机床主轴箱课程设计18级转速

更新时间:2024-03-24 10:52:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

项目 内容 结果 1.概述 ............................................................................................................................................................. 4 1.1机床主轴箱课程设计的目的 .............................................................................................................. 4 1.2设计任务和主要技术要求 .................................................................................................................. 4 1.3 操作性能要求 ..................................................................................................................................... 4 2.参数的拟定 ................................................................................................................................................. 5 2.1 确定极限转速 ..................................................................................................................................... 5 2.2 主电机选择 ....................................................................................................................................... 5 3.传动设计................................................................................................................................................. 6 3.1 主传动方案拟定 ............................................................................................................................... 6 3.2 传动结构式、结构网的选择 ........................................................................................................... 6 3.2.1 确定传动组及各传动组中传动副的数目 ..................................................................................... 6 3.2.2 传动式的拟定 ................................................................................................................................ 7 3.2.3 结构式的拟定 ................................................................................................................................ 7 4. 传动件的估算 ...................................................................................................................................... 8 4.1 三角带传动的计算 .......................................................................................................................... 8 4.2 传动轴的估算 ................................................................................................................................ 11 4.2.1 主轴的计算转速 .......................................................................................................................... 11 4.2.2 各传动轴的计算转速 ................................................................................................................ 12 4.2.3 各轴直径的估算 ........................................................................................................................ 12 4.3 齿轮齿数的确定和模数的计算 .................................................................................................... 13 4.3.1 齿轮齿数的确定 ........................................................................................................................ 13 4.3.2 齿轮模数的计算 ........................................................................................................................ 15 4.3.4齿宽确定 ...................................................................................................................................... 20 4.3.5 齿轮结构设计 .............................................................................................................................. 21

第 1 页 共 57 页

项目 内容 结果 4.4 带轮结构设计 ................................................................................................................................ 21 4.5 传动轴间的中心距 .......................................................................................................................... 21 4.6 轴承的选择 ...................................................................................................................................... 22 4.7 片式摩擦离合器的选择和计算 .................................................................................................... 23 4.7.1 摩擦片的径向尺寸 ...................................................................................................................... 23 4.7.2 按扭矩选择摩擦片结合面的数目 .............................................................................................. 23 4.7.3 离合器的轴向拉紧力 .............................................................................................................. 2424 4.7.4 反转摩擦片数 .............................................................................................................................. 24 5. 动力设计 ............................................................................................................................................ 25 5.1 传动轴的验算 .................................................................................................................................. 25 5.1.1 Ⅰ轴的强度计算 .......................................................................................................................... 26 5.1.2 作用在齿轮上的力的计算 .......................................................................................................... 26 5.1.3 主轴抗震性的验算 ...................................................................................................................... 29 5.2 齿轮校验 .......................................................................................................................................... 32 5.3轴承的校验....................................................................................................................................... 33 6.结构设计及说明.................................................................................................................................. 34 6.1 结构设计的内容、技术要求和方案 ............................................................................................ 34 6.2 展开图及其布置 ............................................................................................................................ 34 6.3 I轴(输入轴)的设计 ................................................................................................................. 35 6.4 齿轮块设计 .................................................................................................................................... 36 6.4.1其他问题 ...................................................................................................................................... 37 6.5 传动轴的设计 ................................................................................................................................ 37 6.6 主轴组件设计 ................................................................................................................................ 38 6.6.1 各部分尺寸的选择 .................................................................................................................... 38 6.6.2 主轴轴承 .................................................................................................................................... 39

第 2 页 共 57 页

项目 内容 结果 6.6.3 主轴与齿轮的连接 .................................................................................................................... 41 6.6.4 润滑与密封 ................................................................................................................................ 41 6.6.5 其他问题 .................................................................................................................................... 41 7.总结 ..................................................................................................................................................... 42 8.明细表 ................................................................................................................................................. 49

第 3 页 共 57 页

项目 内容 结果 1.概述 第 4 页 共 57 页

概述 1.1机床主轴箱课程设计的目的 机床课程设计,是在学习过课程《机械制造装备设计》之后进行的实践性教学环节。其目的在于通过机床运动机械变速传动系统的结构设计,使学生在拟定传动和变速的结构方案过程中,得到设计构思,方案分析,结构工艺性,机械制图,零件计算,编写技术文件和查阅技术资料等方面的综合训练,树立正确的设计思想,掌握基本的设计方法,并培养学生具有初步的结构分析,结构设计和计算能力。 1.1机床主轴箱课程设计的目的 1.2设计任务和主要技术要求 普通机床的规格和类型有系列型谱作为设计时应该遵照的基础。因此,对这些基本知识和资料作些简要介绍。本次设计的是普通型车床主轴变速箱。主要用于加工回转体。 车床的主参数(规格尺寸)和基本参数: 1、加工工件直径为:?60㎜时,机床达到的最高切削速度Vmax=150m/min; 2、变速范围Rn=43~51; 3、V=100 m/min时,切削45号钢时,机床功率允许的最大切削用量为:ap=5㎜,f=0.3㎜/r; 4、抗振性:一般。 1.2设计任务和主要技术要求 1.3 操作性能要求 1)具有皮带轮卸荷装置 2)手动操纵双向摩擦片离合器实现主轴的正反转及停止运动要求 3)主轴的变速由变速手柄完成 项目 内容 结果 4)床头箱的外型尺寸、与床头床身的联接要求与C618K-I车床的床头箱相同 1.3 操作性能要求 2.参数的拟定 2.1 确定极限转速 nmax?Rn nminz??2.参数的拟定 Rn?? 因为K=0.5,Rd=0.2~0.25 ∴dmax=KD=0.5×500=250mm ·dmax=50~62.5 dmin=Rd×dmax=(0.2~0.25) 又∵ Rn=43~51 ∴ nmin?nmax/Rn?18.73~22.2r/min nmax?1000Vmax/?dmin?955.4r/min nmin?2.2 主电机选择 合理的确定电机功率,使机床既能充分发挥其使用性能,满足生产需要,又不致使电机经常轻载而降低功率因素。 已知异步电动机的转速有3000 r/min 、1500r/min 、1000r/min、750 r/min,已知P额是7.1KW,根据《车床设计手册》附录表2选Y132M-4,额定功率7.5kw,满载转速1440 rr/minmax?9 第 5 页 共 57 页 min,??0.87。

项目 5.1.3 主轴内容 结果 7Pa2LYs? 3FI其中:P=2940N,a=125mm,L=419mm,E=2×10N/cm,D=91mm I=0.05·(D-d)=0.05×(91-46)=3163377.25mm 所以: 44442 Pa2LYs? 3FI抗震性的验算 2940?1252?419?3?2?107?3163377.25 ?4.25?10?3mm(4) 主轴部件刚度 K? P2940??336000N/mm?336N/?m Yz?Ys0.0045?0.00425(5) 验算抗振性 K?则: Kcd?blim?cos? 2?(1??)blim?2K?(1??) Kcd?cos? 第 31 页 共 57 页

所以: blim?2K?(1??) Kcd?cos? 项目 (2)弯曲应力: Qw?内容 结果 2?336?0.03(1?0.03)?2.46?cos68.8 ?22.6mm?0.02Dmax?10mm所以主轴抗振性满足要求。 5.2 齿轮校验 在验算算速箱中的齿轮应力时,选相同模数中承受载荷最大,齿数最小的齿轮进接触应力和弯曲应力的验算。这里要验算的是齿轮2,齿轮7,齿轮12这三个齿轮。 (1)接触应力公式: 2088?10 Qf?zm4?u?1?k?kvkaksNuBnj Z=9 u----大齿轮齿数与小齿轮齿数之比; k?---齿向载荷分布系数;kv----动载荷系数;kA----工况系数;ks----寿命系数 查《机械装备设计》表10-4及图10-8及表10-2分布得kHB?1.15,kFB?1.20;kv?1.05,kA?1.25 假定齿轮工作寿命是48000h,故应力循环次数为 N?60njLh?60?500?1?48000?1.44?109次 查《机械装备设计》图10-18得KFN?0.9,KHN?0.9,所以: ?f?2088?1018?43?72??1??1.15?1.05?1.25?0.9?7.5?0.96?0.982 ??18??1.024?103MPa72?21?50018191?105k?kvkaksNzmBYnj2 第 32 页 共 57 页

项目 内容 结果 查《金属切削手册》有Y=0.378,代入公式求得:Qw=158.5Mpa 查《机械设计》图10-21e,齿轮的材产选40Cr渗碳,大齿轮、小齿轮的硬度为60HRC,???f??故有?从图10-21e读出??w??920MPa。因为:??f???1650MPa,??f??,?w???w?, 故满足要求,另外两齿轮计算方法如上,均符合要求。 Z=4 第 33 页 共 57 页

5.3轴承的校验 Ⅰ轴选用的是角接触轴承7206 其基本额定负荷为30.5KN 由于该轴的转速是定值n?710r/min所以齿轮越小越靠近轴承,对轴承的要求越高。根据设计要求,应该对Ⅰ轴未端的滚子轴承进行校核。 齿轮的直径 d?24?2.5?60mm P n7.5?0.96?59.3 Nm T?9550?7102T2?59.3??1412 N 齿轮受力 Fr?d60?103 Ⅰ轴传递的转矩 T?9550 根据受力分析和受力图可以得出轴承的径向力为 Fl Rv1?r1?1060 N l1?l2 Rv2?1412?1060?352 N 因轴承在运转中有中等冲击载荷,又由于不受轴向力,按《机械设计》表10-5查得fp 为1.2到1.8,取fp?1.3,则有: P1?fpX1R1?1.3?1062?1378 N P2?fpX2R2?1.3?352?457.6 N 项目 Lh?内容 结果 轴承的寿命 因为P1?P2,所以按轴承1的受力大小计算: 10C?10172003()?()?38309.1 h 60nP60?8501378166故该轴承能满足要求。 5.2 齿轮校验 6.结构设计及说明 6.1 结构设计的内容、技术要求和方案 设计主轴变速箱的结构包括传动件(传动轴、轴承、带轮、齿轮、离合器和制动器等)、主轴组件、操纵机构、润滑密封系统和箱体及其联结件的结构设计与布置,用一张展开图和若干张横截面图表示。课程设计由于时间的限制,一般只画展开图。 主轴变速箱是机床的重要部件。设计时除考虑一般机械传动的有关要求外,着重考虑以下几个方面的问题。 精度方面的要求,刚度和抗震性的要求,传动效率要求,主轴前轴承处温度和温升的控制,结构工艺性,操作方便、安全、可靠原则,遵循标准化和通用化的原则。 主轴变速箱结构设计时整个机床设计的重点,由于结构复杂,设计中不可避免要经过反复思考和多次修改。在正式画图前应该先画草图。目的是: 1) 布置传动件及选择结构方案。 2) 检验传动设计的结果中有无干涉、碰撞或其他不合理的情况,以便及时改正。 3) 确定传动轴的支承跨距、齿轮在轴上的位置以及各轴的相对位置,以确定各轴的受力点和受力方向,为轴和轴承的验算提供必要的数据。 6.2 展开图及其布置 展开图就是按照传动轴传递运动的先后顺序,假想将各轴沿其轴线剖开并将这些剖切面平整展开在同一个平面上。 I轴上装的摩擦离合器和变速齿轮。有两种布置方案,一是将两级变速齿轮和离合器做成一体。齿轮的直径受到离合器内径的约束,齿根圆的直径必须大于离合器的外径,负责齿第 34 页 共 57 页

项目 内容 结果 轮无法加工。这样轴的间距加大。另一种布置方案是离合器的左右部分分别装在同轴线的轴上,左边部分接通,得到一级反向转动,右边接通得到三级反向转动。这种齿轮尺寸小但轴向尺寸大。我们采用第一种方案,通过空心轴中的拉杆来操纵离合器的结构。 总布置时需要考虑制动器的位置。制动器可以布置在背轮轴上也可以放在其他轴上。制动器不要放在转速太低轴上,以免制动扭矩太大,是制动尺寸增大。 齿轮在轴上布置很重要,关系到变速箱的轴向尺寸,减少轴向尺寸有利于提高刚度和减小体积。 6.3 I轴(输入轴)的设计 将运动带入变速箱的带轮一般都安装在轴端,轴变形较大,结构上应注意加强轴的刚度或使轴部受带的拉力(采用卸荷装置)。I轴上装有摩擦离合器,由于组成离合器的零件很多,装配很不方便,一般都是在箱外组装好I轴在整体装入箱内。我们采用的卸荷装置一般是把轴承装载法兰盘上,通过法兰盘将带轮的拉力传递到箱壁上。 车床上的反转一般用于加工螺纹时退刀。车螺纹时,换向频率较高。实现政反转的变换方案很多,我们采用正反向离合器。正反向的转换在不停车的状态下进行,常采用片式摩擦离合器。由于装在箱内,一般采用湿式。 5.3轴承的校验 在确定轴向尺寸时,摩擦片不压紧时,应留有0.2~0.4mm的间隙,间隙应能调整。 离合器及其压紧装置中有三点值得注意: 1) 摩擦片的轴向定位:由两个带花键孔的圆盘实现。其中一个圆盘装在花键上,另一个装在花键轴上的一个环形沟槽里,并转过一个花键齿,和轴上的花键对正,然后用螺钉把错开的两个圆盘连接在一起。这样就限制了轴向和周向德两个自由度,起了定位作用。 2) 摩擦片的压紧由加力环的轴向移动实现,在轴系上形成了弹性力的封闭系统,不增加轴承轴向复合。 3) 结构设计时应使加力环推动摆杆和钢球的运动是不可逆的,即操纵力撤消后,有自锁作用。 第 35 页 共 57 页

项目 内容 结果 I轴上装有摩擦离合器,两端的齿轮是空套在轴上,当离合器接通时才和轴一起转动。 但脱开的另一端齿轮,与轴回转方向是相反的,二者的相对转速很高(约为两倍左右)。结构设计时应考虑这点。 齿轮与轴之间的轴承可以用滚动轴承也可以用滑动轴承。滑动轴承在一些性能和维修上不如滚动轴承,但它的径向尺寸小。空套齿轮需要有轴向定位,轴承需要润滑。 6.4 齿轮块设计 齿轮是变速箱中的重要元件。齿轮同时啮合的齿数是周期性变化的。也就是说,作用在一个齿轮上的载荷是变化的。同时由于齿轮制造及安装误差等,不可避免要产生动载荷而引起振动和噪音,常成为变速箱的主要噪声源,并影响主轴回转均匀性。在齿轮块设计时, 应充分考虑这些问题。 齿轮块的结构形式很多,取决于下列有关因素: 1) 是固定齿轮还是滑移齿轮; 2) 移动滑移齿轮的方法; 3) 齿轮精度和加工方法; 6.结构设变速箱中齿轮用于传递动力和运动。它的精度选择主要取决于圆周速度。采用同一精度计及说明 时,圆周速度越高,振动和噪声越大,根据实际结果得知,圆周速度会增加一倍,噪声约增 大6dB。工作平稳性和接触误差对振动和噪声的影响比运动误差要大,所以这两项精度应选 6.1 结构高一级。为了控制噪声,机床上主传动齿轮都要选用较高的精度。大都是用7—6—6,圆周 设计的内速度很低的,才选8—7—7。如果噪声要求很严,或一些关键齿轮,就应选6—5—5。当精 容、技术要度从7—6—6提高到6—5—5时,制造费用将显著提高。不同精度等级的齿轮,要采用不同 求和方案 的加工方法,对结构要求也有所不同。8级精度齿轮,一般滚齿或插齿就可以达到。7级精 度齿轮,用较高精度滚齿机或插齿机可以达到。但淬火后,由于变形,精度将下降。因此, 需要淬火的7级齿轮一般滚(插)后要剃齿,使精度高于7,或者淬火后在衍齿。6级精度的齿轮,用精密滚齿机可以达到。淬火齿轮,必须磨齿才能达到6级。 机床主轴变速箱中齿轮齿部一般都需要淬火。 第 36 页 共 57 页

项目 6.4.1其他问题 内容 结果 滑移齿轮进出啮合的一端要圆齿,有规定的形状和尺寸。圆齿和倒角性质不同,加工方法和画法也不一样,应予注意。 选择齿轮块的结构要考虑毛坯形式(棒料、自由锻或模锻)和机械加工时的安装和定位基面。尽可能做到省工、省料又易于保证精度。 齿轮磨齿时,要求有较大的空刀(砂轮)距离,因此多联齿轮不便于做成整体的,一般都做成组合的齿轮块。有时为了缩短轴向尺寸,也有用组合齿轮的。 要保证正确啮合,齿轮在轴上的位置应该可靠。滑移齿轮在轴向位置由操纵机构中的定位槽、定位孔或其他方式保证,一般在装配时最后调整确定。 6.5 传动轴的设计 6.2 展开 机床传动轴,广泛采用滚动轴承作支撑。轴上要安装齿轮、离合器和制动器等。传动轴 图及其布应保证这些传动件或机构能正常工作。 置 首先传动轴应有足够的强度、刚度。如挠度和倾角过大,将使齿轮啮合不良,轴承工作条件恶化,使振动、噪声、空载功率、磨损和发热增大;两轴中心距误差和轴芯线间的平行度等装配及加工误差也会引起上述问题。 传动轴可以是光轴也可以是花键轴。成批生产中,有专门加工花键的铣床和磨床,工艺上并无困难。所以装滑移齿轮的轴都采用花键轴,不装滑移齿轮的轴也常采用花键轴。 花键轴承载能力高,加工和装配也比带单键的光轴方便。 轴的部分长度上的花键,在终端有一段不是全高,不能和花键空配合。这是加工时的过滤部分。一般尺寸花键的滚刀直径D刀为65~85mm。 机床传动轴常采用的滚动轴承有球轴承和滚锥轴承。在温升、空载功率和噪声等方面,球轴承都比滚锥轴承优越。而且滚锥轴承对轴的刚度、支撑孔的加工精度要求都比较高。因此球轴承用的更多。但是滚锥轴承内外圈可以分开,装配方便,间隙容易调整。所以有时在没有轴向力时,也常采用这种轴承。选择轴承的型号和尺寸,首先取决于承载能力,但也要考虑其他结构条件。 第 37 页 共 57 页

项目 内容 结果 同一轴心线的箱体支撑直径安排要充分考虑镗孔工艺。成批生产中,广泛采用定径镗6.3 I轴刀和可调镗刀头。在箱外调整好镗刀尺寸,可以提高生产率和加工精度。还常采用同一镗刀 下面分析几种镗孔方式:对于支撑跨距长的箱体孔, (输入轴)杆安装多刀同时加工几个同心孔的工艺。的设计 要从两边同时进行加工;支撑跨距比较短的,可以从一边(丛大孔方面进刀)伸进镗杆,同 时加工各孔;对中间孔径比两端大的箱体,镗中间孔必须在箱内调刀,设计时应尽可能避免。 既要满足承载能力的要求,又要符合孔加工工艺,可以用轻、中或重系列轴承来达到支撑孔直径的安排要求。 两孔间的最小壁厚,不得小于5~10mm,以免加工时孔变形。 花键轴两端装轴承的轴颈尺寸至少有一个应小于花键的内径。 一般传动轴上轴承选用G级精度。 传动轴必须在箱体内保持准确位置,才能保证装在轴上各传动件的位置正确性,不论 轴是否转动,是否受轴向力,都必须有轴向定位。对受轴向力的轴,其轴向定位就更重要。 回转的轴向定位(包括轴承在轴上定位和在箱体孔中定位)在选择定位方式时应注意: 1) 轴的长度。长轴要考虑热伸长的问题,宜由一端定位。 2) 轴承的间隙是否需要调整。 3) 整个轴的轴向位置是否需要调整。 4) 在有轴向载荷的情况下不宜采用弹簧卡圈。 5) 加工和装配的工艺性等。 第 38 页 共 57 页

6.6 主轴组件设计 主轴组件结构复杂,技术要求高。安装工件(车床)或者刀具(铣床、钻床等)的主轴参予切削成形运动,因此它的精度和性能直接影响加工质量(加工精度和表面粗糙度),设计时主要围绕着保证精度、刚度和抗振性,减少温升和热变形等几个方面考虑。 6.6.1 各部分尺寸的选择 主轴形状与各部分尺寸不仅和强度、刚度有关,而且涉及多方面的因素。 1) 内孔直径 项目 内容 结果 车床主轴由于要通过棒料,安装自动卡盘的操纵机构及通过卸顶尖的顶杆,必须是空心轴。为了扩大使用范围,加大可加工棒料直径,车床主轴内孔直径有增大的趋势。 2) 轴颈直径 前支撑的直径是主轴上一主要的尺寸,设计时,一般先估算或拟定一个尺寸,结构确定后再进行核算。 3) 前锥孔直径 前锥孔用来装顶尖或其他工具锥柄,要求能自锁,目前采用莫氏锥孔。 4) 支撑跨距及悬伸长度 6.4 齿轮块设计 为了提高刚度,应尽量缩短主轴的外伸长度a。选择适当的支撑跨距L,一般推荐取: L =3~5,跨距L小时,轴承变形对轴端变形的影响大。所以,轴承刚度小时,L应选 aa大值,轴刚度差时,则取小值。 跨距L的大小,很大程度上受其他结构的限制,常常不能满足以上要求。安排结构时力求接近上述要求。 6.6.2 主轴轴承 1)轴承类型选择 主轴前轴承有两种常用的类型: 双列短圆柱滚子轴承。承载能力大,可同时承受径向力和轴向力,结构比较简单,但允许的极限转速低一些。 与双列短圆柱滚子轴承配套使用承受轴向力的轴承有三种: 60角双向推力向心球轴承。是一种新型轴承,在近年生产的机床上广泛采用。具有承载能力大,允许极限转速高的特点。外径比同规格的双列圆柱滚子轴承小一些。在使用中,这种轴承不承受径向力。 推力球轴承。承受轴向力的能力最高,但允许的极限转速低,容易发热。 向心推力球轴承。允许的极限转速高,但承载能力低,主要用于高速轻载的机床。 2)轴承的配置 第 39 页 共 57 页

0 项目 6.4.1其他问题 内容 结果 大多数机床主轴采用两个支撑,结构简单,制造方便,但为了提高主轴刚度也有用三个支撑的了。三支撑结构要求箱体上三支撑孔具有良好的同心度,否则温升和空载功率增大, 效果不一定好。三孔同心在工艺上难度较大,可以用两个支撑的主要支撑,第三个为辅助支撑。辅助支撑轴承(中间支撑或后支撑)保持比较大的游隙(约0.03~0.07mm),只有在载荷比较大、轴产生弯曲变形时,辅助支撑轴承才起作用。 轴承配置时,除选择轴承的类型不同外,推力轴承的布置是主要差别。推力轴承布置在前轴承、后轴承还是分别布置在前、后轴承,影响着温升后轴的伸长方向以及结构的负责程度,应根据机床的实际要求确定。 在配置轴承时,应注意以下几点: ① 每个支撑点都要能承受经向力。 ② 两个方向的轴向力应分别有相应的轴承承受。 ③ 径向力和两个方向的轴向力都应传递到箱体上,即负荷都由机床支撑件承受。 3)轴承的精度和配合 主轴轴承精度要求比一般传动轴高。前轴承的误差对主轴前端的影响最大,所以前轴承的精度一般比后轴承选择高一级。 普通精度级机床的主轴,前轴承的选C或D级,后轴承选D或E级。选择轴承的精度时,既要考虑机床精度要求,也要考虑经济性。 轴承与轴和轴承与箱体孔之间,一般都采用过渡配合。另外轴承的内外环都是薄壁件, 6.5 传动轴和孔德形状误差都会反映到轴承滚道上去。如果配合精度选的太低,会降低轴承的回转精 轴的设计 度,所以轴和孔的精度应与轴承精度相匹配。 1) 轴承间隙的调整 为了提高主轴的回转精度和刚度,主轴轴承的间隙应能调整。把轴承调到合适的负间隙,形成一定的预负载,回转精度和刚度都能提高,寿命、噪声和抗震性也有改善。预负载使轴承内产生接触变形,过大的预负载对提高刚度没有明显的小果,而磨损发热量和噪声都会增大,轴承寿命将因此而降低。 第 40 页 共 57 页

主轴抗振

项目 6.6.5 其他问题 内容 结果 第 46 页 共 57 页

项目 内容 结果 7.总结 第 47 页 共 57 页

项目 内容 结果 8.明细表 第 48 页 共 57 页

项目 内容 结果 第 49 页 共 57 页

项目 内容 结果 第 50 页 共 57 页

本文来源:https://www.bwwdw.com/article/zv78.html

Top