公共专科经济数学基础1形成性考核册答案(完整版)

更新时间:2023-09-15 00:21:01 阅读量: 资格考试认证 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

一、填空题 1.

A.函数f (x)在点x0处有定义 解B.limf(x)?A,但A?f(x0)

x?x0:原式

limx?sinxxx?0?___________________.答案:1

22?0?02x=lim?? C.函数f (x)在点x0处连续 x??43?0?033??2D.函数f (x)在点x0处可微 xx2?3x2?5?x2?1,2.设f(x)???k,?x?0x?0,在

5.若f(A.

1x)?x,则f?(x)?( B ).

1(5)limsin3xsin5x:

x?01 B.? C.

1解

x?0处连续,则k?________.答案1

3.曲线y?x+1在(1,1)的切线方程

是 . 答案:y=1/2X+3/2 4.设函数f(x?1)?x2?2x?5,则

f?(x)?____________.答案2x

5.

f(x)?xsinx,

f??(π)?___.

_答案: _??2_2 _

二、单项选择题

1. 当x???时,下列变量为无穷小量的

是( D )

A.ln(1?x) B.

x2x?1

?1C.ex2 D.

sinxx

2. 下列极限计算正确的是( B ) A.limxlimxx?0x?1 B.?1

x?0?xC.limxsin1x?1

x?0D.limsinx?1

x??x3. 设y?lg2x,则dy?( B ).

A.12xdx B.1xln10dx

C.

ln10xdx D.

1xdx

4. 若函数f (x)在点x0处可导,则( B )是错误的.

x2x2xD.?1x

三、解答题 1.计算极限

2(1)limx?3x?2x?1x2 ?1解:

原式

=lim(x?1)(x?2)_=limx?2_=

x?_1(x?1)(x?1)x?1x?11?21?1??12

2(2)limx?5x?6x?2x2 ?6x?8解:

式=

lim(x?2)(x?3)=

x?2(x?2)(x?4)limx?3x?4?2?32?4?1x?22

(3)lim1?x?1x?0x

解:

=

lim(1?x?1)(1?x?1)=

x?0x(1?x?1)lim1?x?1=x?1)lim1=

x?0x(1?x?0?1?x?1?12

2(4)lim2x?3x?53x2?2x?4

x??1

=sin3xlimsin3xlim3x33x?03xx?0sin5x?5?5?sin5x?315?1?5xlimx?05x

(6)limx2?4

x?2sin(x?2)解

lim(x?2)(x?2)x?2sin(x?2)?limxx?2(x?2)?limx?2s 2

.设函数

??xsin1x?b,x?0f(x)???a,x?0, ?sinx??xx?0问:(1)当a,b为何值时,f(x)在x?0处极限存在?

(2)当a,b为何值时,f(x)在x?0处连续.

解:(1)因为f(x)在x?0处有极限存在,则有

lim)?limx?0?f(xx?0?f(x)

又 limx?0?f(x)?limx?0?(xsin1x?b)?b limf(x)?limsinx?1x?0? x?0?x即 b?1

所以当a为实数、

b?1时,f(x)在x?0

处极限存在.

(2)因为f(x)在x?0处连续,则有 limf(x)?limf(x)?f(0)

x?0?dy?y?dx?(ae

1axsinbx?beaxcosbx)dx解

sin1x:

y??(2x)??(x?121)??(x6)??(2)?12x?32x?0?(6)y?e解

1?xx,求dy

?2 1sin1xln2(1x)???16x?56?0又 f(0)?a,结合(1)可知a?b?1 所以当a?b?1时,f(x)在x?0处连续.

3.计算下列函数的导数或微分: (1)y?x231y??(ex)??(x2)??ex()??x2x2

1133?1xe 3??2?x22x11?2exx2sinxln2()()??xcosxx212?32111?32?16x?56?2?logxx2求y? x?2,

2 dy?y?dx?(??2321x2)dx

?2sin21xln2解:y??2x?2ln2?(2)y?解

1xln2

(7)y?cos解

x?e?xxcosx?x?16x?56

,求dy

4.下列各方程中y是x的隐函数,试求y?ax?bcx?d,求y?

y??(

x)??(e?x2)???s或d?y2 sx2x(xc)??e(?x)???。 (1)x222xix?2xeo?x2y??(ax?b)?(cx?d)?(ax?b)(cx?d)?(cx?d)2?y?xy?3x?1,求dy

(8)y?sin=

nx?sinnx,求y?

a(cx?d)?(ax?b)c(cx?d)2 =

ad?bc(cx?d)2解:方程两边同时对x求导得:

22(((xx)??c(ysnx)??(nx(xy)?)??s(3x)??(s1s)?

y??[(3)y?解

?12x)]??(n?1nnx)??n(x)n?113x?5,求y?

?n(sinx)cosx?ncosnx

2x?2yy??y?xy??3?0

(9)y?ln(x?1?x),求y?

?322y??[(3x?5) (4)y?解

1]???12(3x?5)?12 y??:

y?2x?32y?x

?1(3x? 5)???解

32(3x?5) dy?y?dx?y?2x?3dx

x?xe,求y?

xxy??x?

x11?x2(x?1?x)??x?21122y?x?)(1?((1?x)2)xy2(2)sin(x?y)?e?4x,求y? 1?x解:方程两边同时对x求导得:

y??(x2)??(xe)??

(5)y?e解

axy??(e)?sax12x?12?e?xex=

cos(x?y)?(x?y)??exy?(xy)??41x?sinbx,求dy

1?x2(1?121(1?x)22?1?2x)? 1x?1?x1?x1?xxycos(x?y)?(1?y?)?e?(y?xy?)?42?x?1?x22?12bx?eaxax(axbx)??e(ax)?s(10)y?ax2ibx?e1?x??csbx(bx)?xcotx132

2xin,

oixynsny?(cos(x?y)?xe=ae

ax)?4?cos(x?y)?sinbx?becosbx

求y?

2

y??4?cos(x?y)?yecos(x?y)?xexyxy

P?(x)??11?x2.

(2)解

?(1?x)x2dx

5.求下列函数的二阶导数: (1)y?ln(1?x),求y?? 解:y??

2(二)单项选择题

1. 下列函数中,( D )是xsinx2的原函数.

?3x13x()dx?()?c?eln3?1e

11?x2(1?x)??22x1?x2 A.

1cosx2 B.2cosx2

解:原式?22

C.-2cosx D.-

12?1?2x?xx2dx

cosx

2

22

y???(2x1?x)?2x(0?2x)2?2x1?x2)??2((1?x2 2. 下列等式成立的是()2? C ). (1?x2)2

A.sinxdx?d(cosx) (2)y?1?x(1)

B.lnxdx?d(1,求y??及y??)

xx1解

C.2xdx?d(2xln2)

113y??(1?x)??(x?2)??(x2)???1D.1x2x?2?x?112dx?dx

2x 3. 下列不定积分中,常用分部积分法计算的

是( C ).

53y???(?13?1x?12)???13?5A1.1?3cos(23x??1)dx?, 22x?2?(?2x2)?2?(??12)x2?4x2?4x22=1 B.?x1?x2dx C.?xsin2xdx

D.

?x1?x2dx

《经济数学基础》形成性考核册(二)

4. 下列定积分中积分值为0的是( D ). (一)填空题 A

12xdx?2 1.若

?f(x)dx?2x?2x?c??1,则

d15?B.

C.x?16?1x????cosxdx?0 f(x)?2ln2?2.

?D.

sin??xdx?0

2. ?(sinx)?dx?sinx?c?. 5. 下列无穷积分中收敛的是( B ).

??13. 若

?f(x)dx?F(x)?c,

A.

?11xdx?? B.?1x2dx 2x?xf(1?x2)dx??1dx??F(1?x)?c

C. D.2???0e?1sinxdx

e4.设函数

d2解答题

dx?ln(11?x)dx?0

(三)1.计算下列不定积分

05. 若

P(x)??1xdt,则

3x1?t2(1

?exdx 3

13??(x-12?2x2?x2)dx1x2?43x2?25

?235x2?c2(3)

?x?4x?2dx

(4)?11?2xdx

??(x?2)(x?2)x?2dx?12x2?2x?c 解:原式??12?11?2xd(1-2x)

5)

?x2?x2dx

(6)

?sinxxdx 解:原式?12?2?x2d(2?x2)

解:原式 ?2?sinxdx

13 ?23(2?x)2?c

??2cosx?c

(7)?xsinx2dx

(8)?ln(x?1)dx

??2?xdc解:原式?xln(x?1)?

?x?1dx

xx?o s12解:原式?2xdsin2x ?02?2ABT=________. 答案:?72

3. 设A,B均为n阶矩阵,则等式

?21?lnx?4?2?2e13 2(A?B)?A?2AB?B22成立的充

??2xcos??2cosxx2?4?cosxxd()22?cx ?xsin2x1?20?4sin2?1?20分必要条件是 .答案:AB?BA

?4sin2xd(2x)

4. 设A,B均为n阶矩阵,(I?B)可逆,22?xln(x?1)??(1?1x?1)dx

?xln(x?1)?x?ln(x?1)?c

2.计算下列定积分 (1)?21?xdx?112(2)?ex1x2dx 解:原式??1?1(1?x)dx??21(x?1)dx21解:原式???11exd(x)

??12112(1?x)?1?2(x?1)221?2?12?521??ex21

1?e?e2e3(

3)

?11x1?lnxdx?(4)

?2xcos2xdx

03解:原式?2?e1d(ln121?lnxx?1)

1??cos2x2140??2(5)

?exlnxdx

1(6)?4(1?x?x0e)dx 解:原式

?12?e1lnxdx2 解:原式??4dx??4xde?x 00?11e2x2lnxe1?2?1xdx ?122e?1214e?

4?14(e2?1)?4?xe?x4?x0??40ed(?x)?4?4e?4?e?4?1

?5?5e?4

《经济数学基础》形成性考核册(三)

(一)填空题

?104?5?1.设矩阵A???3?232??,则??216?1??A的

a23?_____.答案:3

2.设A,B均为

3阶矩阵,且

A?B??3,则4

A?BX?X的

X?_______._答案:___(I_?_B)?1A

?100?5. 设矩阵A???020??,则??00?3??A?1?________.答案:????100???010? ?2??1??00??3??(二)单项选择题 1. 以下结论或等式正确的是( C ).

A.若A,B均为零矩阵,则有A?B B.若AB?AC,且A?O,则

B?C

C.对角矩阵是对称矩阵

D.若A?O,B?O,则AB?O 2. 设A为3?4矩阵,B为5?2矩阵,

且乘积矩阵ACBT有意义,则CT为

( A )矩阵.

A.2?4 B.4?2

C.3?5 D.5?3

3.

设A,_B均为n阶可逆矩阵,则下列等式__成立的是( C ). `

A.(A?B)?1?A?1?B?1,

B.

(A?B)?1?A?1?B?1

__

C.AB?BA D.AB?BA 4. 下列矩阵可逆的是( A ).

A.

?1?0???0220??1?B.100?1??1?1 C.?3?3.?3 ?3?23???A?11???0?11??

?5?=1????31511?22??0 ??14??设

阵?2?55.求矩阵A???1??4秩。 解

?5?8?7?1354124221??3?的0??3?:

?1??1??1,B?1???1???02113??2?1???2?5?5?835241??3?1?,?3??????0?123???0?D.?11???22? ?

?222?5. 矩阵A???333??的秩是??444??( B ).

A.0 B.1 C.2 D.3

三、解答题

1.计算

(1)??21??01??=?1?2??53????10????35? ?(2)?02??11?0???0?3????00???0???00? ??3???(3)??1254??0???1?=?0? ??2??2.

?123???124??24???122????143?????61??1?32????23?1????3?2 解

?123???124??24???122????143?????61??1?32????23?1????3?2

?,求AB。

A???1?7420???????1123?解 因为AB?AB

?4??1?7420??2???1????5?23?1232?5?8543??3???1????2??4???1?A?111?112?(?1)2?3??(2?1)?2523?221?????????4?? 0?110?10?12?4?1123??

123123?1?7420?B?112?0-1-1?0 ??027?15?63??011011?09?5?21??27?15?63?所以AB?AB?2?0?0

?0??2???3????3??124??4???3????3?????2??,?3????4.设矩阵A???2?1??,确定?的??110???1?7420???09?5?21??值,使r(A)最小。 ?00000? ??解

?00000??124??124?∴r(A)?2。 ???2?1??2?,?3?????????110???6.求下列矩阵的逆矩阵:

?110????2?1???1?32?5??2???1????1??124?(1)?A????301?? 0???3???1????2???????0?1?4????11?1??7????0??4?7??解

??1?32100??3???2???7????124???4???AI???5?????7??19????301010???07???12?44? 9??11?1001??0?????712??0??????0?50??641??0???2???1??37????09?4?7?当?????3????1?????1??4时,r(A)???2?3?27?达到最小值。?

5

本文来源:https://www.bwwdw.com/article/zx2h.html

Top