðhÞÀh2k6sinðhÞM iþ1=2
þh2k2sinðhÞS iþ1=2þ12hkS iþ1=2þ8hk cosðhÞS iþ1=2þ8hk6Z iþ1=2sinðhÞ
À8hS iÀ1=2kþ3h2M iÀ1=2k6sinðhÞÀ3h2S iÀ1=2k2sinðhÞÀ12hkS iÀ1=2cosðhÞ
þ12hZ iÀ1=2k6sinðhÞÀ20S iþ1=2sinðhÞþ20S iÀ1=2sinðhÞ
B B
B B
B@
1
C C
C C
C A;
f iÀ1=2¼1
2k
ðÀS iÀ1=2þM iÀ1=2k4Þ;
g iÀ1=2¼cscðhÞ
k5
ðÀS iÀ1=2cosðhÞþS iþ1=2þZ iÀ1=2k5sinðhÞÞ;
r iÀ1=2¼S iÀ1=2þy iÀ1=2k6
k6;whereby h¼kh:
9
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>=
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>;
ð2:2Þ
Using the continuity condition of the third,fourth and?fth derivatives atðx iÀ1=2;y
iÀ1=2Þ,i.e.,
PðnÞiÀ1=2ðx iÀ1=2Þ¼PðnÞ
iþ1=2
ðx iÀ1=2Þwhere n¼3;4;5,we obtain:
À1
k3
sinðhÞS iÀ1=2À72
h2k5
cotðhÞS iþ1=2þ24
h2k5
cotðhÞS iÀ1=2
þ24
h2k5
cotðhÞS iþ3=2À1
k3
cosðhÞcotðhÞS iÀ1=2þ2
k3
cotðhÞS iþ1=2
À18
hk4
S iþ1=2þ3
hk4
S iÀ1=2À3
h
M iÀ1=2þ18
h
M iþ1=2þ36
h2k5
cscðhÞS iÀ1=2
À48
h2k5
cscðhÞS iþ1=2À24
h2
Z iÀ1=2þ120
h3k6
S iþ1=2À60
h3k6
S iÀ1=2À60
h3
y
iÀ1=2
þ120
h3
y
iþ1=2
þ36
h2k5
cscðhÞSþ3=2À60
h3
y
iþ3=2
À3M iþ3=2þ3
hk4
S iþ3=2þ24
h2
Z iþ3=2À60
h3k6
S iþ3=2
À1
k3
cscðhÞS iþ3=2
9
>>>
>>>
>>>
>>=
>>>
>>>
>>>
>>;
¼0;ð2:3Þ
À168
h3k5
cotðhÞS iþ3=2þ168
h3k5
168cotðhÞS iÀ1=2À24
h2k4
S iþ3=2þ24
h2
M iþ3=2
À192
h3k5
cscðhÞS iþ3=2À168
h3
Z iþ3=2þ360
h4k6
S iþ3=2þ360
h4
y
iþ3=2
þ24
h2k4
S iÀ1=2À24
h2
M iÀ1=2
þ192
h3k5
cscðhÞS iÀ1=2À168
h3
Z iÀ1=2À384
h3
Z iþ1=2À360
h4k6
S iÀ1=2À360
h4
y
iÀ1=2
9
>>=
>>;¼0;ð2:4Þ
1
k
cscðhÞS iÀ1=2þ1
k
cosðhÞcotðhÞS iÀ1=2À2
k
cotðhÞS iþ1=2À120
h3k4
S iþ1=2
þ60
h3k4
S iÀ1=2À60
h3
M iÀ1=2þ120
h3
M iþ1=2þ360
h4k5
cscðhÞS iÀ1=2À720
h4k5
cscðhÞS iþ1=2
À360
h4
Z iÀ1=2þ1440
h5k6
S iþ1=2À720
h5k6
S iÀ1=2À720
k5
y
iÀ1=2
þ1440
h5
y
iþ1=2
þ60
h3k4
S iþ3=2À60
h3
M iþ3=2þ360
h4k5
cscðhÞS iþ3=2þ360
h4
Z iþ3=2À720
h5k6
S iþ3=2
À720
h5
Y iþ3=2À720
h4k5
cotðhÞS iþ1=2þ360
h4k5
cotðhÞS iÀ1=2
þ360
h4k5
cotðhÞS iþ3=2þ1
k
cscðhÞS iþ3=2
9
>>>
>>>
>>>
>>=
>>>
>>>
>>>
>>;
¼0;ð2:5Þ
272Siraj-ul-Islam et al./Applied Mathematics and Computation195(2008)270–284
Numerical solution,artificial boundary conditions
Replacing i by iþ1;iÀ1;iþ2;iÀ2,in Eqs.(2.3)–(2.5)we get the following equations:
À1
k3sinðhÞS iþ1=2À72
h2k5
cotðhÞS iþ3=2þ24
h2k5
cotðhÞS iþ1=2
þ24
h2k5cotðhÞS iþ5=2À1
k3
cosðhÞcotðhÞS iþ1=2þ2
k3
cotðhÞS iþ3=2
À18
hk4S iþ3=2þ3
hk4
S iþ1=2À3M iþ1=2þ18M iþ3=2þ36
h2k5
cscðhÞS iþ1=2
À48
h2k5cscðhÞS iþ3=2À24
h2
Z iþ1=2þ120
h3k6
S iþ3=2À60
h3k6
S iþ1=2À60
h3
y
iþ1=2
þ120
h3
y
iþ3=2
þ36
h2k5cscðhÞS iþ5=2À60
h3
y
iþ5=2
À3M iþ5=2þ3
hk4
S iþ5=2þ24
h2
Z iþ5=2À60
h3k6
S iþ5=2
À1
k3cscðhÞS iþ5=2
9
>>>
>>>
>>>
>>>
=
>>>
>>>
>>>
>>>
;
¼0;ð2:6Þ
À1
k3sinðhÞS iÀ3=2À72
h2k5
cotðhÞS iÀ1=2þ24
h2k5
cotðhÞS iÀ3=2
þ24
h2k5cotðhÞS iþ1=2À1
k3
cosðhÞcotðhÞS iÀ3=2þ2
k3
cotðhÞS iÀ1=2
À18
hk4S iÀ1=2þ3
hk4
S iÀ3=2À3M iÀ3=2þ18M iÀ1=2þ36
h2k5
cscðhÞS iÀ3=2À48
h2k5
cscðhÞS iÀ1=2
À24
h2Z iÀ3=2þ120
h3k6
S iÀ1=2À60
h3k6
S iÀ3=2À60
h3
y
iÀ3=2
þ120
h3
y
iÀ1=2
þ36
h2k5
cscðhÞS iþ1=2
À60
h3y
iþ1=2
À3
h
M iþ1=2þ3
hk4
S iþ1=2þ24
h2
Z iþ1=2À60
h3k6
S iþ1=2À1
k3
cscðhÞS iþ1=2
9
>>>
>>>
>>=
>>>
>>>
>>;
¼0;ð2:7Þ
À1
k3sinðhÞS iþ3=2À72
h2k5
cotðhÞS iþ5=2þ24
h2k5
cotðhÞS iþ3=2
þ24
h2k5cotðhÞS iþ7=2À1
k3
cosðhÞcotðhÞS iþ3=2þ2
k3
cotðhÞS iþ5=2
À18
hk4S iþ5=2þ3
hk4
S iþ3=2À3M iþ3=2þ18M iþ5=2þ36
h2k5
cscðhÞS iþ3=2À48
h2k5
cscðhÞS iþ5=2
À24
h2Z iþ3=2þ120
h3k6
S iþ5=2À60
h3k6
S iþ3=2À60
h3
y
iþ3=2
þ120
h3
y
iþ5=2
þ36
h2k5
cscðhÞS iþ7=2
À60
h3y
iþ7=2
À3M iþ7=2þ3
hk4
S iþ7=2þ24
h2
Z iþ7=2À60
h3k6
S iþ7=2À1
k3
cscðhÞS iþ7=2
9
>>>
>>>
>>=
>>>
>>>
>>;
¼0;ð2:8Þ
À1
k3sinðhÞS iÀ5=2À72
h2k5
cotðhÞS iÀ3=2þ24
h2k5
cotðhÞS iÀ5=2
þ24
h2k5cotðhÞS iÀ1=2À1
k3
cosðhÞcotðhÞS iÀ5=2þ2
k3
cotðhÞS iÀ3=2
À18
hk4S iÀ3=2þ3
hk4
S iÀ5=2À3
h
M iÀ5=2þ18
h
M iÀ3=2þ36
h2k5
cscðhÞS iÀ5=2À48
h2k5
cscðhÞS iÀ3=2
À24
h2Z iÀ5=2þ120
h3k6
S iÀ3=2À60
h3k6
S iÀ5=2À60
h3
y
iÀ5=2
þ120
h3
y
iÀ3=2
þ36
h2k5
cscðhÞS iÀ1=2
À60
h3y
iÀ1=2
À3
h
M iÀ1=2þ3
hk4
S iÀ1=2þ24
h2
Z iÀ1=2À60
h3k6
S iÀ1=2À1
k3
cscðhÞS iÀ1=2
9
>>>
>>>
>>=
>>>
>>>
>>;
¼0;ð2:9Þ
À168
h3k5cotðhÞS iþ5=2þ168
h3k5
cotðhÞS iþ1=2À24
h2k4
S iþ5=2þ24
h2
M iþ5=2
À192
h3k5cscðhÞS iþ5=2À168
h3
Z iþ5=2þ360
h4k6
S iþ5=2þ360
h4
y
iþ5=2
þ24
h2k4
S iþ1=2À24
h2
M iþ1=2
þ192
h3k5cscðhÞS iþ1=2À168
h3
Z iþ1=2À384
h3
Z iþ3=2À360
h4k6
S iþ1=2À360
h4
y
iþ1=2
9
>>=
>>;¼0;ð2:10Þ
À168
h3k5cotðhÞS iþ1=2þ168
h3k5
cotðhÞS iÀ3=2À24
h2k4
S iþ1=2þ24
h2
M iþ1=2
À192
h3k5cscðhÞS iþ1=2À168
h3
Z iþ1=2þ360
h4k6
S iþ1=2þ360
h4
y
iþ1=2
þ24
h2k4
S iÀ3=2
À24
h2M iÀ3=2þ192
h3k5
cscðhÞS iÀ3=2À168
h3
Z iÀ3=2À384
h3
Z iÀ1=2À360
h4k6
S iÀ3=2À360
h4
y
iÀ3=2
9
>>=
>>;¼0;ð2:11Þ
À168
h3k5cotðhÞS iþ7=2þ168
h3k5
cotðhÞS iþ3=2À24
h2k4
S iþ7=2þ24
h2
M iþ7=2
À192
h3k5cscðhÞS iþ7=2À168
h3
Z iþ7=2þ360
h4k6
S iþ7=2þ360
h4
y
iþ7=2
þ24
h2k4
S iþ3=2
À24
h M iþ3=2þ192
h k
cscðhÞS iþ3=2À168
h
Z iþ3=2À384
h
Z iþ5=2À360
h k
S iþ3=2À360
h
y
iþ3=2
9
>>=
>>;¼0;ð2:12Þ
À168
h3k5cotðhÞS iÀ1=2þ168
h3k5
cotðhÞS iÀ5=2À24
h2k4
S iÀ1=2þ24
h2
M iÀ1=2
À192
h3k5cscðhÞS iÀ1=2À168
h3
Z iÀ1=2þ360
h4k6
S iÀ1=2þ360
h4
y
iÀ1=2
þ24
h2k4
S iÀ5=2
À24
h2M iÀ5=2þ192
h3k5
cscðhÞS iÀ5=2À168
h3
Z iÀ5=2À384
h3
Z iÀ3=2À360
h4k6
S iÀ5=2À360
h4
y
iÀ5=2
9
>>=
>>;¼0;ð2:13ÞSiraj-ul-Islam et al./Applied Mathematics and Computation195(2008)270–284273
Numerical solution,artificial boundary conditions
1 k sinðhÞS iþ1=2þ1
k
cosðhÞcotðhÞS iþ1=2À2
k
cotðhÞS iþ3=2À120
h3k4
S iþ3=2
þ60
h3k4
S iþ1=2À60
h3
M iþ1=2þ120
h3
M iþ3=2þ360
h4k5
cscðhÞS iþ1=2À720
h4k5
cscðhÞS iþ3=2
À360
h4
Z iþ1=2þ1440
h5k6
S iþ3=2À720
h5k6
S iþ1=2À720
h5
y
iþ1=2
þ1440
h5
y
iþ3=2
þ60
h3k4
S iþ5=2
À60
h3
M iþ5=2þ360
h4k5
cscðhÞS iþ5=2þ360
h4
Z iþ5=2À720
h5k6
S iþ5=2À720
h5
y
iþ5=2
À720
h4k5
cotðhÞS iþ3=2þ360
h4k5
cotðhÞS iþ1=2þ360
h4k5
cotðhÞS iþ5=2þ1
k
cscðhÞS iþ5=2
9
>>>
>>>
>>>
=
>>>
>>>
>>>
;
¼0;ð2:14Þ
1sinðhÞS iÀ3=2þ1cosðhÞcotðhÞS iÀ3=2À2cotðhÞS iÀ1=2À120
h3k4
S iÀ1=2
þ60
h3k4S iÀ3=2À60
h3
M iÀ3=2þ120
h3
M iÀ1=2þ360
h4k5
cscðhÞS iÀ3=2À720
h4k5
cscðhÞS iÀ1=2
À360
h4Z iÀ3=2þ1440
h5k6
S iÀ1=2À720
h5k6
S iÀ3=2À720
h5
y
iÀ3=2
þ1440
h5
y
iÀ1=2
þ60
h3k4
S iþ1=2
À60
h3M iþ1=2þ360
h4k5
cscðhÞS iþ1=2þ360
h4
Z iþ1=2À720
h5k6
S iþ1=2À720
h5
y
iþ1=2
À720
h4k5cotðhÞS iÀ1=2þ360
h4k5
cotðhÞS iÀ3=2þ360
h4k5
cotðhÞS iþ1=2þ1cscðhÞS iþ1=2
9
>>>
>>>
>>>
=
>>>
>>>
>>>
;
¼0;ð2:15Þ
1sinðhÞS iþ3=2þ1cosðhÞcotðhÞS iþ3=2À2cotðhÞS iþ5=2À120
h3k4
S iþ5=2
þ60
h3k4S iþ3=2À60
h3
M iþ3=2þ120
h3
M iþ5=2þ360
h4k5
cscðhÞS iþ3=2À720
h4k5
cscðhÞS iþ5=2
À360
h4Z iþ3=2þ1440
h5k6
S iþ5=2À720
h5k6
S iþ3=2À720
h5
y
iþ3=2
þ1440
h5
y
iþ5=2
þ60
h3k4
S iþ7=2
À60
h3M iþ7=2þ360
h4k5
cscðhÞS iþ7=2þ360
h4
Z iþ7=2À720
h5k6
S iþ7=2À720
h5
y
iþ7=2
À720
h4k5cotðhÞS iþ5=2þ360
h4k5
cotðhÞS iþ3=2þ360
h4k5
cotðhÞS iþ7=2þ1
k
cscðhÞS iþ7=2
9
>>>
>>>
>>>
=
>>>
>>>
>>>
;
¼0;ð2:16Þ
1 k sinðhÞS iÀ5=2þ1
k
cosðhÞcotðhÞS iÀ5=2À2
k
cotðhÞS iÀ3=2À120
h3k4
S iÀ3=2
þ60
h3k4
S iÀ5=2À60
h3
M iÀ5=2þ120
h3
M iÀ3=2þ360
h4k5
cscðhÞS iÀ5=2À720
h4k5
cscðhÞS iÀ3=2
À360
h4
Z iÀ5=2þ1440
h5k6
S iÀ3=2À720
h5k6
S iÀ5=2À720
h5
y
iÀ5=2
þ1440
h5
y
iÀ3=2
þ60
h3k4
S iÀ1=2
À60
h3
M iÀ1=2þ360
h4k5
cscðhÞS iÀ1=2þ360
h4
Z iÀ1=2À720
h5k6
S iÀ1=2À720=ðh5Þy iÀ1=2
À720
h5k6
cotðhÞS iÀ3=2þ360
h4k5
cotðhÞS iÀ5=2þ360
h4k5
cotðhÞS iÀ1=2þ1cscðhÞS iÀ1=2
9
>>>
>>>
>>>
=
>>>
>>>
>>>
;
¼0;ð2:17Þ
For the elimination of M iÀ5=2;M iÀ3=2;M iÀ1=2;M iþ1=2;M iþ3=2;M iþ5=2;M iþ7=2;Z iÀ5=2;Z iÀ3=2;Z iÀ1=2;Z iþ1=2;Z iþ3=2;Z iþ5=2 and Z i+7/2,Eqs.(2.3)–(2.16)are solved simultaneously.The values of Z’s and M’s obtained from these equa-tions are used in Eq.(2.17),which results,after lengthy calculations the following recurrence relation: y
iÀ7=2
À6y iÀ5=2þ15y iÀ3=2À20y iÀ1=2þ15y iþ1=2À6y iþ3=2þy iþ5=2
¼h6f aðS iÀ7=2þS iþ5=2ÞþbðS iÀ5=2þS iþ3=2ÞþcðS iÀ3=2þS iþ1=2Þþd S iÀ1=2g;ð2:18Þwhere
a¼1
120
À120
h6
À20
h3sin h
þ1
h sin h
þ120
h5sin h
;
b¼1À40
h3sin h À2cos hþ720
h6
À480
h5sin h
À240cos h
h5sin h
þ26þ40cos h
h3sin h
;
c¼1
120
100
h3sin h
þ67
h sin h
þ960cos h
h5sin h
þ840
h5sin h
À1800
h6
À52cos h
h sin h
þ80cos h
h3sin h
;
d¼12400
h6À960
h5sin h
À80
h3sin h
À132cos hÀ240cos h
h3sin h
þ52À1440cos h
h5sin h
; for i¼4;5;6;...;nÀ4;where n>5:9
>>>
>>>
>>>
>>>
=
>>>
>>>
>>>
>>>
;
ð2:19Þ
Here lim h!0ða;b;c;dÞ¼1
5040ð1;120;1191;2416Þ,which is the polynomial case as mentioned in Eq.(1.3).
274Siraj-ul-Islam et al./Applied Mathematics and Computation195(2008)270–284
Numerical solution,artificial boundary conditions
The local truncation error t i;i¼4;5;6;...;nÀ4,associated with the scheme developed in(2.18)is,
t i¼
C6h6yð6ÞiþC7h7yð7ÞiþC8h8yð8ÞiþC9h9yð9ÞiþC10h10yð10Þ
i
þC11h11yð11Þ
i
þC12h12yð12Þ
i
þC13h13yð13Þ
i
þC14h14yð14Þ
i
þOðh15Þ;
()
ð2:20Þ
C6¼ÀðÀ1þ2aþ2bþ2cþdÞ;
C7¼ðÀ1þ2aþ2bþ2cþdÞ
2
;
C8¼ÀðÀ3þ74aþ34bþ10cþdÞ
8
;
C9¼ðÀ7þ218aþ98bþ26cþdÞ
48
;
C10¼ð121À5ð3026aþ706bþ82cþdÞÞ
1920
;
C11¼ðÀ77þ13682aþ2882bþ242cþdÞ
3840
;
C12¼ð6227À21ð133274aþ16354bþ730cþdÞÞ
967680
;
C13¼ðÀ3353þ3ð745418aþ75938bþ2186cþdÞÞ
1935360
;
C14¼ÀðÀ4681þ6155426aþ397186bþ6562cþdÞ
10321920
:
9
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>=
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>;
ð2:21Þ
Thus for di?erent choices of a,b,c,d in scheme(2.18),methods of di?erent order are obtained.
The relation(2.18)gives nÀ6linear algebraic equations in n unknowns y
iþ1=2;i¼0;1;...;nÀ1.We
require six more equations,three at each end of the range of integration,for the direct computation of y i+1/2.These equations are developed by Taylor series and method of undetermined coe?cients.General form of boundary equations for the main scheme is as follows:
20y
À35y1=2þ21y3=2À7y5=2þy7=2þs y9=2
¼a1h2S00
0þb1h4SðivÞ
þh6a1SðviÞ
1=2
þb1SðviÞ
3=2
þc1SðviÞ
5=2
þd1SðviÞ
7=2
þe1SðviÞ
9=2
þf1SðviÞ
11=2
;ð2:22Þ
À10y0þ21y1=2À21y3=2þ15y5=2À6y7=2þy9=2
¼a2h2S00
0þb2h4SðivÞ
þh6a2SðviÞ
1=2
þb2SðviÞ
3=2
þc2SðviÞ
5=2
þd2SðviÞ
7=2
þe2SðviÞ
9=2
þf2SðviÞ
11=2
;ð2:23Þ
2y
À7y1=2þ15y3=2À20y5=2þ15y7=2À6y9=2þy11=2
¼a3h2S00
0þb3h4SðivÞ
þh6a3SðviÞ
1=2
þb3SðviÞ
3=2
þc3SðviÞ
5=2
þd3SðviÞ
7=2
þe3SðviÞ
9=2
þf3SðviÞ
11=2
:ð2:24Þ
The remaining three equations at the other end can be obtained from(2.22)–(2.24)by writing them in reverse order.The constants a i;b i;c i;d i;e i;f i;a i;b i and s are parameters which must be chosen so that the local truncation errors of(2.22)–(2.24)are identical with(2.18).
3.Numerical methods of di?erent orders
3.1.Second-order methods
a¼1
46080;b¼722
46080
;c¼10543
46080
;d¼23548
46080
in the main Eq.(2.18)gives
C6¼C7¼0;C8¼1 24
:
Siraj-ul-Islam et al./Applied Mathematics and Computation195(2008)270–284275
Numerical solution,artificial boundary conditions
The values of the coe?cients for these methods are:
a1¼7
;b
1
¼À
77
;a1¼
13005
;b1¼
9821
;c1¼
721
;d1¼
1
;e1¼0;f1¼0;
a2¼À3
;b
2
¼À
25
;a2¼À
9821
;b2¼
23547
;c2¼
10543
;d2¼
722
;
e2¼1
cd
;f
2
¼0;a3¼À
1
4
;b
3
¼À
1
192
;a3¼
721
cd
;b3¼
10543
cd
;c3¼
23548
cd
;
d3¼10543
;e3¼
722
cd
;f
3
¼
1
cd
;s¼0;cd¼46080:ð3:1Þ
3.2.Fourth-order methods
a¼À7
20þ3c
5
þ2d
5
;b¼17
20
À8c
5
À9d
10
in the main Eq.(2.18)gives C6¼C7¼C8¼C9¼0;C10¼151
120
À2cÀ3d
2
for arbitrary constants c,d.
The values of the coe?cients of boundary equations are given by
a1¼7
2
;b1¼À
77
96
;a1¼
2685830
cd
;b1¼
2704842
cd
;c1¼À
166502
cd
;d1¼
50582
cd
;
e1¼0;f1¼0;a2¼À3
;b
2
¼À
25
;a2¼
12161085
;b2¼À
35332965
;
c2¼64014771
cd
;d2¼À
41166795
cd
;e2¼
10321920
cd
;f
2
¼0;a3¼À
1
4
;b3¼À
1
192
;
a3¼51608615
cd
;b3¼À
193535007
cd
;c3¼
273530281
cd
;d3¼À
141926257
cd
;
e3¼10321920
cd
;f
3
¼
10321920
cd
;s¼0;cd¼10321920:ð3:2Þ
3.3.Sixth-order methods
a¼11Àd;b¼À47þ3d and c¼151À3d in the main Eq.(2.18)gives C6¼C7¼C8¼C9¼C10¼C11¼0;C12¼dÀ4153for arbitrary constant d.
The values of the coe?cients for these methods are:
a1¼7
2
;b1¼À
77
96
;a1¼
119271901
cd
;b1¼
128562861
cd
;c1¼À
18967984
cd
;
d1¼11537036
cd
;e1¼À
3523149
cd
;f
1
¼
483175
cd
;a2¼À
3
4
;b2¼À
25
64
;
a2¼80655078
cd
;b2¼
277312338
cd
;c2¼
77419113
cd
;d2¼
19393863
cd
;e2¼À
5790447
cd
;
f 2¼
920775
cd
;a3¼À
1
4
;b
3
¼À
1
192
;a3¼
3815581
cd
;b3¼
100731801
cd
;c3¼
255355121
cd
;
d3¼100719251
cd
;e3¼
3839346
cd
;f
3
¼
5140
cd
;s¼1;cd¼464486400:ð3:3Þ
3.4.Eight-order methods
a¼1;b¼41;c¼2189;d¼4153in the main Eq.(2.18)gives C6=C7=C8=C9=C10=C11=0,C12= 0,C13=0,C1450.Boundary equations for eight-order method are not constructed,however these equations can be obtained following the procedure adapted in the previous cases.
276Siraj-ul-Islam et al./Applied Mathematics and Computation195(2008)270–284
Numerical solution,artificial boundary conditions
4.Properties of the coe?cient matrix A0
Consider the following seven-band matrix A0of order n:
A0¼
À3521a00
21À21b00
a T
b T M b TR a TR
00b RÀ2121
00a R21À35
2
66
66
66
64
3
77
77
77
75
;ð4:1Þ
where a¼½À7;1;0;...;0 ;b¼½15;À6;1;0;...;0 .Here T denotes the operation of transposition and for a row vector v¼ðv1;v2;...;v nÞ;v R¼ðv n;v nÀ1;...;v1Þ.Further,a,b are(nÀ4)dimensional row vectors.The matrix M=(m i,j)is a seven-band matrix of order(nÀ4)given by
m i;j¼
À20;i¼j¼1;2;...;nÀ4;
15;j iÀj j¼1;
À6;j iÀj j¼2;
1;j iÀj j¼3;
0;j iÀj j>3:
8
>>>
>>>
><
>>>
>>>
>:
ð4:2Þ
In this section we?nd matrix AÀ1
0and k AÀ1
k
1
.The matrix AÀ1
is likewise of the form
AÀ1
0¼
e f c g h
j k d l m
c T
d T N d TR c TR
m l d R k j
h g c R f e
2
66
66
66
64
3
77
77
77
75
;ð4:3Þ
where c=(c i),d=(d i)are(nÀ4)dimensional row vectors.T and R have the same meaning as de?ned above
and e,f,g,h,j,k,l,m are scalars.The matrix N=(n i,j)is of order(nÀ4).Using A0AÀ1
0¼I n,we get the fol-
lowing equations:
ðiÞac TÀ35eþ21j¼1;
ðiiÞac TRÀ35hþ21m¼0;
ðiiiÞM c Tþa T eþa TR hþb T jþb TR m¼0;
ðivÞbc Tþ21eÀ21j¼0;
ðvÞbc TRþ21hÀ21m¼0;
ðviÞbd Tþ21fÀ21k¼1;
ðviiÞbd TRþ21gÀ21l¼0;
ðviiiÞad TÀ35fþ21k¼0;
ðixÞad TRÀ35gþ21l¼0;
ðxÞM d Tþa T fþa TR gþb T kþb TR l¼0;
ðxiÞMNþa T cþa TR c Rþb T dþb TR d R¼I nÀ4:9
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>=
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>;
ð4:4Þ
Here0denotes a(nÀ4)dimensional null column vector.
Siraj-ul-Islam et al./Applied Mathematics and Computation195(2008)270–284277
Numerical solution,artificial boundary conditions
In order to?nd the unknowns in above equations,we need to use MÀ1¼ð~m i;jÞ.From[10]it is given by
~m i;j¼
ðnÀ3ÀiÞðnÀ2ÀiÞðnÀ1ÀiÞjðjþ1Þðjþ2Þ
240ðnþ1ÞnðnÀ1ÞðnÀ2ÞðnÀ3Þ
Â
2iðiþ2ÞðjÀ1Þðjþ3ÞðnÀ3Þðnþ1Þ
Àðiþ1Þðiþ2ÞðjÀ2ÞðjÀ1Þnðnþ1ÞÀiðiþ1Þðjþ3Þðjþ4ÞðnÀ3ÞðnÀ2Þ
!
;i P j;
ðnÀ3ÀjÞðnÀ2ÀjÞðnÀ1ÀjÞiðiþ1Þðiþ2Þ
240ðnþ1ÞnðnÀ1ÞðnÀ2ÞðnÀ3Þ
Â
2jðjþ2ÞðiÀ1Þðiþ3ÞðnÀ3Þðnþ1Þ
Àðjþ1Þðjþ2ÞðiÀ2ÞðiÀ1Þnðnþ1ÞÀjðjþ1Þðiþ3Þðiþ4ÞðnÀ3ÞðnÀ2Þ
!
;i6j:
8
>>>
>>>
>>>
>>>
<
>>>
>>>
>>>
>>>
:
ð4:5Þ
Algebraic manipulation of Eqs.(4.4((i)–(v))yields the following expressions
e¼À16n4þ40n2À11
2880n
;
j¼À16n4À40n2þ9
960n
;
h¼À14n4þ20n2þ11
2880n
;
m¼À14n4À20n2À9
960n
;
9
>>>
>>>
>>>
>>=
>>>
>>>
>>>
>>;
ð4:6Þ
and
c i¼À
ð2nÀ2iÀ3Þ
ð16iþ24Þn3þð16i2þ48iþ36Þn2
Àð24i3þ108i2þ112iþ6Þnþ6i4þ36i3þ56i2þ6iÀ9 &'
; i¼1;2;...;nÀ4:
8
>><
>>:ð4:7ÞEqs.(4.4((vi)–(x))yield the following results:
f¼À16n4À40n2þ9
960n
;
k¼À16n4À120n2þ160nÀ51
320n
;
g¼À14n4À20n2À9
960n
;
l¼À14n4À60n2þ51
320n
;
9
>>>
>>>
>>>
>>=
>>>
>>>
>>>
>>;
ð4:8Þ
and
d i¼À
ð2nÀ2iÀ3Þ
ð16iþ24Þn3þð16i2þ48iþ36Þn2
Àð24i3þ108i2þ192iþ126Þnþ6i4þ36i3þ96i2þ126iþ51 &'
960n
; i¼1;2;...;nÀ4:
8
>><
>>:ð4:9ÞFrom Eq.(4.4(xi)),we have
N¼MÀ1þU;ð4:10Þwhere
U¼ÀMÀ1ða T cþb T dþb TR d Rþa TR c RÞ:ð4:11Þ278Siraj-ul-Islam et al./Applied Mathematics and Computation195(2008)270–284
Numerical solution,artificial boundary conditions
Hence U =(u i ,j )is given by:
u i ;j ¼12880ðn À3Þðn À2Þn ðn 2À1ÞÀ12i 512j 5À30j 4ðn À3Þþ20j 3ðn 2À8n þ12Þþ30j 2ð2n 2À9n þ9ÞÀ2j ðn 4À5n 3À15n 2þ75n À60ÞÀ3ðn 4À5n 3þ5n 2þ5n À6Þ&'þ30i 4ðn À3Þ12j 5þj 4ð88À32n Þþ12j 3ð2n 2À14n þ19Þþ8j 2ð9n 2À35n þ31ÞÀ2j ð2n 4À7n 3À20n 2þ79n À54ÞÀ3ð2n 4À7n 3þ4n 2þ7n À6Þ8><>:9>=>;þ3ðn 4À5n 3þ5n 2þ5n À6Þ153þ12j 5þj 4ð90À60n ÞÀ480n þ360n 2À48n 4þ180j 2ð2n 2À5n þ3Þþ20j 3ð4n 2À18n þ15ÞÀ8j ð4n 4À75n 2þ135n À60Þ8>>><>>>:9>>>=>>>;þ60i 2ðn À3ÞÀ6j 5ð2n À3Þþ4j 4ð9n 2À35n þ31Þþ9ðn À1Þ2ð2n 3À5n 2Àn þ6ÞÀ6j 3ð5n 3À38n 2þ81n À51Þþj 2ðÀ6n 4À69n 3þ420n 2À679n þ338Þþj ð12n 5À64n 4þ41n 3þ238n 2À413n þ186Þ8>>><>>>:9>>>=>>>;À20i 312j 5ðn 2À8n þ12ÞÀ18j 4ð2n 3À20n 2þ61n À57Þþ18j 2ð5n 4À53n 3þ195n 2À294n þ153Þþ4j 3ð8n 4À103n 3þ490n 2À959n þ645Þþ3ðÀ4n 6þ38n 5À125n 4þ145n 3þ39n 2À183n þ90ÞÀ4j ð2n 6À19n 5þ49n 4þ67n 3À489n 2þ711n À315Þ8>>>>>><>>>>>>:9>>>>>>=>>>>>>;þ4i 6j 5ðn 4À5n 3À15n 2þ75n À60ÞÀ15j 4ð2n 5À13n 4þn 3þ139n 2À291n þ162Þþ20j 3ð2n 6À19n 5þ49n 4þ67n 3À489n 2þ711n À315Þþ15j 2ð12n 6À100n 5þ233n 4þ115n 3À1127n 2þ1425n À558ÞÀ64n 8À20n 7À55n 6þ530n 5À1134n 4þ600n 3þ825n 2À1110n þ360 À2j 8n 8À40n 7À200n 6þ1825n 5À4230n 4þ1650n 3þ6480n 2À8595n þ3150 :8>>>>>>>>>>>>><>>>>>>>>>>>>>:9>>>>>>>>>>>>>=>>>>>>>>>>>>>;26666666666666666666666666666666666666666666666666666666666643
777777777777777777777777777777777777777777777777777777777775ð4:12Þ
We summarize the results of this section in the following lemma.
Lemma 4.1.The matrix A 0is nonsingular with A À10<0and if A À10¼ð~
a i ;j Þ,then ~a i ;j are given by ((4.6)–(4.10)).In order to ?nd k A À
10k 1,we ?rst ?nd the sum of elements in the ith row of A À10.The sum of elements in the
ith row of M À1is given by,À1720i ði þ1Þði þ2Þðn Ài À1Þðn Ài À2Þðn Ài À3Þð4:13Þand the sum of the elements of i th row of U is:À1960ðn À4Þð4i þ6Þn 4þð16i þ24Þn 3Àð8i 3þ34i 2þ52i þ29Þn 2þð4i 4À12i 3À104i 2À192i À116Þn Èþ18i 4þ108i 3þ258i 2þ288i þ120É:ð4:14Þ
Let S i designate the sum of the elements in the ith row of A À10in modulus,then S i ¼P n j ¼1j ~a i ;j j ¼ÀP n j ¼1~
a i ;j is given by
S i ¼12880ð12i À6Þn 5þðÀ20i 3þ30i 2þ20i À15Þn 3þð12i 5À30i 4À40i 3þ90i 2þ16i À24Þn À4i 6Èþ12i 5þ20i 4À60i 3À16i 2þ48i É:ð4:15ÞSiraj-ul-Islam et al./Applied Mathematics and Computation 195(2008)270–284279
Numerical solution,artificial boundary conditions
Consider S i as a function of the real variable i.It turns out that S i is maximum for i¼1
2ðnþ1Þ.The in?nity
norm of AÀ1
must be restricted to an integral value of i and therefore
k AÀ1
0k
1
¼max
i
S i6Sðnþ1Þ=2:
Here equality will hold only if n is odd.We substitute i¼1ðnþ1Þinto(4.15)to get S(n+1)/2.Hence,
k AÀ1
0k
1
6S
ðnþ1Þ=2
¼
61n6þ175n4þ259n2þ225
46080
¼
61ðbÀaÞ6þ175h2ðbÀaÞ4þ259h4ðbÀaÞ2þ225h6
46080h6
¼OðhÀ6Þ:ð4:16Þ
5.Convergence
Clearly,the family of numerical methods is described by the Eqs.(2.18),boundary equations and the solu-
tion vector Y¼½y
1=2;y
3=2
;...;y
nÀ1=2
T,T denoting transpose,is obtained by solving a non-linear algebraic sys-
tem of order n which has the form
A0YÀh6B fðx;YÞÀC¼0:ð5:1ÞNow we investigate the error analysis of the seven-degree non-polynomial spline method described in Section 2.To do so we let,y=(y(x i+1/2)),Y=(y i+1/2),C=(c i),T=(t i),and E=(e i+1/2),be n-dimensional column vectors.Here e i+1/2=y(x i+1/2)Ày i+1/2is the discretization error for i¼4;...;nÀ4.Thus,we can write our method in the matrix form:
The matrices B and C are given by
B¼
a1b1c1d1e1f1
a2b2c2d2e2f2
a3b3c3d3e3f3
a b c d b a
..
..
.
..
.
..
.
.
..
..
.
..
.
..
.
.
..
..
.
..
.
..
.
.
a b d c b a
f3e3d3c3b3a3
f2e2d2c2b2a2
f1e1d1c1b1a1
2
66
66
66
66
66
66
66
66
66
66
64
3
77
77
77
77
77
77
77
77
77
77
75
:ð5:2Þ
The column vector C is given by
C¼
À20A0þa1h2A2þb1h4A4
10A0þa2h2A2þb2h4A4
À2A0þa3h2A2þb3h4A4
...
...
...
À2B0þa3h2B2þb3h4B4
10B0þa2h2B2þb2h4B4
À20B0þa1h2B2þb1h4B4
2
66
66
66
66
66
66
66
66
66
66
64
3
77
77
77
77
77
77
77
77
77
77
75
:ð5:3Þ
280Siraj-ul-Islam et al./Applied Mathematics and Computation195(2008)270–284
Numerical solution,artificial boundary conditions
The vector y¼½yðx1=2Þ;yðx3=2Þ;...;yðx nÀ1=2Þ T satis?es
A0yÀh6B fðx;yÞÀCÀT¼0;
where T¼½t1;t2;...;t n T is the vector of local truncation errors,and a conventional convergence analysis shows that the norm of the vector
E¼yÀY
satis?es:
k E k
16
ðbÀaÞ6
46080Àð61ðbÀaÞþ175h2ðbÀaÞþ259h4ðbÀaÞþ225h6ÞBÃFÃ
ÂC6h6V6þC7h7V7þC8h8V8þC9h9V9þC10h10V10þC11h11V11þC12h12V12þ...
ÈÉ
;ð5:4Þ
where V i¼max a6x6b j d i yðxÞ
i
j for i¼1;2;...,B*=k B k,and Fümax a6x6b j o f j.
The order of convergence of the numerical method is,thus p,if C p+6is the?rst non-vanishing constant on the right hand side of(2.20)provided
FÃ<
46080
ð61ðbÀaÞþ175h2ðbÀaÞþ259h4ðbÀaÞþ225h6Þ
:ð5:5Þ
6.Numerical results
The numerical methods outlined in the previous sections were tested on the following non-linear and linear problems.
6.1.Non-linear problems
Problem6.1
D6yðxÞ¼eÀx y2ðxÞ;0<x<1ð6:1Þsubject to the boundary conditions:
yð0Þ¼D2ð0Þ¼D4ð0Þ¼1;
yð1Þ¼D2ð1Þ¼D4ð1Þ¼e:
The theoretical solution for this problem is
yðxÞ¼e x:
The results of maximum absolute errors for this problem are listed in Table1.
Problem6.2
D6yðxÞ¼20exp½À36yðxÞ À40ð1þxÞÀ6;0<x<1ð6:2Þwith boundary conditions:
yð0Þ¼0;D2yð0Þ¼À1
6
;D4yð0Þ¼À1;yð1Þ¼
1
6
ln2;D2yð1Þ¼À
1
24
;D4yð1Þ¼À
1
16
ð6:3Þ
Table1
Maximum absolute errors corresponding to Problem(6.1)
n Our sixth-order method(3.3)[15]
10 3.577·10À13 1.299·10À4
Siraj-ul-Islam et al./Applied Mathematics and Computation195(2008)270–284281
Numerical solution,artificial boundary conditions
for which the theoretical solution is
yðxÞ¼1
6
lnð1þxÞ:ð6:4Þ
The results of maximum absolute errors for this problem are listed in Table2.
6.2.Linear problems
Problem6.3
D6yðxÞþxy¼Àð24þ11xþx3ÞexpðxÞ;06x61ð6:5Þwith boundary conditions:
yð0Þ¼0¼yð1Þ;D2yð0Þ¼0;D2yð1Þ¼À4e;D4yð0Þ¼À8;D4yð1Þ¼À16e:ð6:6ÞThe analytical solution of the above di?erential equation is
yðxÞ¼xð1ÀxÞexpðxÞ:ð6:7ÞThe maximum errors(in absolute value)for di?erent orders are shown in Table4.
Problem6.4
D6yðxÞþyðxÞ¼6½2x cosðxÞþ5sinðxÞ ;À16x61ð6:8Þwith boundary conditions:
yðÀ1Þ¼0¼yð1Þ;D2yðÀ1Þ¼À4cosðÀ1Þþ2sinðÀ1Þ;
D2yð1Þ¼4cosð1Þþ2sinð1Þ;D4yðÀ1Þ¼8cosðÀ1ÞÀ12sinð1Þ;
D4yð1Þ¼À8cosð1ÞÀ12sinð1Þ:ð6:9ÞThe analytical solution of the above di?erential equation is
yðxÞ¼ðx2À1ÞsinðxÞ:ð6:10ÞThe maximum errors(in absolute value)are listed in Table5.
The interval06x61was divided into n equal subintervals each of width h=2Àm with m=3–5so that n=7,15,31respectively.The value of k yÀY k,where Y is numerical solution,was computed for each value of n.The results for all second-,fourth-,and sixth-order methods are given in Tables1–5.In Table1the new method(2.18)is applied to Problem6.1and the results are compared with Wazwaz[15],where as in Table2 the new method is applied to Problem6.2and the results are compared with Boutayeb and Twizell[5].The Table2
Maximum absolute errors corresponding to Problem(6.2)
n Our sixth-order method(3.3)[5]
7 4.55·10À7 2.41·10À7 15 5.96·10À97.56·10À10 31 2.68·10À11 2.25·10À11 Table3
Maximum absolute errors corresponding to Problem(6.2)
N Second-order method(3.1)Fourth-order method(3.2)Sixth-order method(3.3) 7 2.3·10À3 3.0·10À3 4.55·10À7
15 3.4·10À4 1.38·10À4 5.96·10À9
31 1.54·10À4 4.30·10À6 2.68·10À11
282Siraj-ul-Islam et al./Applied Mathematics and Computation195(2008)270–284
Numerical solution,artificial boundary conditions
Siraj-ul-Islam et al./Applied Mathematics and Computation195(2008)270–284283 Table4
Maximum absolute errors corresponding to Problem(6.3)
N Second-order method(3.1)Fourth-order method(3.2)Sixth-order method(3.3) 7 2.99·10À2 2.39·10À4 1.15·10À9
157.00·10À3 3.43·10À6 3.95·10À12
31 1.80·10À37.34·10À8 4.41·10À11
Table5
Maximum absolute errors corresponding to Problem(6.4)
N Second-order method(3.1)Fourth-order method(3.2)Sixth-order method(3.3) 7 1.23·10À2 6.97·10À4 1.78·10À8
15 2.80·10À3 3.60·10À5 1.37·10À10
31 1.6·10À37.44·10À79.45·10À11
Table6
Maximum absolute errors corresponding to Problem(6.4)and results of[2]
n[2]Sixth-order method(3.3) 8 1.04·10À49.2·10À9
16 6.58·10À68.45·10À11
32 6.86·10À7 2.75·10À11
64 1.51·10À7 1.97·10À9
new methods of di?erent orders are applied to Problems6.2–6.4and the results are shown in Tables3–5 respectively.Performance of the new method is better than Wazwaz[15]and it is comparable in case of Boutayeb and Twizell[5].Akram and Siddiqi[2]solved Problem6.4with the same solution but di?erent boundary conditions.Their results are reported in Table6.This table shows improved performance of our method.
7.Conclusion
Non-polynomial spline functions are used to develop a class of numerical methods for approximate solu-tion of sixth-order linear and non-linear boundary-value problems,with two-point boundary conditions.Sec-ond-,Fourth-and Sixth-order convergence is obtained.It has been shown that the relative errors in absolute value con?rm the theoretical convergence.
References
[1]R.P.Agarwal,Boundary-Value Problems for Higher-Order Di?erential Equations,World Scienti?c,Singapore,1986.
[2]G.Akram,S.S.Siddiqi,Solution of linear sixth-order boundary-value problems using non-polynomial spline technique,Appl.Math.
Comput.1(2006)708–720.
[3]P.Baldwin,A localized instability in a Bernard layer,Appl.Anal.24(1987)117–156.
[4]P.Baldwin,Asymptotic estimates of the eigenvalues of a sixth-order boundary-value problem obtained by using global-phase integral
methods,Phil.Trans.R.Soc.Lond.A322(1987)281–305.
[5]A.Boutayeb,E.H.Twizell,Numerical methods for the solution of special sixth-order boundary-value problems,put.
Math.45(1992)207–223.
[6]S.Chandrasekhar,Hydrodynamic and Hydromagnetic Stability,Clarendon Press,Oxford1961(Reprinted:Dover Books,New York,
1981).
[7]M.M.Chawala,C.P Katti,Finite di?erence methods for two-point boundary-value problems involving higher-order di?erential
equations,BIT19(1979)27–33.
[8]M.E.Gamel,J.R.Cannon,tourA.I Zayed,Sinc-Galerkin method for solving linear sixth-order boundary-value problems,Math.
Comput.73(247)(2003)1325–1343.
Numerical solution,artificial boundary conditions
284Siraj-ul-Islam et al./Applied Mathematics and Computation195(2008)270–284
[9]G.A.Glatzmaier,Numerical simulations of stellar convective dynamics III:at the base of the convection zone,Geophys.Astrophys.
Fluid Dyn.31(1985)137–150.
[10]W.D.Hoskins,P.J.Ponzo,Some properties of a class of band matrices,put.26(118)(1972)390–400.
[11]S.S.Siddiqi,E.H.Twizell,Spline solutions of linear sixth-order boundary-value problems,put.Math.45(1996)295–304.
[12]J.Toomre,J.R.Zahn,tour,E.A.Spiegel,Stellar convection theory II:single-mode study of the second convection zone in A-type
stars,Astrophys.J.207(1976)545–563.
[13]E.H.Twizell,A second order convergent method for sixth-order boundary-value problems,in:R.P.Agarwal,Y.M.Chow,S.J.
Wilson(Eds.),Numerical Mathematics,Birkhhauser Verlag,Basel,1988,pp.495–506(Singapore).
[14]E.H.Twizell,Boutayeb,Numerical methods for the solution of special and general sixth-order boundary-value problems,with
applications to Benard layer eigenvalue problems,Proc.R.Soc.Lond.A.431(1990)433–450.
[15]A.M.Wazwaz,The numerical solution of sixth-order boundary-value problems by modi?ed decomposition method,Appl.Math.
Comput.118(2001)311–325.
正在阅读:
Non-polynomial splines approach to the solution of sixth-order boundary-value problems07-24
城市生活英文作文精选5篇04-01
2022-2022年小学数学北京六年级竞赛测试测试试题【2】含答案考点04-10
铁路《技规》、《行规》培训考试题库12-25
13.3.1 第1课时 等腰三角形的性质03-09
求职自荐信12-11
八年级生物上册 4.4.3《人类染色体与性别决定》教案1 济南版05-04
基于MATLAB的改进型基本蚁群算法05-23
道路验收检测计划书07-22
员工获奖感言四篇02-11
- 1Twin binary sequences a non-redundant representation for general non-slicing floorplan
- 2A Solution to Symmetric Teleparallel Gravity
- 3boundary scan技术资料
- 4Fluctuations in the Bose Gas with Attractive Boundary Condit
- 5Orthogonal polynomial method and odd vertices in matrix mode
- 6Orthogonal polynomial method and odd vertices in matrix models
- 7EVOLVINGBUILDINGBLOCKSFORDESIGNUSINGGENETIC ENGINEERING A FORMAL APPROACH.
- 8EVOLVINGBUILDINGBLOCKSFORDESIGNUSINGGENETIC ENGINEERING A FORMAL APPROACH.
- 9Singular or non-Fermi liquids
- 10Facing Problems英语作文
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- polynomial
- approach
- solution
- boundary
- problems
- splines
- sixth
- order
- value
- Non
- 八下名著《海底两万里》内容简介及练习题
- 四六级英语高级句型与加分句型
- 16秋华师《国家税收A》在线作业
- 工程资料归档要求
- 中国硝基复合肥产业调查及未来五年投资战略研究报告
- 装修(防水 瓷砖 砖的挑选 贴砖工艺 改水)注意事项小结
- 沿河土家族自治县网约车从业资格考试模拟试卷
- 第十一章世界贸易组织
- 初二数学一对一辅导计划
- 中国近代史纲要试题及答案(全套)
- 排列组合概率与算法
- GS8640V32T-250中文资料
- 班班通软件功能详解
- 现代免疫分析方法最新进展
- 【物理】5.5《电能的输送》示范教案(新人教版选修3-2)
- 一种非线性控制方法的PFC技术
- Unit10_I‘d_like_some_noodles导学案
- 昆明古滇文化商贸城工程项目
- 教师争优创先学习心得(精选多篇)
- 论斜视手术的治疗