工程、十字交叉法练习题

更新时间:2023-08-17 15:14:01 阅读量: 资格考试认证 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

工程问题练习题

一、两个人的问题

标题上说的“两个人”,也可以是两个组、两个队等等的两个集体.

例1 一件工作,甲做9天可以完成,乙做6天可以完成.现在甲先做了3天,余下的工作由乙继续完成.乙需要做几天可以完成全部工作?

答:乙需要做4天可完成全部工作.

例2 一件工作,甲、乙两人合作30天可以完成,共同做了6天后,甲离开了,由乙继续做了40天才完成.如果这件工作由甲或乙单独完成各需要多少天?

答:甲或乙独做所需时间分别是75天和50天.

例3 某工程先由甲独做63天,再由乙单独做28天即可完成;如果由甲、乙两人合作,需48天完成.现在甲先单独做42天,然后再由乙来单独完成,那么乙还需要做多少天?

答:乙还需要做 56天. 例4 一件工程,甲队单独做10天完成,乙队单独做30天完成.现在两队合作,其间甲队休息了2天,乙队休息了8天(不存在两队同一天休息).问开始到完工共用了多少天时间? 其中3天可由甲队1天完成,因此两队只需再合作1天.

例5 一项工程,甲队单独做20天完成,乙队单独做30天完成.现在他们两队一起做,其间甲队休息了3天,乙队休息了若干天.从开始到完成共用了16天.问乙队休息了多少天?

5.5(天).

例6 有甲、乙两项工作,张单独完成甲工作要10天,单独完成乙工作要15天;李单独完成甲工作要 8天,单独完成乙工作要20天.如果每项工作都可以由两人合作,那么这两项工作都完成最少需要多少天?

要12天.

例7 一项工程,甲独做需10天,乙独做需15天,如果两人合作,他

要8天完成这项工程,两人合作天数尽可能少,那么两人要合作多少天?

5(天).

例8 甲、乙合作一件工作,由于配合得好,甲的工作效率比单独做时

如果这件工作始终由甲一人单独来做,需要多少小时?

答:甲单独完成这件工作需要33小时.

这一节的多数例题都进行了“整数化”的处理.但是,“整数化”并不能使所有工程问题的计算简便.例8就是如此.例8也可以整数化,当求出乙每

有一点方便,但好处不大.不必多此一举.

二、多人的工程问题

我们说的多人,至少有3个人,当然多人问题要比2人问题复杂一些,但是解题的基本思路还是差不多.

例9 一件工作,甲、乙两人合作36天完成,乙、丙两人合作45天完成,甲、丙两人合作要60天完成.问甲一人独做需要多少天完成?

答:甲一人独做需要90天完成.

例10 一件工作,甲独做要12天,乙独做要18天,丙独做要24天.这件工作由甲先做了若干天,然后由乙接着做,乙做的天数是甲做的天数的3倍,再由丙接着做,丙做的天数是乙做的天数的2倍,终于做完了这件工作.问总共用了多少天?

答:完成这项工作用了20天.

本题整数化会带来计算上的方便.12,18,24这三数有一个易求出的最小公倍数72.可设全部工作量为72.甲每天完成6,乙每天完成4,丙每天完成3.总共用了

例11 一项工程,甲、乙、丙三人合作需要13天完成.如果丙休息2天,乙就要多做4天,或者由甲、乙两人合作1天.问这项工程由甲独做需要多少天?

答:甲独做需要26天.

事实上,当我们算出甲、乙、丙三人工作效率之比是3∶2∶1,就知甲做1天,相当于乙、丙合作1天.三人合作需13天,其中乙、丙两人完成的工作量,可转化为甲再做13天来完成.

例12 某项工作,甲组3人8天能完成工作,乙组4人7天也能完成工作.问甲组2人和乙组7人合作多少时间能完成这项工作?

答:合作3天能完成这项工作.

例13 制作一批零件,甲车间要10天完成,如果甲车间与乙车间一起做只要6天就能完成.乙车间与丙车间一起做,需要8天才能完成.现在三个车间一起做,完成后发现甲车间比乙车间多制作零件2400个.问丙车间制作了多少个零件?

答:丙车间制作了4200个零件.

例14 搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?

答:丙帮助甲搬运3小时,帮助乙搬运5小时.

例15 甲、乙两管同时打开,9分钟能注满水池.现在,先打开甲管,10分钟后打开乙管,经过3分钟就注满了水池.已知甲管比乙管每分钟多注入0.6立方米水,这个水池的容积是多少立方米?

答:水池容积是27立方米.

例16 有一些水管,它们每分钟注水量都相等.

现在

按预定时间注满水池,如果开始时就打开10根水管,中途不增开水管,也能按预定时间注满水池.问开始时打开了几根水管?

答:开始时打开6根水管.

例17 蓄水池有甲、丙两条进水管,和乙、丁两条排水管.要灌满一池水,单开甲管需3小时,单开丙管需要5小时.要排光一池水,单开乙管需要

、乙、……的顺序轮流打开1小时,问多少时间后水开始溢出水池?

例18 一个蓄水池,每分钟流入4立方米水.如果打开5个水龙头,2小时半就把水池水放空,如果打开8个水龙头,1小时半就把水池水放空.现在打开13个水龙头,问要多少时间才能把水放空?

答:打开13个龙头,放空水池要54分钟.

水池中的水,有两部分,原存有水与新流入的水,就需要分开考虑,解本题的关键是先求出池中原存有的水.这在题目中却是隐含着的.

例19 一个水池,地下水从四壁渗入池中,每小时渗入水量是固定的.打开A管,8小时可将满池水排空,打开C管,12小时可将满池水排空.如果打开A,B两管,4小时可将水排空.问打开B,C两管,要几小时才能将满池水排空?

答: B, C两管齐开要 4 小时 48分才将满池水排完.

本题也要分开考虑,水池原有水(满池)和渗入水量.由于不知具体数量,像工程问题不知工作量的具体数量一样.这里把两种水量分别设成“1”.但这两种量要避免混淆.事实上,也可以整数化,把原有水设为8与12的最小公倍数 24.

十字交叉法

例1:(陕西2008-14)

某班一次数学测试,全班平均91分,其中男生平均88分,女生平均93分,则女

生人数是男生人数的多少倍?( )

A. 0.5 B. 1 C. 1.5 D. 2 例2:(国家2005一类-40) 某市现有 70 万人口,如果 5 年后城镇人口增加 4% ,农村人口增加 5.4%。 则全市人口将增加4.8% ,那么这个市现有城镇人口 ? ( ) A.30 万 B.31.2 万 C.40 万 D.41.6 万

1. 重量分别为A与B的溶液,其浓度分别为a与b, 混合后浓度为r。 2. 数量分别为A与B的人口,分别增长a与b, 总体增长率为r。 3. A个男生平均分为a,B个女生平均分为b, 总体平均分为r 提问:上面三个问题有什么共同点? 回答:

习题1:(河北选调2009-47)

一只松鼠采松子,晴天每天采24个,雨天每天采16个,它一连几天共采168

个松子,平均每天采21个,这几天当中晴天有几天?( ) A. 3 B. 4 C. 5 D. 6 习题2:(江苏2006A类-18)

某公司职员25人,每季度共发放劳保费用15000元,已知每个男职员每季度发

580元,每个女职员比每个男职员每季度多发50元,该公司男女职员之比是多

少?( )

A. 2:1 B. 3:2 C. 2:3 D. 1:2 作业1:(江苏2006B类-70)

某体育训练中心,教练员中男占90%,运动员中男占80%,在教练员和运动员

中男占82%,教练员与运动员人数之比是多少?( )

A. 2:5 B. 1:3 C. 1:4 D. 1:5 作业2:(山东2006-12) 某人按以下规定收取燃气费:如果用气量不超过60立方米,按每立方米0.8元收

费,如果用气量超过60立方米,则超过部分按每立方米1.2元收费。某用

户8月

份交的燃气费平均每立方米0.88元,则该用户8月份的燃气费是多少元?( )

A. 66 B. 56 C. 48 D. 61.6

本文来源:https://www.bwwdw.com/article/zs8j.html

Top