Generalized Calabi-Yau manifolds
更新时间:2023-05-14 04:41:01 阅读量: 实用文档 文档下载
- generalized推荐度:
- 相关推荐
A geometrical structure on even-dimensional manifolds is defined which generalizes the notion of a Calabi-Yau manifold and also a symplectic manifold. Such structures are of either odd or even type and can be transformed by the action of both diffeomorphis
arXiv:math/0209099v1 [math.DG] 10 Sep 2002GeneralizedCalabi-YaumanifoldsNigelHitchinMathematicalInstitute24-29StGilesOxfordOX13LBUKhitchin@maths.ox.ac.ukFebruary1,2008AbstractAgeometricalstructureoneven-dimensionalmanifoldsisde nedwhichgener-alizesthenotionofaCalabi-Yaumanifoldandalsoasymplecticmanifold.Suchstructuresareofeitheroddoreventypeandcanbetransformedbytheactionofbothdi eomorphismsandclosed2-forms.Inthespecialcaseofsixdimen-sionswecharacterizethemascriticalpointsofanaturalvariationalproblemonclosedforms,andprovethatalocalmodulispaceisprovidedbyanopensetineithertheoddorevencohomology.1Introduction
WeintroduceinthispaperageometricalstructureonamanifoldwhichgeneralizesboththeconceptofaCalabi-Yaumanifold–acomplexmanifoldwithtrivialcanonicalbundle–andthatofasymplecticmanifold.Thisispossiblyausefulsettingforthebackgroundgeometryofrecentdevelopmentsinstringtheory,butthiswasnottheoriginalmotivationfortheauthor’s rstencounterwiththisstructure:itaroseinsteadaspartofaprogramme(followingthepapersforcharacterizingspecialgeometryinlowdimensionsbymeansofinvariantfunctionalsofdi erentialforms.Inthisrespect,thedimensionsixisparticularlyimportant.Thispaperhastwo
A geometrical structure on even-dimensional manifolds is defined which generalizes the notion of a Calabi-Yau manifold and also a symplectic manifold. Such structures are of either odd or even type and can be transformed by the action of both diffeomorphis
aims,then: rsttointroducethegeneralconcept,andthentolookatthevariationalandmodulispaceprobleminthespecialcaseofsixdimensions.
Webeginwiththede nitioninalldimensionsofwhatwecallgeneralizedcomplexmanifoldsandgeneralizedCalabi-Yaumanifolds1.Therearetwonovelfeaturesin-volved.The rstistheuseoftheCourantbracket,ageneralizationoftheLiebracketonsectionsofthetangentbundleTtosectionsofthebundleT⊕T ,andwhichcomestousfromthestudyofconstrainedmechanicalsystems[7].ThesecondistheB- eld(thisistheterminologyofthephysicists,butitisassuredlythesamemathematicalobject).Itturnsoutthatthegeometrywedescribetransformsnaturallynotonlyunderthedi eomorphismgroup,butalsobytheactionofaclosed2-formB.
Tode neageneralizedcomplexmanifoldweimitateonede nitionofaK¨ahlerman-ifold.Insteadofaskingforthe(1,0)vectorstobede nedbyanisotropicsubbundleE T C,whosespaceofsectionsisclosedundertheLiebracket,weinsteadaskforasubbundleE (T⊕T ) C,isotropicwithrespecttotheinde nitemetriconT⊕T de nedbythenaturalpairingbetweenTandT ,andmoreoverwhosespaceofsectionsisclosedundertheCourantbracket.Forthede nitionofagen-eralizedCalabi-Yaumanifoldweasknotforaclosed(n,0)-form,butinsteadforaclosedcomplexform ofmixeddegreeandofacertainalgebraictype.ThistypeisobtainedbythinkingofaformasaspinorfortheorthogonalvectorbundleT⊕T andthenrequiringthespinortobepure.Thewell-knowncorrespondencebetweenmaximallyisotropicsubspacesandpurespinorsmeansthatsuchaformde nesasubbundleE (T⊕T ) CandweshowthatsectionsofEareclosedundertheCourantbracketifd =0.Therearetwoclassesofsuchstructures,dependingonwhetherthedegreeof isevenorodd.
Therearetwomotivatingexamples:anordinaryCalabi-Yaumanifoldandasym-plecticmanifold.ACalabi-Yaumanifoldwithholomorphic(n,0)form de nesageneralizedCalabi-Yaustructurebytaking = .Asymplecticmanifoldwithsymplecticformωde nesageneralizedCalabi-Yaustructurebytaking =expiω.Transformingwithaclosed2-formBmeansreplacing by(expB)∧ .Incertaincases,asweshallsee,theB- eldinterpolatesbetweensymplecticandCalabi-Yaustructures.
ThespecialroleofsixdimensionsarisesfromthefactthatthegroupR ×Spin(6,6)hasanopenorbitineitherofits32-dimensionalspinrepresentations.Moreoveraspinorinthisopensetistherealpartofacomplexpurespinor .Wecande nefromthisalgebraaninvariant“volume”functionalde nedonrealforms,andweconsidercriticalpointsofthisfunctionalontheclosedformsinacohomologyclass
A geometrical structure on even-dimensional manifolds is defined which generalizes the notion of a Calabi-Yau manifold and also a symplectic manifold. Such structures are of either odd or even type and can be transformed by the action of both diffeomorphis
ineithertheevenoroddpartofH (M,R)foracompact6-manifoldM.IftheylieintheopenorbitateachpointofM,thesecriticalpointsarepreciselygeneralizedCalabi-Yaumanifolds.Imitating[10]wethenshowthat,underacertaincondition,alocalmodulispaceforthesestructuresisanopensetinthecorrespondingcohomology¯-lemmaforgroupofevenorodddegree.Therequiredconditionisimpliedbythe
complexmanifoldsandthestrongLefschetztheoremforsymplecticones.Weshouldnotethatthisapproachforcesustoconsidertwostructurestobeequivalentiftheyarerelatednotjustbythegroupofdi eomorphismsisotopictotheidentity,butbyitsextensionbytheactionofexactB- elds.
Thereisaspecialpseudo-K¨ahlerstructureonthemodulispaceinducedasacon-sequenceofthisapproach.Intheevencaseitisthestructuredeterminedbytheintersectionform–“withoutquantumcorrections”inthephysicists’language.
Finally,byreturningtotheoriginsoftheCourantbracket,weobservethatthewholestructurecanbetwistedbyaclosedthree-form,ormorenaturallybyagerbewithconnection.
TheauthorwishestothanktheUniversidadAut´onoma,MadridandtheProgramaCat`edraFundaci´onBancodeBilbaoyVizcayaforsupportduringpartoftheprepa-rationofthispaper.
2TheCourantbracket
Weshallbeginbysettingupthelessfamiliarpiecesofdi erentialgeometry.The rstisthebracketoperationintroducedbyT.Courant(forp=1)in[7].Thisisanoperationde nedonpairs(X,ξ)=X+ξofavector eldXandap-formξonamanifoldM.TakeX+ξ,Y+η∈C∞(T⊕ΛpT )andde ne
[X+ξ,Y+η]=[X,Y]+LXη LYξ 1
A geometrical structure on even-dimensional manifolds is defined which generalizes the notion of a Calabi-Yau manifold and also a symplectic manifold. Such structures are of either odd or even type and can be transformed by the action of both diffeomorphis
Example:Considerthecasep=0,sothatξisafunctionf.Wethenhave
[X+f,Y+g]=[X,Y]+Xg Yf.
ThisistheusualLiebracketonS1-invariantvector elds
X+f
A geometrical structure on even-dimensional manifolds is defined which generalizes the notion of a Calabi-Yau manifold and also a symplectic manifold. Such structures are of either odd or even type and can be transformed by the action of both diffeomorphis
3.2Spinors
ConsidertheexterioralgebraΛ V andtheactionofv+ξ∈V⊕V onitde nedby
(v+ξ)· =ι(v) +ξ∧
Wehave
(v+ξ)2· =ι(v)(ξ∧ )+ξ∧ι(v) =(ι(v)ξ) = (v+ξ,v+ξ)
whichmakesΛ V intoamoduleovertheCli ordalgebraofV⊕V .Thisde nesthespinrepresentationofthegroupSpin(V⊕V )ifwetensorwiththeone-dimensionalspace(ΛnV)1/2.Splittingintoevenandoddformswethenhavethetwoirreduciblehalf-spinrepresentations:
S+=ΛevV (ΛnV)1/2
S =ΛodV (ΛnV)1/2
IfwenowtakeB∈Λ2V so(V⊕V ),thenexponentiatingBtoexpBintheLiegroupSpin(V⊕V )givesfrom(3)thefollowingactiononspinors:
expB( )=(1+B+1(3)
A geometrical structure on even-dimensional manifolds is defined which generalizes the notion of a Calabi-Yau manifold and also a symplectic manifold. Such structures are of either odd or even type and can be transformed by the action of both diffeomorphis
3.3Purespinors
Given ∈S±,weconsideritsannihilator,thevectorspace
E ={v+ξ∈V⊕V :(v+ξ)· =0}
Sincev+ξ∈E satis es
0=(v+ξ)·(v+ξ)· = (v+ξ,v+ξ)
weseethatv+ξisnullandsoE isisotropic.Aspinor forwhichE ismaximallyisotropic(i.e.hasdimensionequaltodimV)iscalledapurespinor.AnytwopurespinorsarerelatedbyanactionofSpin(V⊕V ).Tobepureisanon-linearconditionwhich,inhigherdimensions,isquitecomplicated.Herearesomeexamples:Examples:
1.Thespinor1∈Λ0V ΛevV ispure,since(v+ξ)·1=ξandsotheannihilatorisde nedbyξ=0,themaximalisotropicsubspaceV V⊕V
2.ApplyinganyelementofSpin(V⊕V )to1givesanotherpurespinor.InparticularwecanexponentiateB∈Λ2V sothat
expB=1+B+1
A geometrical structure on even-dimensional manifolds is defined which generalizes the notion of a Calabi-Yau manifold and also a symplectic manifold. Such structures are of either odd or even type and can be transformed by the action of both diffeomorphis
¯=(T⊕T ) C E⊕E
thespaceofsectionsofEisclosedundertheCourantbracket
Eisisotropic
Therealversionofthisintegrability–amaximallyisotropicsubbundleofT⊕T withsectionsclosedunderCourantbracket–iscalledaDiracstructurein[7].AsymplecticorPoissonstructureonMde nesoneofthese.
OurmainconcerninthispaperwillbethenotionofageneralizedCalabi-Yaumanifoldwhichwede nenext.Gualtieri’sthesis[9]willcontainmoreresultsongeneralizedcomplexmanifolds.
De nition2AgeneralizedCalabi-YaustructureonasmoothmanifoldMofdi-mension2mis
aclosedform ∈ ev Cor od CwhichisacomplexpurespinorfortheorthogonalvectorbundleT⊕T andsuchthat
, ¯ =0ateachpoint.
ThefollowingpropositionshowsthatageneralizedCalabi-Yaumanifoldisaspecialcaseofageneralizedcomplexmanifold.
Proposition1If(M, )isageneralizedCalabi-YaumanifoldthentheannihilatorE (T⊕T ) Cde nesageneralizedcomplexstructureonM.
Proof:Wesawfromthealgebraintheprevioussectionthattheannihilatorofapurespinorismaximallyisotropic,soE certainlysatis esthelastconditioninthede nitionofgeneralizedcomplexstructureandhasdimension2m.Moreover,since , ¯ =0,weknowthat¯0=E ∩E ¯=E ∩E
andso¯ =(T⊕T ) C.E ⊕E
ItremainstoshowthatsectionsofE areclosedundertheCourantbracket.SupposeX+ξandY+ηannihilate .Thenfrom(3)
ι(X) +ξ∧ =0=ι(Y) +η∧
A geometrical structure on even-dimensional manifolds is defined which generalizes the notion of a Calabi-Yau manifold and also a symplectic manifold. Such structures are of either odd or even type and can be transformed by the action of both diffeomorphis
Usingd =0andLX=dι(X)+ι(X)dweobtain
ι([X,Y]) =
=
=
=
=
=
=
=LX(ι(Y) ) ι(Y)LX LX(η∧ ) ι(Y)d(ι(X) ) LXη∧ η∧LX +ι(Y)d(ξ∧ ) LXη∧ η∧d(ι(X) )+ι(Y)(dξ∧ ) LXη∧ +η∧d(ξ∧ )+ι(Y)(dξ∧ ) LXη∧ +η∧dξ∧ +(ι(Y)dξ)∧ +dξ∧ι(Y) LXη∧ +η∧dξ∧ +(ι(Y)dξ)∧ dξ∧η∧
LXη∧ +(ι(Y)dξ)∧
1
( LXη∧ +(ι(Y)dξ)∧ +LYξ∧ (ι(X)dη)∧ )
1
12d(ι(X)η)]∧ andso,byskewsymmetry,ι([X,Y]) =2=[ι(Y)dξ+
=[LYξ LXη
m!
whichisnon-vanishing.Sincedω=0, =expiωde nesageneralizedCalabi-Yaumanifold.
ωm
A geometrical structure on even-dimensional manifolds is defined which generalizes the notion of a Calabi-Yau manifold and also a symplectic manifold. Such structures are of either odd or even type and can be transformed by the action of both diffeomorphis
3.Itisclearthattheproductoftwogeneralizedcomplexmanifoldsisageneralizedcomplexmanifold.Similarlyif(M1, 1),(M2, 2)aretwogeneralizedCalabi-Yaumanifolds,thenifp1,p2denotetheprojectionsfromtheproductM1×M2,
=p
1 1∧p2 2
de nesageneralizedCalabi-Yaustructureontheproduct.Theproductofanoddtypewithaneventypeisoddandtheproductoftwooddortwoeventypesiseven.
4.2TheB- eld
IfBisarealclosed2-form,and(M, )ageneralizedCalabi-Yaumanifoldthen
(expB) =(1+B+1
A geometrical structure on even-dimensional manifolds is defined which generalizes the notion of a Calabi-Yau manifold and also a symplectic manifold. Such structures are of either odd or even type and can be transformed by the action of both diffeomorphis
MultiplybytheconstanttkandwehaveafamilyofgeneralizedCalabi-Yaustructuresde nedby1 t=tkexp((ω1+iω2)/t)=tk+...+
A geometrical structure on even-dimensional manifolds is defined which generalizes the notion of a Calabi-Yau manifold and also a symplectic manifold. Such structures are of either odd or even type and can be transformed by the action of both diffeomorphis
whereβisacomplexclosed1-formandγacomplexclosed3-form.Theform mustde neacomplexpurespinorforT⊕T .HerewearelookingatthespinrepresentationS ofthecomplexi cationSpin(8,C)ofSpin(4,4).Ineightdimensionshowever,wehavethespecialfeatureoftriality–thevectorrepresentationandthetwospinrepresentationsarerelatedbyanouterautomorphismofSpin(8,C).ForusthismeansinparticularthatthetwospinspacesS±havethesamestructureasthevectorrepresentation–an8-dimensionalspacewithanon-degeneratequadraticform.Thepurespinorsarethenjustthenullvectorsinthisspace.
Itfollowsthat ispureif
0= , =β∧γ.
Wealsohavethecondition
¯∧γ=00= , ¯ =β∧γ¯+β(7)(6)
whichshowsinparticularthatβisnowherevanishing.Thusfrom(6),γ=β∧νforsome2-formν,well-de nedmoduloβ.Using(7)again,
¯∧(ν νβ∧β¯)=0(8)
andfromthiswecanseethatlocally,thestructureonMisde nedbyamapf:M→C(wheredf=β)de ninga brationoveranopenset,asymplecticstructure νandaB- eld νonthe bres.Aglobalexampleistheproductofanoddandaneven2-dimensionalgeneralizedCalabi-Yaumanifold.Tischler’stheorem[17]showsthatacompactmanifoldwithanon-vanishingclosed1-form bresoverthecircleandmoregenerallythatwithtwosuchformsliketherealandimaginarypartsofβ,itmust breoverT2.Inparticularthe rstBettinumberb1(M)isnon-zero.Forastructureofeventypewehave
=c+β+γ
foraconstantc,closed2-formβand4-formγ.For tobepureweneed
0= , =2cγ β2.
Ifc=0,thisgivesγ=β2/2c.Thecondition0= , ¯ thengives
cc¯¯+c0=cγ¯ ββ¯γ=
A geometrical structure on even-dimensional manifolds is defined which generalizes the notion of a Calabi-Yau manifold and also a symplectic manifold. Such structures are of either odd or even type and can be transformed by the action of both diffeomorphis
whichisthetransformofasymplecticstructure.
Ifc=0,thepurityconditionisβ2=0,which(asintheequationoftheKleinquadric)meansthatβislocallydecomposable:β=θ1∧θ2.Wealsohave
¯=θ1∧θ2∧θ¯1∧θ¯20= , ¯ =β∧β
sothatθ1,θ2spanthespaceof(1,0)-formsforanalmostcomplexstructureandβisoftype(2,0).Sincedβ=0thestructureisintegrableandwehaveanordinaryCalabi-Yaumanifold.InthecompactcasethismustbeaK3surfaceoratorus.Theremaining4-formγistheresultofapplyinga(notnecessarilyclosed)B- eldtoβ.
4.5Structuregroupsandgeneralizations
Ourde nitionofageneralizedcomplexstructureyieldsacomplexstructureonT⊕T compatiblewithaninde nitemetric.ThisisareductionofthestructuregroupofT⊕T toU(m,m) SO(2m,2m),togetherwithanintegrabilitycondition.
Therearefurtherreductionspossiblewithinthissetting.FirstconsiderthecaseofageneralizedCalabi-Yaumanifold.Heretheform hastheproperty0= , ¯ so
1
A geometrical structure on even-dimensional manifolds is defined which generalizes the notion of a Calabi-Yau manifold and also a symplectic manifold. Such structures are of either odd or even type and can be transformed by the action of both diffeomorphis
SU(2,2)→SO(4,2)
Sp(1,1)→SO(4,1)
Sp(1)×Sp(1)→SO(4)
ThetwospinorsstabilizedbySU(2,2)aretherealandimaginarypartofapurespinor–thecomplexclosedform ofageneralizedCalabi-Yaustructure.ThegroupSp(1,1)isobtainedbyrequiringthreeformstobeclosedgivingageneralizedhyperk¨ahlerstructureandthelastoneinvolvesfourclosedforms.ThemodulispaceofsuchstructuresonaK3surfacehasbeenstudiedbyNahmandWendland[16].5
5.1Thesix-dimensionalcaseThequarticform
Weshallbegintostudythealgebrabyworkingoverthecomplexnumbers,usingSpin(12,C)insteadofSpin(6,6)andacomplexsix-dimensionalvectorspaceV.Inthisdimensionthebilinearformoneachofthe32-dimensionalspinspacesS±isskewsymmetric,andsothesearesymplecticrepresentations.ThelinearalgebraweshallbedoingisinsensitivetothechoiceoforientationwhichdistinguishesS+fromS ,butforvariousreasonstheisomorphism
S+~=ΛevV (Λ6V)1/2
willbeausefultool,soweshall xS=S+.
AsymplecticactionofaLiegroupGonavectorspaceSde nesamomentmap
µ:S→g
givenby
µ(ρ)(a)=1
A geometrical structure on even-dimensional manifolds is defined which generalizes the notion of a Calabi-Yau manifold and also a symplectic manifold. Such structures are of either odd or even type and can be transformed by the action of both diffeomorphis
1.Chooseabasisvectorνfor(Λ6V)1/2andconsiderthemomentmapforSpin(12,C)actingonSatν.Ifa=A+B+βinthedecompositionso(V⊕V )=EndV⊕Λ2V ⊕Λ2V,then
σ(a)ν,ν = (trA/2)ν+B∧ν,ν =0
sothemomentmapvanishesonνandhenceonanypurespinor.
2.Nowtake
Inthiscase
σ(a)ρ0,ρ0 = trA
andwe ndthat
µ(ρ0)(v+ξ)=( v+ξ)/4.
Themomentmapalsode nesaninvariant:
De nition3LetµbethemomentmapforthespinrepresentationSofSpin(12,C).Then
q(ρ)=trµ(ρ)2
isaninvariantquarticfunctiononS.
Thisquartichasacloserelationshipwithpurespinors:
Proposition2Forρ∈S,q(ρ)=0ifandonlyifρ=α+βwhereα,βarepurespinorsand α,β =0.Thespinorsα,βareuniqueuptoordering.
Proof:Considerasintheexampleρ0=ν+ν 1∈S:νispurewithisotropicsubspaceVandν 1withsubspaceV .
Nowsupposethatαandβarepure.Because,uptoaconstant,Spin(12,C)actstransitivelyonpurespinors,wecanassumeα=kν.If α,β =0,weseefromthede nitionofthebilinearformthatβ6=0(wewriteαpforthedegreepcomponentofα).ByexponentiatinganelementofΛ2VintheLiealgebra,weobtainagroup withβ 4=0andβ 6=0.elementwhichleavesν xedbuttakesβtoanelementβ arepureandsothereisa6-dimensionalisotropicspaceofvectorsButβandhenceβ =0.Lookingatthedegree5term,thismeansthatv+ξsatisfying(v+ξ)·β 6+ξ∧β 4=ι(v)β 6sinceβ 4=0.Butthenv=0andthe6-dimensional0=ι(v)β = ν 1andα+βcanbetransformedtospaceisV .Thusβ
kν+ ν 1.
(9)ρ0=ν+ν 1∈(Λ6V)1/2⊕(Λ6V )(Λ6V)1/2 S.
A geometrical structure on even-dimensional manifolds is defined which generalizes the notion of a Calabi-Yau manifold and also a symplectic manifold. Such structures are of either odd or even type and can be transformed by the action of both diffeomorphis
From(9)weseethatq(ρ0)=3,andsobyinvarianceandhomogeneity
q(α+β)=q(kν+ ν 1)=3k2 2=3 α,β 2(10)
Inparticular,thequarticinvariantisnon-zeroforthesumoftwopurespinorswith α,β =0.
Atρ0=ν+ν 1wesawthatthemomentmapwasv+ξ→( v+ξ)/4.Henceµ(ρ0)2=I/16.If =kν+ ν 1thenµ(ρ)2=k2 2I/16andso
µ(ρ)2=1
A geometrical structure on even-dimensional manifolds is defined which generalizes the notion of a Calabi-Yau manifold and also a symplectic manifold. Such structures are of either odd or even type and can be transformed by the action of both diffeomorphis
Nowsupposethatρisreal.Proposition2saysthattherearecomplexpurespinorsα,βwithρ=α+β.Realityo erstwopossibilities:αandβarebothreal,orβ=α¯.Ifα,βarerealthensois α,β andsofrom(10)q(ρ)>0.Ifβ=α¯then α,α¯ isimaginaryandq(ρ)<0.FromProposition2,wededuce:
Proposition3Letρ∈Sbearealspinorwithq(ρ)<0.Thenρistherealpartofapurespinor with , ¯ =0.
Thesearepreciselythepurespinorsweneedinthede nitionofageneralizedCalabi-Yaumanifold.
WhenthevectorspaceVisreal,theopenset
U={ρ∈S:q(ρ)<0}
isactedontransitivelybytherealgroupR ×Spin(6,6).Weshallstudynextthegeometryofthisspace,followingcloselytheparalleldiscussionofthreeformsinsixdimensions,asin[10].Infact,whatwearedoinghereisadirectgeneralizationofthatwork.
5.2Thesymplecticgeometryofthespinrepresentation
De nition4OntheopensetU Sforwhichq(ρ)<0,de nethefunctionφ,homogeneousofdegree2,by φ(ρ)=
A geometrical structure on even-dimensional manifolds is defined which generalizes the notion of a Calabi-Yau manifold and also a symplectic manifold. Such structures are of either odd or even type and can be transformed by the action of both diffeomorphis
thederivativeDX:U→EndSde nesanintegrablealmostcomplexstructureJonU
Proof:Sinceiφ(ρ)= , ¯ ,di erentiatingalongacurveinU,
˙= ,˙ .iφ˙ ¯ + , ¯
Uptoascalar,thepurespinorsformanorbit,soateachpoint
˙=c +σ(a)
forsomec∈Canda∈so(12,C).Butthen
,˙ =c , + σ(a) , =0(12)
wherethe rsttermiszerobecausethebilinearformisskewandthesecondbecause,aswesawabove,ing(12)
˙˙ = ,˙ =iφ. ,¯ ˙+ ¯˙ ¯ + , ¯
Butthiscanbewrittenas˙= ρφ ,ρ˙
whichmeansthattheHamiltonianvector eldofφisX(ρ)=ρ .
Thecircleactioninrealtermsis
ρ→cosθρ+sinθρ
sothederivativeatθ=0isρ ,thevector eldX.
Sinceρ+iρ =2 ,ρ iρ= 2i andso
ρ = ρ.
Thus,asadi eomorphismofU,X X= idandthederivativeJ=DXthussatis esJ2=DX DX= Iandde nesanalmostcomplexstructureonU.Theproofthatitisintegrableisthesameasin[10]or[13]andholdsgenerallyforspecial(pseudo)-K¨ahlermanifolds,ofwhichUisanexample.
A geometrical structure on even-dimensional manifolds is defined which generalizes the notion of a Calabi-Yau manifold and also a symplectic manifold. Such structures are of either odd or even type and can be transformed by the action of both diffeomorphis
5.3ThecomplexstructureJ
ThecomplexstructureJonU Sturnsouttobeimportantinthesubsequentdevelopment.RecallthatUisahomogeneousspaceofSpin(6,6)×R underthespinrepresentation.Thisisalinearaction,soeverytangentvectortotheopensetUatρisoftheformσ(a)ρforsomeaintheLiealgebra.Weshow
Proposition5Onthetangentvectorσ(a)ρ,thecomplexstructureJisde nedby
J(σ(a)ρ)=σ(a) ρ.
Thusthe(0,1)vectorsareoftheformσ(a) whereρ= + ¯.
Proof:Asρvariesσ(a)ρde nesavector eldYonU.IfaisintheLiealgebraofSpin(6,6),thensinceφisinvariantandXistheHamiltonianvector eldofφ,wehave[X,Y]=0.ThecentralfactorR inthegroupactsbyrescaling,soifa∈Rthevector eldYistheEulervector eld–thepositionvectorρ.Nowφishomogeneousofdegree2butsoisthesymplecticform,andthismeansthat[X,Y]=0also.SinceJ=DXand[X,Y]=0,
J(Y)=DX(Y)=DY(X)=σ(a)X=σ(a) ρ
whichprovestheproposition.
AlthoughJisde nedonthevectorspaceS,itde nesacomplexstructureonthetensorproductofSwithanyvectorspaceandinparticularΛev/odV ,whichiswhereweshallmakeuseofit.
Examples:
1.TaketheCalabi-Yaucasewhere = isa(3,0)form.Thespaceof(0,1)-vectorsinΛodV CisfromProposition5theimageof undertheactionoftheLiealgebraso(12,C)+C,andusingthedecompositionso(V⊕V )=EndV⊕Λ2V ⊕Λ2V,thisisthe16-dimensionalspaceofΛodV Cgivenby
Λ3,0⊕Λ2,1⊕Λ3,2⊕Λ1,0.
2.Inthesymplecticcase =expiω,andweobtainforthe(0,1)vectorsthe16-dimensionalspaceofΛevV Cgivenby
expiωC⊕expiω(Λ2 C).
A geometrical structure on even-dimensional manifolds is defined which generalizes the notion of a Calabi-Yau manifold and also a symplectic manifold. Such structures are of either odd or even type and can be transformed by the action of both diffeomorphis
6
6.1ThevariationalproblemThevolumefunctional
Wede nedabovethefunctionφonU Λev/odV (Λ6V)1/2.Untwistingbytheone-dimensionalvectorspace(Λ6V)1/2,thereisacorrespondingopenset,whichwestillcallU,inΛev/odV and,sinceφishomogeneousofdegree2,aninvariantfunction
φ:U→Λ6V .
ThebilinearsymplecticformnowtakesvaluesinΛ6V alsoandsothederivativeatρofφisalinearmapfromΛev/odV toΛ6V whichcanbewritten
Dφ(ρ˙)= ρ ,ρ˙ .(13)
SupposeMisacompactoriented6-manifold,andρisaform,eitheroddoreven,butingeneralofmixeddegree,whichliesateachpointofMintheopensubsetUdescribedabove.Following[11]weshallcallsuchaformstable.Wecanthende neavolumefunctional V(ρ)=φ(ρ).
M
Theorem6Aclosedstableformρ∈ ev/od(M)isacriticalpointofV(ρ)initscohomologyclassifandonlyifρ+iρ de nesageneralizedCalabi-YaustructureonM.
Proof:Takethe rstvariationofV(ρ):
δV(ρ˙)=Dφ(ρ˙)= ρ ,ρ˙
MM
from(13).Thevariationiswithina xedcohomologyclasssoρ˙=dα.Thus
δV(ρ˙)= ρ ,dα =σ( ρ)∧dα
MM
from(4).ByStokes’theoremthisis
±dσ( ρ)∧α=±σ(dρ )∧α=± dρ ,α
MMM
sincefromitsde nitionσcommuteswithd.
A geometrical structure on even-dimensional manifolds is defined which generalizes the notion of a Calabi-Yau manifold and also a symplectic manifold. Such structures are of either odd or even type and can be transformed by the action of both diffeomorphis
Thusthevariationvanishesforalldαifandonlyif
dρ =0.
Acriticalpointthereforeimpliesd =0where2 =ρ+iρ .FromDe nition2wehaveageneralizedCalabi-Yaumanifold.
6.2TheHessian
WeshallinvestigatetheHessianofthefunctionalVatacriticalpointnext.SinceXistheHamiltonianvector eldforφ,andJ=DXitisclearthatJisessentiallythesecondderivativeD2φ.Moreprecisely,wehave
D2φ(ρ˙1,ρ˙2)= DXρ˙1,ρ˙2 = Jρ˙1,ρ˙2
Thus,atacriticalpointofV,theHessianHis
H(ρ˙1,ρ˙2)=D2φ(ρ˙1,ρ˙2)= Jρ˙1,ρ˙2
MM(14)(15)
wherewearerestrictingthevariationtotakeplaceina xedcohomologyclass,sothatρ˙1,ρ˙2areexactforms.
BecauseoftheinvariancepropertiesofthefunctionalV,anycriticalpointliesonanorbitofcriticalpoints,sotheHessianisnevernon-degenerate.Whatisthenaturalgroupofinvariants?
FirstlyVisinvariantunderdi eomorphismsandthosewhicharehomotopictotheidentitypreservethedeRhamcohomologyclassofρandsotheclassofformsforthevariationalproblem.TheintegrandisalsoinvariantunderthefullgroupSpin(6,6),soexponentiatingsectionsofthecomponentsoftheLiealgebraisomorphictoΛ2T andΛ2Tgivefurtherinvariantactions.Ourvariationalproblemisbasedonρbeingclosedhowever,andthisconditionwillnotbepreservedundertheactionofsectionsofΛ2T.TheactionofB∈C∞(Λ2T )istheB- eldaction
ρ→expB∧ρ.
WhenBisclosed,thistakesclosedformstoclosedforms,butto xthecohomologyclassweneedBingeneraltobeexact,forthenB=dξand
(expdξ)∧ρ=ρ+d(ξ∧ρ+1
A geometrical structure on even-dimensional manifolds is defined which generalizes the notion of a Calabi-Yau manifold and also a symplectic manifold. Such structures are of either odd or even type and can be transformed by the action of both diffeomorphis
liesinthesamecohomologyclass.
ThenaturalsymmetrygroupoftheproblemisthenthegroupextensionG
2exact→G→Di 0(M).
WewanttodeterminewhenageneralizedCalabi-Yaumanifoldisde nedaccordingtoTheorem6byaMorse-Bottcriticalpoint–non-degeneratetransversetotheorbitsofthegroupG.Weconsiderthetangentspacetothisorbitnext.
Theactionofavector eldonρisjusttheLiederivative
LXρ=dι(X)ρ+ι(X)dρ=d(ι(X)ρ)
sinceρisclosed.Thein nitesimalactionofanexactB- eldB=dξis
dξ∧ρ=d(ξ∧ρ).
ThusthetangentstoanorbitofGatρareforms
ρ˙=d(ι(X)ρ+ξ∧ρ)=d((X+ξ)·ρ)(16)
Becauseoftheinvarianceofthefunctional,ifαisexactandβ=d(ι(X)ρ+ξ∧ρ),thenH(α,β)=0.Supposeconverselythattheexactformβ=dτhasthepropertythatH(α,β)=0forallexactformsα=dψ,thenfrom(15), Jdψ,dτ =± ψ,dJdτ =0
MM
forallψsothat
dJdτ=0.
Thustransversenondegeneracyisequivalenttothefollowingproperty:
De nition5AgeneralizedCalabi-YaumanifoldissaidtosatisfytheddJ-lemmaif
dJdτ=0 dτ=d(ι(X)ρ+ξ∧ρ)
foravector eldXand1-formξ.
Thisconditionmaynotalwaysbesatis ed.Herearetwocaseswhenitis:
Proposition7TheddJ-lemmaholdsif:
a)thegeneralizedCalabi-Yaumanifoldisacomplex3-manifoldwithanonvanishing¯-lemma,orholomorphic3-formandwhichsatis esthe
b)itisasymplectic6-manifoldsatisfyingthestrongLefschetzcondition.
正在阅读:
Generalized Calabi-Yau manifolds05-14
小学作文:这个奇妙的世界(仿写)05-29
赛教说课稿01-13
选修第一册第三单元第1-2节文化景观的构成 文化景观的主要特性01-03
(20110601版范本流程)地税传递变更税务登记工作流程08-21
清代地方吏役制度研究01-29
曾经最美02-14
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Generalized
- manifolds
- Calabi
- Yau
- 中国煤炭工业技术信息系统的研究与开发
- 国际知名品牌手表线下活动方案
- 基于改进粒子群-模糊神经网络的短期电力负荷预测
- 【生活】加拿大G1驾照考试100题
- 【公务员】电工基础知识试题(答案)
- 《矩阵分析》(第3版)史荣昌,魏丰.第一章课后习题答案
- 我党建设社会主义新文化的历程
- 4万t年生物质成型燃料生产加工建设项目9
- 第六章 行政规范
- 2012年二级建造师考试复习要点——《建设工程法规及相关知识》
- 2013届高三高考模拟卷
- 旅游产业融合理论
- 第9课 西欧的联合
- 基于GIS的城市智能交通诱导系统分析
- 给老旧住宅改造小区广大居民的一封信
- 2010清华在线GCT模拟题二
- 高三生物专题8-1(基因的分离定律)学案
- 《结构力学》教学大纲
- Synthesis of ZnO nanoparticles from microemulsions in a flow type microreactor
- 持久性有机污染物研究的国际发展动态