精炼行政能力测试数字推理题

更新时间:2023-11-10 06:51:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

精炼行政能力测试数字推理题

【1】7,9,-1,5,( )

A、4;B、2;C、-1;D、-3

分析:选D,7+9=16; 9+(-1)=8;(-1)+5=4;5+(-3)=2 , 16,8,4,2等比

【2】3,2,5/3,3/2,( )

A、1/4;B、7/5;C、3/4;D、2/5

分析:选B,可化为3/1,4/2,5/3,6/4,7/5,分子3,4,5,6,7,分母1,2,3,4,5

【3】1,2,5,29,( )

A、34;B、841;C、866;D、37

分析:选C,5=12+22;29=52+22;( )=292+52=866

【4】2,12,30,( )

A、50;B、65;C、75;D、56;

分析:选D,1×2=2; 3×4=12; 5×6=30; 7×8=( )=56

【5】2,1,2/3,1/2,( )

A、3/4;B、1/4;C、2/5;D、5/6;

分析:选C,数列可化为4/2,4/4,4/6,4/8,分母都是4,分子2,4,6,8等差,所以后项为4/10=2/5,

【6】 4,2,2,3,6,( ) A、6;B、8;C、10;D、15;

分析:选D,2/4=0.5;2/2=1;3/2=1.5; 6/3=2; 0.5,1,1.5, 2等比,所以后项为2.5×6=15

【7】1,7,8,57,( )

A、123;B、122;C、121;D、120;

分析:选C,12+7=8; 72+8=57; 82+57=121;

【8】 4,12,8,10,( ) A、6;B、8;C、9;D、24;

分析:选C,(4+12)/2=8;(12+8)/2=10; (8+10)/2=9

【9】1/2,1,1,( ),9/11,11/13 A、2;B、3;C、1;D、7/9;

分析:选C,化成 1/2,3/3,5/5 ( ),9/11,11/13这下就看出来了只能 是(7/7)注意分母是质数列,分子是奇数列。

【10】95,88,71,61,50,( ) A、40;B、39;C、38;D、37; 分析:选A,

思路一:它们的十位是一个递减数字 9、8、7、6、5 只是少开始的4 所以选择A。

思路二:95 - 9 - 5 = 81;88 - 8 - 8 = 72;71 - 7 - 1 = 63;61 - 6 - 1 = 54;50 - 5 - 0 = 45;40 - 4 - 0 = 36 ,构成等差数列。

【11】2,6,13,39,15,45,23,( ) A. 46;B. 66;C. 68;D. 69;

分析:选D,数字2个一组,后一个数是前一个数的3倍

【12】1,3,3,5,7,9,13,15( ),( )

A:19,21;B:19,23;C:21,23;D:27,30;

分析:选C,1,3,3,5,7,9,13,15(21),( 30 )=>奇偶项分两组1、3、7、13、21和3、5、9、15、23其中奇数项1、3、7、13、21=>作差2、4、6、8等差数列,偶数项3、5、9、15、23=>作差2、4、6、8等差数列

【13】1,2,8,28,( ) A.72;B.100;C.64;D.56;

分析:选B, 1×2+2×3=8;2×2+8×3=28;8×2+28×3=100

【14】0,4,18,( ),100 A.48;B.58; C.50;D.38; 分析: A,

思路一:0、4、18、48、100=>作差=>4、14、30、52=>作差=>10、16、22等差数列;

3232323232

思路二:1-1=0;2-2=4;3-3=18;4-4=48;5-5=100; 思路三:0×1=0;1×4=4;2×9=18;3×16=48;4×25=100;

思路四:1×0=0;2×2=4;3×6=18;4×12=48;5×20=100 可以发现:0,2,6,(12),20依次相差2,4,(6),8,

思路五:0=1×0;4=2×1;18=3×2;( )=X×Y;100=5×4所以( )=4×3

【15】23,89,43,2,( ) A.3;B.239;C.259;D.269;

分析:选A, 原题中各数本身是质数,并且各数的组成数字和2+3=5、8+9=17、4+3=7、2也是质数,所以待选数应同时具备这两点,选A

【16】1,1, 2, 2, 3, 4, 3, 5, ( ) 分析:

思路一:1,(1,2),2,(3,4),3,(5,6)=>分1、2、3和(1,2),(3,4),(5,6)两组。

思路二:第一项、第四项、第七项为一组;第二项、第五项、第八项为一组;第三项、第六项、第九项为一组=>1,2,3;1,3,5;2,4,6=>三组都是等差

【17】1,52, 313, 174,( ) A.5;B.515;C.525;D.545;

分析:选B,52中5除以2余1(第一项);313中31除以3余1(第一项);174中17除以4余1(第一项);515中51除以5余1(第一项)

【18】5, 15, 10, 215, ( )

A、415;B、-115;C、445;D、-112;

答:选B,前一项的平方减后一项等于第三项,5×5-15=10; 15×15-10=215; 10×10-215=-115

【19】-7,0, 1, 2, 9, ( )

A、12;B、18;C、24;D、28;

333333

答: 选D, -7=(-2)+1; 0=(-1)+1; 1=0+1;2=1+1;9=2+1; 28=3+1

【20】0,1,3,10,( )

A、101;B、102;C、103;D、104; 答:选B,

思路一: 0×0+1=1,1×1+2=3,3×3+1=10,10×10+2=102; 思路二:0(第一项)+1=1(第二项) 1+2=3 3+1=10 10+2=102,其中所加的数呈1,2,1,2 规律。 思路三:各项除以3,取余数=>0,1,0,1,0,奇数项都能被3整除,偶数项除3余1;

【21】5,14,65/2,( ),217/2 A.62;B.63;C. 64;D. 65;

33333

答:选B,5=10/2 ,14=28/2 , 65/2, ( 126/2), 217/2,分子=> 10=2+2; 28=3+1;65=4+1;(126)=5+1;217=6+1;其中2、1、1、1、1头尾相加=>1、2、3等差

【22】124,3612,51020,( )

A、7084;B、71428;C、81632;D、91836; 答:选B,

思路一: 124 是 1、 2、 4; 3612是 3 、6、 12; 51020是 5、 10、20;71428是 7, 14 28;每列都成等差。

2

2

2

2

2

2

2

2

2

2

思路二: 124,3612,51020,(71428)把每项拆成3个部分=>[1,2,4]、[3,6,12]、[5,10,20]、[7,14,28]=>每个[ ]中的新数列成等比。

思路三:首位数分别是1、3、5、( 7 ),第二位数分别是:2、6、10、(14);最后位数分别是:4、12、20、(28),故应该是71428,选B。

【23】1,1,2,6,24,( )

A,25;B,27;C,120;D,125 解答:选C。 思路一:(1+1)×1=2 ,(1+2)×2=6,(2+6)×3=24,(6+24)×4=120 思路二:后项除以前项=>1、2、3、4、5 等差

【24】3,4,8,24,88,( )

A,121;B,196;C,225;D,344 解答:选D。

思路一:4=2 +3,

8=2 +4, 24=2 +8, 88=2 +24,

344=2 +88

思路二:它们的差为以公比2的数列:

02468

4-3=2,8-4=2,24-8=2,88-24=2,?-88=2,?=344。

【25】20,22,25,30,37,( ) A,48;B,49;C,55;D,81

解答:选A。两项相减=>2、3、5、7、11质数列

【26】1/9,2/27,1/27,( )

A,4/27;B,7/9;C,5/18;D,4/243;

答:选D,1/9,2/27,1/27,(4/243)=>1/9,2/27,3/81,4/243=>分子,1、2、3、4 等差;分母,9、27、81、243 等比

【27】√2,3,√28,√65,( )

A,2√14;B,√83;C,4√14;D,3√14;

答:选D,原式可以等于:√2,√9,√28,√65,( ) 2=1×1×1 + 1;9=2×2×2 + 1;28=3×3×3 + 1;65=4×4×4 + 1;126=5×5×5 + 1;所以选 √126 ,即 D 3√14

【28】1,3,4,8,16,( )

A、26;B、24;C、32;D、16;

答:选C,每项都等于其前所有项的和1+3=4,1+3+4=8,1+3+4+8=16,1+3+4+8+16=32

【29】2,1,2/3,1/2,( )

A、3/4;B、1/4;C、2/5;D、5/6;

答:选C ,2, 1 , 2/3 , 1/2 , (2/5 )=>2/1, 2/2, 2/3, 2/4 (2/5)=>分子都为2;分母,1、2、3、4、5等差

【30】 1,1,3,7,17,41,( ) A.89;B.99;C.109;D.119 ;

答:选B, 从第三项开始,第一项都等于前一项的2倍加上前前一项。2×1+1=3;2×3+1=7;2×7+3=17; …;2×41+17=99

【31】 5/2,5,25/2,75/2,( )

答:后项比前项分别是2,2.5,3成等差,所以后项为3.5,()/(75/2)=7/2,所以,( )=525/4

【32】6,15,35,77,( )

A. 106;B.117;C.136;D.163

答:选D,15=6×2+3;35=15×2+5;77=35×2+7;163=77×2+9其中3、5、7、9等差

86420

【33】1,3,3,6,7,12,15,( ) A.17;B.27;C.30;D.24;

答:选D, 1, 3, 3, 6, 7, 12, 15, ( 24 )=>奇数项1、3、7、15=>新的数列相邻两数的差为2、4、8 作差=>等比,偶数项 3、6、12、24 等比

【34】2/3,1/2,3/7,7/18,( )

A、4/11;B、5/12;C、7/15;D、3/16

分析:选A。4/11,2/3=4/6,1/2=5/10,3/7=6/14,…分子是4、5、6、7,接下来是8.分母是6、10、14、18,接下来是22

【35】63,26,7,0,-2,-9,( ) A、-16;B、-25;C;-28;D、-36

3333333

分析:选C。4-1=63;3-1=26;2-1=7;1-1=0;(-1)-1=-2;(-2)-1=-9;(-3) - 1 = -28

【36】1,2,3,6,11,20,( ) A、25;B、36;C、42;D、37

分析:选D。第一项+第二项+第三项=第四项 6+11+20 = 37

【37】 1,2,3,7,16,( ) A.66;B.65;C.64;D.63

分析:选B,前项的平方加后项等于第三项

【38】 2,15,7,40,77,( ) A、96;B、126;C、138;D、156

222

分析:选C,15-2=13=4-3,40-7=33=6-3,138-77=61=8-3

【39】2,6,12,20,( ) A.40;B.32;C.30;D.28 答:选C,

思路一: 2=22-2;6=32-3;12=42-4;20=52-5;30=62-6; 思路二: 2=1×2;6=2×3;12=3×4;20=4×5;30=5×6

【40】0,6,24,60,120,( ) A.186;B.210;C.220;D.226;

333333

答:选B,0=1-1;6=2-2;24=3-3;60=4-4;120=5-5;210=6-6

【41】2,12,30,( ) A.50;B.65;C.75;D.56

答:选D,2=1×2;12=3×4;30=5×6;56=7×8

【42】1,2,3,6,12,( ) A.16;B.20;C.24;D.36

答:选C,分3组=>(1,2),(3,6),(12,24)=>每组后项除以前项=>2、2、2

【43】1,3,6,12,( ) A.20;B.24;C.18;D.32 答:选B,

思路一:1(第一项)×3=3(第二项);1×6=6;1×12=12;1×24=24其中3、6、12、24等比, 思路二:后一项等于前面所有项之和加2=> 3=1+2,6=1+3+2,12=1+3+6+2,24=1+3+6+12+2

【44】-2,-8,0,64,( ) A.-64;B.128;C.156;D.250

3333

答:选D,思路一:1×(-2)=-2;2×(-1)=-8;3×0=0;4×1=64;所以53×2=250=>选D

【45】129,107,73,17,-73,( )

A.-55;B.89;C.-219;D.-81; 答:选C, 129-107=22; 107-73=34;73-17=56;17-(-73)=90;则-73 - ( )=146(22+34=56;34+56=90,56+90=146)

【46】32,98,34,0,( ) A.1;B.57;C. 3;D.5219; 答:选C,

思路一:32,98,34,0,3=>每项的个位和十位相加=>5、17、7、0、3=>相减=>-12、10、7、-3=>视为-1、1、1、-1和12、10、7、3的组合,其中-1、1、1、-1 二级等差12、10、7、3 二级等差。

思路二:32=>2-3=-1(即后一数减前一个数),98=>8-9=-1,34=>4-3=1,0=>0(因为0这一项本身只有一个数字, 故还是推为0),?=>?得新数列:-1,-1,1,0,?;再两两相加再得出一个新数列:-2,0,1.?;2×0-2=-2;2×1-2=0;2×2-3=1;2×3-3=?=>3

【47】5,17,21,25,( ) A.34;B.32;C.31;D.30

答:选C, 5=>5 , 17=>1+7=8 , 21=>2+1=3 , 25=>2+5=7 ,?=>?得到一个全新的数列5 , 8 , 3 , 7 , ?前三项为5,8,3第一组, 后三项为3,7,?第二组,第一组:中间项=前一项+后一项,8=5+3,第二组:中间项=前一项+后一项,7=3+?,=>?=4再根据上面的规律还原所求项本身的数字,4=>3+1=>31,所以答案为31

【48】0,4,18,48,100,( ) A.140;B.160;C.180;D.200;

答:选C,两两相减===>?4,14,30,52 ,{()-100} 两两相减 ==>10.16,22,()==>这是二级等差=>0.4.18.48.100.180==>选择C。思路二:4=(2的2次方)×1;18=(3的2次方)×2;48=(4的2次方)×3;100=(5的2次方)×4;180=(6的2次方)×5

【49】 65,35,17,3,( ) A.1;B.2;C.0;D.4;

答:选A, 65=8×8+1;35=6×6-1;17=4×4+1;3=2×2-1;1=0×0+1

【50】 1,6,13,( ) A.22;B.21;C.20;D.19; 答:选A,1=1×2+(-1);6=2×3+0;13=3×4+1;?=4×5+2=22

【51】2,-1,-1/2,-1/4,1/8,( ) A.-1/10;B.-1/12;C.1/16;D.-1/14;

答:选C,分4组,(2,-1);(-1,-1/2);(-1/2,-1/4);(1/8,(1/16))===>每组的前项比上后项的绝对值是 2

【52】 1,5,9,14,21,( ) A. 30;B. 32;C. 34;D. 36;

答:选B,1+5+3=9;9+5+0=14;9+14+(-2)=21;14+21+(-3)=32,其中3、0、-2、-3二级等差

【53】4,18, 56, 130, ( )

A.216;B.217;C.218;D.219

答:选A,每项都除以4=>取余数0、2、0、2、0

【54】4,18, 56, 130, ( ) A.26;B.24;C.32;D.16;

答:选B,各项除3的余数分别是1、0、-1、1、0,对于1、0、-1、1、0,每三项相加都为0

【55】1,2,4,6,9,( ),18 A、11;B、12;C、13;D、18;

答:选C,1+2+4-1=6;2+4+6-3=9;4+6+9-6=13;6+9+13-10=18;其中 1、3、6、10二级等差

【56】1,5,9,14,21,( ) A、30;B. 32;C. 34;D. 36; 答:选B,

思路一:1+5+3=9;9+5+0=14;9+14-2=21;14+21-3=32。其中,3、0、-2、-3 二级等差,

思路二:每项除以第一项=>5、9、14、21、32=>5×2-1=9; 9×2-4=14;14×2-7=21; 21×2-10=32.其中,1、4、

本文来源:https://www.bwwdw.com/article/zszv.html

Top