考研数学历年真题(1987-2013)年数学一_可直接打印(纯试题)
更新时间:2023-04-16 07:10:01 阅读量: 实用文档 文档下载
1987年全国硕士研究生入学统一考试
数学(一)试卷
一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)
(1)当x =_____________时,函数2x
y x =?取得极小值.
(2)由曲线ln y x =与两直线e 1y x =+-及0y =所围成的平面图形的面积是_____________.
1
x =
(3)与两直线 1y t =-+及121
121
x y z ++-==
都平行且过原点的平面方程为_____________.
2z t =+
(4)设L 为取正向的圆周22
9,x y +=则曲线积分2(22)(4)L
xy y dx x x dy -+-?
= _____________. (5)已知三维向量空间的基底为123(1,1,0),(1,0,1),(0,1,1),===ααα则向量(2,0,0)=β在此基底下的坐标是_____________.
二、(本题满分8分)
求正的常数a 与,b 使等式2
01lim
1sin x x bx x →=-?成立.
三、(本题满分7分)
(1)设f 、g 为连续可微函数,(,),(),u f x xy v g x xy ==+求u v x x ?????
(2)设矩阵A 和B 满足关系式2,+AB =A B 其中301110,014??
??=??????
A 求矩阵.B
四、(本题满分8分)
求微分方程2
6(9)1y y a y ''''''+++=的通解,其中常数0.a >
五、选择题(本题共4小题,每小题3分,满分12分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)设2
()()lim 1,()x a f x f a x a →-=--则在x a =处 (A)()f x 的导数存在,且()0f a '≠ (B)()f x 取得极大值 (C)()f x 取得极小值
(D)()f x 的导数不存在
(2)设()f x 为已知连续函数0
,(),s t I t f tx dx =?
其中0,0,t s >>则I 的值
(A)依赖于s 和t (B)依赖于s 、t 和x (C)依赖于t 、x ,不依赖于s
(D)依赖于s ,不依赖于t
(3)设常数0,k >则级数21
(1)n
n k n
n
∞
=+-∑ (A)发散 (B)绝对收敛 (C)条件收敛
(D)散敛性与k 的取值有关
(4)设A 为n 阶方阵,且A 的行列式||0,a =≠A 而*
A 是A 的伴随矩阵,则*
||A 等于
(A)a
(B)
1a
(C)1
n a
-
(D)n
a
六、(本题满分10分) 求幂级数1
112n n n x n ∞
-=∑
的收敛域,并求其和函数.
七、(本题满分10分) 求曲面积分
2
(81)2(1)4,I x y dydz y dzdx yzdxdy ∑
=++--??
其中∑
是由曲线13()0z y f x x ?=≤≤?
=?
=??
绕y 轴旋转一周而成的曲面,其法向量与y 轴正向的夹角恒大于.2
π
八、(本题满分10分)
设函数()f x 在闭区间[0,1]上可微,对于[0,1]上的每一个,x 函数()f x 的值都在开区间(0,1)内,且()f x '≠1,证明在(0,1)内有且仅有一个,x 使得().f x x =
九、(本题满分8分)
问,a b 为何值时,现线性方程组
123423423412340221(3)2321
x x x x x x x x a x x b x x x ax +++=++=-+--=+++=-
有唯一解,无解,有无穷多解?并求出有无穷多解时的通解.
十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)
(1)设在一次实验中,事件A 发生的概率为,p 现进行n 次独立试验,则A 至少发生一次的概率为____________;而事件A 至多发生一次的概率为____________.
(2)三个箱子,第一个箱子有4个黑球,1个白球, 第二个箱子有3个黑球,3个白球, 第三个箱子有3个黑球,5个白球.现随机地取一个箱, 再从这个箱子中取出1个球, 此球是白球的概率为____________.已知取出的球是白球,此球属于第二个箱子的概率为____________.
(3)已知连续随机变量X
的概率密度函数为2
21
(),x
x f x -+-=则X 的数学期望为____________,X 的方差
为____________.
十一、(本题满分6分)
设随机变量,X Y 相互独立,其概率密度函数分别为
()X f x
=10 01x ≤≤其它,()Y f y = y - 0
0y y >≤,
求2Z X Y =+的概率密度函数.
1988年全国硕士研究生入学统一考试
数学(一)试卷
一、(本题共3小题,每小题5分,满分15分)
(1)求幂级数1
(3)3n
n
n x n ∞
=-∑的收敛域. (2)设2
()e ,[()]1x f x f x x ?==-且()0x ?≥,求()x ?及其定义域. (3)设∑为曲面2
2
2
1x y z ++=的外侧,计算曲面积分3
3
3
.I x dydz y dzdx z dxdy ∑
=
++??
二、填空题(本题共4小题,每小题3分,满分12分.把答案填在题中横线上) (1)若21()lim (1),tx x f t t x
→∞
=+则()f t '= _____________.
(2)设()f x 连续且
31
(),x f t dt x -=?
则(7)f =_____________.
(3)设周期为2的周期函数,它在区间(1,1]-上定义为()f x =
2
2x
1001
x x -<≤<≤,则的傅里叶()Fourier 级数在
1x =处收敛于_____________.
(4)设4阶矩阵234234[,,,],[,,,],==A αγγγB βγγγ其中234,,,,αβγγγ均为4维列向量,且已知行列式
4,1,==A B 则行列式+A B = _____________.
三、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)
(1)设()f x 可导且01
(),2
f x '=则0x ?→时,()f x 在0x 处的微分dy 是
(A)与x ?等价的无穷小 (B)与x ?同阶的无穷小 (C)比x ?低阶的无穷小 (D)比x ?高阶的无穷小
(2)设()y f x =是方程240y y y '''-+=的一个解且00()0,()0,f x f x '>=则函数()f x 在点0x 处 (A)取得极大值 (B)取得极小值 (C)某邻域内单调增加
(D)某邻域内单调减少
(3)设空间区域2222222212:,0,:,0,0,0,x y z R z x y z R x y z Ω++≤≥Ω++≤≥≥≥则 (A)1
2
4xdv dv ΩΩ=??????
(B)1
2
4ydv ydv ΩΩ=??????
(C)
1
2
4zdv zdv ΩΩ=??????
(D)
1
2
4xyzdv xyzdv ΩΩ=??????
(4)设幂级数
1
(1)
n
n n a x ∞
=-∑在1x =-处收敛,则此级数在2x =处 (A)条件收敛
(B)绝对收敛
(C)发散
(D)收敛性不能确定
(5)n 维向量组12,,,(3)s s n ≤≤ααα 线性无关的充要条件是 (A)存在一组不全为零的数12,,,,s k k k 使11220s s k k k +++≠ααα (B)12,,,s ααα 中任意两个向量均线性无关
(C)12,,,s ααα 中存在一个向量不能用其余向量线性表示 (D)12,,,s ααα 中任意一个向量都不能用其余向量线性表示
四、(本题满分6分)
设()(),x y
u yf xg y x
=+其中函数f 、g 具有二阶连续导数,求222.u u x y
x x y ??+???
五、(本题满分8分)
设函数()y y x =满足微分方程322e ,x
y y y '''-+=其图形在点(0,1)处的切线与曲线2
1y x x =--在该点处
的切线重合,求函数().y y x =
六、(本题满分9分)
设位于点(0,1)的质点A 对质点M 的引力大小为2
(0k
k r >为常数,r 为A 质点与M 之间的距离),质点M 沿
直线y =
(2,0)B 运动到(0,0),O 求在此运动过程中质点A 对质点M 的引力所作的功.
七、(本题满分6分)
已知,=AP BP 其中100100000,210,001211????
????==-????????-????
B P 求5
,.A A
八、(本题满分8分)
已知矩阵20000101x ????=??????A 与20000001y ??
??=????-??
B 相似. (1)求x 与.y
(2)求一个满足1
-=P AP B 的可逆阵.P
九、(本题满分9分)
设函数()f x 在区间[,]a b 上连续,且在(,)a b 内有()0,f x '>证明:在(,)a b 内存在唯一的,ξ使曲线()
y f x =与两直线(),y f x a ξ==所围平面图形面积1S 是曲线()y f x =与两直线(),y f x b ξ==所围平面图形面积2S 的3倍.
十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)
(1)设在三次独立试验中,事件A 出现的概率相等,若已知A 至少出现一次的概率等于19
,27
则事件A 在一次试验中出现的概率是____________.
(2)若在区间(0,1)内任取两个数,则事件”两数之和小于
6
5
”的概率为____________. (3)设随机变量X 服从均值为10,均方差为0.02的正态分布,已知
2
2
(),(2.5)0.9938,u x
x du φφ-==?
则X 落在区间(9.95,10.05)内的概率为____________.
十一、(本题满分6分)
设随机变量X 的概率密度函数为2
1
()(1)
X f x x π=
+
,求随机变量1Y =().Y f y
1989年全国硕士研究生入学统一考试
数学(一)试卷
一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)已知(3)2,f '=则0
(3)(3)
lim
2h f h f h
→--= _____________.
(2)设()f x 是连续函数,且1
()2
(),f x x f t dt =+?
则()f x =_____________.
(3)设平面曲线L
为下半圆周y =则曲线积分
2
2
()L
x
y ds +?=_____________.
(4)向量场 22
(,,z)ln(1)z u x y xy i ye j x z k =+++ 在点(1,1,0)P 处的散度p u =_____________.
(5)设矩阵300100140,010,003001????????==????????????
A I 则矩阵1
(2)--A I =_____________.
二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)
(1)当0x >时,曲线1sin
y x x
= (A)有且仅有水平渐近线 (B)有且仅有铅直渐近线
(C)既有水平渐近线,又有铅直渐近线
(D)既无水平渐近线,又无铅直渐近线
(2)已知曲面2
2
4z x y =--上点P 处的切平面平行于平面2210,x y z ++-=则点的坐标是 (A)(1,1,2)- (B)(1,1,2)- (C)(1,1,2)
(D)(1,1,2)--
(3)设线性无关的函数123,,y y y 都是二阶非齐次线性方程 y''+p(x)y'+q(x)y =f(x) 的解是任意常数,则该非齐次方程的通解是
(A)11223c y c y y ++
(B)1122123()c y c y c c y +-+
(C)1122123(1)c y c y c c y +---
(D)1122123(1)c y c y c c y ++--
(4)设函数2
(),01,f x x x =≤<而1
()sin ,,n
n S x b
n x x π∞
==
-∞<<+∞∑其中
1
02()sin ,1,2,3,,n b f x n xdx n π==? 则1
()2S -等于
(A)12- (B)14-
(C)14 (D)12
(5)设A 是n 阶矩阵,且A 的行列式0,=A 则A 中
(A)必有一列元素全为0 (B)必有两列元素对应成比例 (C)必有一列向量是其余列向量的线性组合 (D)任一列向量是其余列向量的线性组合
三、(本题共3小题,每小题5分,满分15分)
(1)设(2)(,),z f x y g x xy =-+其中函数()f t 二阶可导,(,)g u v 具有连续二阶偏导数,求2.
z
x y ???
(2)设曲线积分
2
()c
xy dx y x dy ?+?与路径无关,其中()x ?具有连续的导数,且(0)0,?=计算
(1,1)
2(0,0)
()xy dx y x dy ?+?
的值.
(3)计算三重积分
(),x z dv Ω
+???
其中Ω
是由曲面z =
z =.
四、(本题满分6分) 将函数1()arctan 1x
f x x
+=-展为x 的幂级数.
五、(本题满分7分) 设0
()sin ()(),x
f x x x t f t dt =-
-?
其中f 为连续函数,求().f x
六、(本题满分7分)
证明方程0
ln e x x π
=-?在区间(0,)+∞内有且仅有两个不同实根.
七、(本题满分6分)
问λ为何值时,线性方程组
13x x λ+=
123422x x x λ++=+ 1236423x x x λ++=+
有解,并求出解的一般形式.
八、(本题满分8分)
假设λ为n 阶可逆矩阵A 的一个特征值,证明 (1)
1λ
为1
-A 的特征值. (2)
λ
A
为A 的伴随矩阵*
A 的特征值.
九、(本题满分9分)
设半径为R 的球面∑的球心在定球面2
2
2
2
(0)x y z a a ++=>上,问当R 为何值时,球面∑在定球面内部的那
部分的面积最大?
十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)
(1)已知随机事件A 的概率()0.5,P A =随机事件B 的概率()0.6P B =及条件概率(|)0.8,P B A =则和事件
A B 的概率()P A B =____________.
(2)甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为____________.
(3)若随机变量ξ在(1,6)上服从均匀分布,则方程2
10x x ξ++=有实根的概率是____________.
十一、(本题满分6分)
设随机变量X 与Y 独立,且X 服从均值为1、标准差(均方差)
,而Y 服从标准正态分布.试求随机变量23Z X Y =-+的概率密度函数
.
1990年全国硕士研究生入学统一考试
数学(一)试卷
一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)
2x t =-+
(1)过点(1,21)M -且与直线 34y t =-垂直的平面方程是_____________.
1z t =-
(2)设a 为非零常数,则lim()x
x x a x a
→∞+-=_____________.
(3)设函数()f x =
10
11
x x ≤>,则[()]f f x =_____________.
(4)积分
2
2
2
e y x
dx dy -?
?的值等于_____________.
(5)已知向量组1234(1,2,3,4),(2,3,4,5),(3,4,5,6),(4,5,6,7),====αααα
则该向量组的秩是_____________.
二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)
(1)设()f x 是连续函数,且e ()(),x
x
F x f t dt -=?
则()F x '等于
(A)e (e )()x
x f f x ----
(B)e (e )()x
x f f x ---+
(C)e
(e )()x x f f x ---
(D)e
(e )()x
x f f x --+
(2)已知函数()f x 具有任意阶导数,且2
()[()],f x f x '=则当n 为大于2的正整数时,()f x 的n 阶导数()
()
n f x 是
(A)1
![()]
n n f x + (B)1
[()]
n n f x +
(C)2[()]n
f x
(D)2![()]n
n f x
(3)设a 为常数,则级数2
1
sin()[n na n ∞
=∑ (A)绝对收敛
(B)条件收敛 (C)发散
(D)收敛性与a 的取值有关
(4)已知()f x 在0x =的某个邻域内连续,且0()
(0)0,lim 2,1cos x f x f x
→==-则在点0x =处()f x
(A)不可导
(B)可导,且(0)0f '≠ (C)取得极大值
(D)取得极小值
(5)已知1β、2β是非齐次线性方程组=AX b 的两个不同的解1,α、2α是对应其次线性方程组=AX 0的基础解系1,k 、2k 为任意常数,则方程组=AX b 的通解(一般解)必是
(A)12
11212()2k k -+++
ββααα (B)12
11212()2k k ++-+
ββααα (C)12
11212()2
k k -+++ββαββ
(D)12
11212()2
k k ++-+ββαββ
三、(本题共3小题,每小题5分,满分15分)
(1)求
1
20ln(1).
(2)x dx x +-?
(2)设(2,sin ),z f x y y x =-其中(,)f u v 具有连续的二阶偏导数,求2.
z
x y ???
(3)求微分方程244e
x
y y y -'''++=的通解(一般解).
四、(本题满分6分) 求幂级数
(21)n
n n x
∞
=+∑的收敛域,并求其和函数.
五、(本题满分8分) 求曲面积分
2S
I yzdzdx dxdy =+??
其中S 是球面222
4x y z ++=外侧在0z ≥的部分.
六、(本题满分7分)
设不恒为常数的函数()f x 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,且()().f a f b =证明在(,)a b 内至少存在一点,ξ使得()0.f ξ'>
七、(本题满分6分) 设四阶矩阵
11002
13401100
213,0011002100010
002-????
????-?
???==????
-????
????
B C 且矩阵A 满足关系式
1()-''-=A E C B C E
其中E 为四阶单位矩阵1
,-C 表示C 的逆矩阵,'C 表示C 的转置矩阵.将上述关系式化简并求矩阵.A
八、(本题满分8分)
求一个正交变换化二次型22212312132344448f x x x x x x x x x =++-+-成标准型.
九、(本题满分8分)
质点P 沿着以AB 为直径的半圆周,从点(1,2)A 运动到点(3,4)B 的过程中受
变力F 作用(见图).F
的大小等于点P 与原点O 之间的距离,其方向垂直于线段OP 且与y 轴正向的夹角小于.2
π
求变力F 对质点P 所作的功
.
十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上) (1)已知随机变量X 的概率密度函数
1()e ,2
x
f x x -=-∞<<+∞
则X 的概率分布函数()F x =____________.
(2)设随机事件A 、B 及其和事件的概率分别是0.4、0.3和0.6,若B 表示B 的对立事件,那么积事件AB 的概率
()P AB =____________.
(3)已知离散型随机变量X 服从参数为2的泊松()Poisson 分布,即2
2e {},0,1,2,,!
k P X k k k -=== 则随机变量32Z X =-的数学期望()E Z =____________.
十一、(本题满分6分)
设二维随机变量(,)X Y 在区域:01,D x y x <<<内服从均匀分布,求关于X 的边缘概率密度函数及随机变量21Z X =+的方差().D Z
1991年全国硕士研究生入学统一考试
数学(一)试卷
一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)
(1)设
2
1c o s x t
y t
=+=,则
2
2
d y
dx =_____________.
(2)由方程xyz (,)z z x y =在点(1,0,1)-处的全微分dz =_____________.
(3)已知两条直线的方程是1212321:;:.101211
x y z x y z
l l ---+-====-则过1l 且平行于2l 的平面方程是_____________.
(4)已知当0x →时123
,(1)1ax +-与cos 1x -是等价无穷小,则常数a =_____________.
(5)设4阶方阵520
02
100,00120011??
???
?=??
-??
??
A 则A 的逆阵1-A =_____________.
二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)
(1)曲线2
2
1e 1e
x x y --+=
- (A)没有渐近线 (B)仅有水平渐近线
(C)仅有铅直渐近线
(D)既有水平渐近线又有铅直渐近线
(2)若连续函数()f x 满足关系式2x
t
f(x)=
f()dt +ln22?
则()f x 等于 (A)e ln 2x
(B)2e ln 2x
(C)e ln 2x +
(D)2e ln 2x +
(3)已知级数1
211
1
(1)
2,5,n n n n n a a ∞
∞
--==-==∑∑则级数1
n n a ∞
=∑等于
(A)3 (B)7
(C)8
(D)9
(4)设D 是平面xoy 上以(1,1)、(1,1)-和(1,1)--为顶点的三角形区域1,D 是D 在第一象限的部分,则
(cos sin )D
xy x y dxdy +??等于
(A)1
2cos sin D x ydxdy ??
(B)1
2
D xydxdy ??
(C)1
4
(cos sin )D xy x y dxdy +??
(D)0
(5)设n 阶方阵A 、B 、C 满足关系式,=ABC E 其中E 是n 阶单位阵,则必有 (A)=ACB E (B)=CBA E (C)=BAC E (D)=BCA E
三、(本题共3小题,每小题5分,满分15分)
(1)求0
x
x π
+
→
(2)设n 是曲面222
236x y z ++=在点(1,1,1)P 处的指向外侧的法向量,求函数u =P 处沿方
向n
的方向导数.
(3)
2
2
(),x
y z dv Ω
++???其中Ω是由曲线
220
y z x ==绕z 轴旋转一周而成的曲面与平面4z =所围城的立体.
四、(本题满分6分)
过点(0,0)O 和(,0)A π的曲线族sin (0)y a x a =>中,求一条曲线,L 使沿该曲线O 从到A 的积分
3(1)(2)L
y dx x y dy +++?
的值最小.
五、(本题满分8分)
将函数()2(11)f x x x =+-≤≤展开成以2为周期的傅里叶级数,并由此求级数21
1
n n ∞
=∑的和. 六、(本题满分7分)
设函数()f x 在[0,1]上连续,(0,1)内可导,且123
3()(0),f x dx f =?
证明在(0,1)内存在一点,c 使()0.f c '=
七、(本题满分8分)
已知1234(1,0,2,3),(1,1,3,5),(1,1,2,1),(1,2,4,8)a a ===-+=+αααα及(1,1,3,5).b =+β (1)a 、b 为何值时,β不能表示成1234,,,αααα的线性组合?
(2)a 、b 为何值时,β有1234,,,αααα的唯一的线性表示式?写出该表示式
.
八、(本题满分6分)
设A 是n 阶正定阵,E 是n 阶单位阵,证明+A E 的行列式大于1.
九、(本题满分8分)
在上半平面求一条向上凹的曲线,其上任一点(,)P x y 处的曲率等于此曲线在该点的法线段PQ 长度的倒数(Q 是法线与x 轴的交点),且曲线在点(1,1)处的切线与x 轴平行.
十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)
(1)若随机变量X 服从均值为2、方差为2
σ的正态分布,且{24}0.3,P X <<=则{0}P X <=____________. (2)
随机地向半圆0y a <<
为正常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正
比,则原点和该点的连线与x 轴的夹角小于
4
π
的概率为____________.
十一、(本题满分6分)
设二维随机变量(,)X Y 的密度函数为
(,)f x y =
(2)2e 0,00 x y x y -+>>其它
求随机变量2Z X Y =+的分布函数.
1992年全国硕士研究生入学统一考试
数学(一)试卷
一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)设函数()y y x =由方程e
cos()0x y
xy ++=确定,则
dy
dx
=_____________.
(2)函数2
2
2ln()u x y z =++在点(1,2,2)M -处的梯度grad M
u =_____________.
(3)设()f x =
2
11x
-+
00x x ππ
-<≤<≤,则其以2π为周期的傅里叶级数在点x π=处收敛于_____________.
(4)微分方程tan cos y y x x '+=的通解为y =_____________.
(5)设111212121
212,n n n n n n a b a b a b a b a b a b a b a b a b ?????
?=??
?
?
??
A 其中0,0,(1,2,,).i i a b i n ≠≠= 则矩阵A 的秩()r A =_____________.
二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)
(1)当1x →时,函数12
1
1
e 1
x x x ---的极限 (A)等于2 (B)等于0
(C)为∞
(D)不存在但不为∞
(2)级数
1
(1)(1cos )(n
n a n ∞
=--∑常数0)a > (A)发散
(B)条件收敛
(C)绝对收敛
(D)收敛性与a 有关
(3)在曲线2
3
,,x t y t z t ==-=的所有切线中,与平面24x y z ++=平行的切线 (A)只有1条 (B)只有2条 (C)至少有3条
(D)不存在
(4)设3
2
()3,f x x x x =+则使()
(0)n f 存在的最高阶数n 为
(A)0 (B)1 (C)2
(D)3
(5)要使12100,121???? ? ?
== ? ? ? ?-????
ξξ都是线性方程组=AX 0的解,只要系数矩阵A 为
(A) []211-
(B)201011-??
?
???
(C)102011-????-??
(D)011422011-??
??--??????
三、(本题共3小题,每小题5分,满分15分)
(1)求0
lim
x x →
(2)设2
2
(e sin ,),x
z f y x y =+其中f 具有二阶连续偏导数,求2.
z
x y ???
(3)设()f x = 21e
x x -+ 0
0x x ≤>,求31(2).
f x dx -?
四、(本题满分6分) 求微分方程323e x
y y y -'''+-=的通解.
五、(本题满分8分) 计算曲面积分
3
23232()()(),x
az dydz y ax dzdx z ay dxdy ∑
+++++??其中∑
为上半球面z =上侧.
六、(本题满分7分)
设()0,(0)0,f x f ''<=证明对任何120,0,x x >>有1212()()().f x x f x f x +<+
七、(本题满分8分)
在变力F yzi zxj xyk =++ 的作用下,质点由原点沿直线运动到椭球面222
2221x y z a b c
++=上第一卦限的点
(,,),M ξηζ问当ξ、η、ζ取何值时,力F
所做的功W 最大?并求出W 的最大值.
八、(本题满分7分)
设向量组123,,ααα线性相关,向量组234,,ααα线性无关,问: (1)1α能否由23,αα线性表出?证明你的结论. (2)4α能否由123,,ααα线性表出?证明你的结论.
九、(本题满分7分)
设3阶矩阵A 的特征值为1231,2,3,λλλ===对应的特征向量依次为
1231111,2,3,149?????? ? ? ?=== ? ? ? ? ? ???????ξξξ又向量12.3??
?= ? ???
β (1)将β用123,,ξξξ线性表出. (2)求(n
n A β为自然数).
十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上) (1)已知11
()()(),()0,()(),46
P A P B P C P AB P AC P BC ======则事件A 、B 、C 全不发生的概率为____________.
(2)设随机变量X 服从参数为1的指数分布,则数学期望2{e }X
E X -+=____________.
十一、(本题满分6分)
设随机变量X 与Y 独立,X 服从正态分布2
(,),N Y μσ服从[,]ππ-上的均匀分布,试求Z X Y =+的概率分布密度(计算结果用标准正态分布函数Φ表示,
其中22
()e
)t x
x dt -
-∞
Φ=
?
.
1993年全国硕士研究生入学统一考试
数学(一)试卷
一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)
函数1
()(2(0)x
F x dt x =
>?
的单调减少区间为_____________.
(2)由曲线
2232120
x y z +==绕y 轴旋转一周得到的旋转面在点)处的指向外侧的单位法向量为
_____________.
(3)设函数2
()()f x x x x πππ=+-<<的傅里叶级数展开式为01
(cos sin ),2n n n a a nx b nx ∞
=++∑则其中系数3
b 的值为_____________.
(4)设数量场u =则p(grad )u =_____________.
(5)设n 阶矩阵A 的各行元素之和均为零,且A 的秩为1,n -则线性方程组=AX 0的通解为_____________.
二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)
(1)设sin 234
()sin(),(),x
f x t dt
g x x x =
=+?
则当0x →时,()f x 是()g x 的
(A)等价无穷小
(B)同价但非等价的无穷小 (C)高阶无穷小
(D)低价无穷小
(2)双纽线2
22
2
2
()x y x y +=-所围成的区域面积可用定积分表示为
(A)40
2cos 2d π
θθ?
(B)40
4cos 2d π
θθ?
(C)2
θ
(D)2
40
1(cos 2)2d πθθ?
(3)设有直线1158:121
x y z l --+==
-与2:l 623x y y z -=+=则1l 与2l 的夹角为 (A)
6π
(B)
4π (C)3
π
(D)2
π
(4)设曲线积分
[]sin cos x
L
f(x)e
ydx f(x)ydy --? 与路径无关,其中()f x 具有一阶连续导数,且(0)0,f =则
()f x 等于
(A)e e 2
x x --
(B)e e 2
x x --
(C)
e e 12
x x
-+-
(D)e e 12
x x
-+-
(5)已知12324,369t ????=??????
Q P 为三阶非零矩阵,且满足0,=PQ 则 (A)6t =时P 的秩必为1
(B)6t =时P 的秩必为2 (C)6t ≠时P 的秩必为1
(D)6t ≠时P 的秩必为2
三、(本题共3小题,每小题5分,满分15分) (1)求21lim(sin
cos ).x x x x →∞
+
(2)求.
x
(3)求微分方程22
,x y xy y '+=满足初始条件1
1x y ==的特解.
四、(本题满分6分) 计算2
2,xzdydz yzdzdx z dxdy ∑
+-??
其中∑是由曲面z =z =.
五、(本题满分7分) 求级数20
(1)(1)
2n n
n n n ∞
=--+∑的和.
六、(本题共2小题,每小题5分,满分10分) (1)设在[0,)+∞上函数()f x 有连续导数,且()0,(0)0,f x k f '≥><证明()f x 在(0,)+∞内有且仅有一个零
点. (2)设,b a e >>证明.b a a b >
七、(本题满分8分)
已知二次型222
12312323(,,)2332(0)f x x x x x x ax x a =+++>通过正交变换化成标准形22212
325,f y y y =++求参数a 及所用的正交变换矩阵.
八、(本题满分6分)
设A 是n m ?矩阵,B 是m n ?矩阵,其中,n m
九、(本题满分6分)
设物体A 从点(0,1)出发,以速度大小为常数v 沿y 轴正向运动.物体B 从点(1,0)-与A 同时出发,其速度大小为2,v 方向始终指向,A 试建立物体B 的运动轨迹所满足的微分方程,并写出初始条件.
十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)
(1)一批产品共有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为____________.
(2)设随机变量X 服从(0,2)上的均匀分布,则随机变量2
Y X
=在(0,4)内的概率分布密度
()Y f y =____________.
十一、(本题满分6分)
设随机变量X 的概率分布密度为1()e ,.2
x
f x x -=-∞<<+∞ (1)求X 的数学期望EX 和方差.DX
(2)求X 与X 的协方差,并问X 与X 是否不相关? (3)问X 与X 是否相互独立?为什么?
1994年全国硕士研究生入学统一考试
数学(一)试卷
一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)
(1)0
11
limcot (
)sin x x x x
→-= _____________. (2)曲面23z
z e xy -+=在点(1,2,0)处的切平面方程为_____________.
(3)设e sin ,x
x u y -=则2u
x y
???在点1(2,)π处的值为_____________.
(4)设区域D 为222
,x y R +≤则2222()D
x y dxdy a b +??=_____________.
(5)已知11[1,2,3],[1,,],23
==αβ设,'=A αβ其中'α是α的转置,则n
A =_____________.
二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)
(1)设4342342
2
22222
sin cos ,(sin cos ),(sin cos ),1x M xdx N x x dx P x x x dx x π
ππ
π
ππ---
==+=-+???则有 (A)N P M << (B)M P N << (C)N M P <<
(D)P M N <<
(2)二元函数(,)f x y 在点00(,)x y 处两个偏导数00(,)x f x y '、00(,)y f x y '存在是(,)f x y 在该点连续的 (A)充分条件而非必要条件 (B)必要条件而非充分条件
(C)充分必要条件
(D)既非充分条件又非必要条件
(3)设常数0,λ>且级数21
n n a ∞
=∑收敛,
则级数1
(1)n
n ∞
=-∑
(A)发散 (B)条件收敛
(C)绝对收敛
(D)收敛性与λ有关
(4)2
tan (1cos )lim
2,ln(12)(1)
x x a x b x c x d e -→+-=-+-其中220,a c +≠则必有
(A)4b d = (B)4b d =- (C)4a c =
(D)4a c =-
(5)已知向量组1234,,,αααα线性无关,则向量组 (A)12233441,,,++++αααααααα线性无关 (B)12233441,,,----αααααααα线性无关 (C)12233441,,,+++-αααααααα线性无关 (D)12233441,,,++--αααααααα线性无关
三、(本题共3小题,每小题5分,满分15分)
(1)
设
2
2
2
1
c o s ()
c o s ()c o s
t x t y t t udu ==-?
,求dy dx 、22d y
dx 在t =.
(2)将函数111
()ln arctan 412
x f x x x x +=
+--展开成x 的幂级数.
(3)求
.
sin(2)2sin dx
x x +?
四、(本题满分6分) 计算曲面积分
2222
,S
xdydz z dxdy x y z
+++??
其中S 是由曲面222
x y R +=及,(0)z R z R R ==->两平面所围成立体表面的外侧.
五、(本题满分9分)
设()f x 具有二阶连续函数,(0)0,(0)1,f f '==且2
[()()][()]0xy x y f x y dx f x x y dy '+-++=为一全微分方程,求()f x 及此全微分方程的通解.
六、(本题满分8分)
设()f x 在点0x =的某一邻域内具有二阶连续导数,且0()lim 0,x f x x →=证明级数1
1
()n f n ∞
=∑绝对收敛.
七、(本题满分6分)
已知点A 与B 的直角坐标分别为(1,0,0)与(0,1,1).线段AB 绕z 轴旋转一周所成的旋转曲面为.S 求由S 及两平面0,1z z ==所围成的立体体积.
八、(本题满分8分) 设四元线性齐次方程组(Ⅰ)为
122400
x x x x +=-=,
又已知某线性齐次方程组(Ⅱ)的通解为12(0,1,1,0)(1,2,2,1).k k +-
(1)求线性方程组(Ⅰ)的基础解析.
(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
九、(本题满分6分)
设A 为n 阶非零方阵*
,A 是A 的伴随矩阵,'A 是A 的转置矩阵,当*'=A A 时,证明0.
≠A
十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)
(1)已知A 、B 两个事件满足条件P(AB)=P(AB) 且(),P A p =则()P B =____________. (2)设相互独立的两个随机变量,X Y 具有同一分布率,且X 的分布率为
则随机变量max{,}Z X Y =的分布率为____________.
十一、(本题满分6分)
设随机变量X 和Y 分别服从正态分布2(1,3)N 和2
(0,4),N 且X 与Y 的相关系数1,2xy ρ=-设,32
X Y Z =+ (1)求Z 的数学期望EZ 和DZ 方差.
(2)求X 与Z 的相关系数.xz ρ (3)问X 与Z 是否相互独立?为什么?
1995年全国硕士研究生入学统一考试
数学(一)试卷
一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)
(1)2sin 0
lim(13)
x
x x →+=_____________.
(2)
20
2cos x
d x t dt dx ?= _____________.
(3)设()2,?=a b c 则[()()]()+?++a b b c c a =_____________.
(4)幂级数2112(3)
n n n
n n
x ∞
-=+-∑的收敛半径R =_____________. (5)设三阶方阵,A B 满足关系式1
6,-=+A BA A BA 且13
1417000000?? ?= ?
?
?
?A 则B =_____________.
二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)
(1)设有直线
:L 3210
21030
x y z x y z +++=--+=,及平面:4220,x y z π-+-=则直线L
(A)平行于π (B)在π上 (C)垂直于π
(D)与π斜交
(2)设在[0,1]上()0,f x ''>则(0),(1),(1)(0)f f f f ''-或(0)(1)f f -的大小顺序是 (A)(1)(0)(1)(0)f f f f ''>>- (B)(1)(1)(0)(0)f f f f ''>-> (C)(1)(0)(1)(0)f f f f ''->>
(D)(1)(0)(1)(0)f f f f ''>->
(3)设()f x 可导,()()(1sin ),F x f x x =+则(0)0f =是()F x 在0x =处可导的 (A)充分必要条件 (B)充分条件但非必要条件
(C)必要条件但非充分条件 (D)既非充分条件又非必要条件
(4)设(1)ln(1n
n u =-+
则级数 (A)
1n
n u
∞
=∑与
21
n
n u
∞
=∑都收敛
(B)
1
n
n u
∞
=∑与
21
n
n u
∞
=∑都发散
(C)1
n
n u
∞
=∑收敛,而
21
n
n u
∞
=∑发散 (D)
21
n
n u
∞
=∑收敛,而
1
n
n u
∞
=∑发散
(5)
设111213212223
21222311
12131231
32
333111
3212
3313010100,,100,010001101a a a a a a a a a a a a a a a a a a a a a ????????
? ? ? ?==== ? ? ? ? ? ? ? ?+++????????
A B P P 则必有
(A)12AP P =B (B)21AP P =B (C)12P P A =B
(D)21P P A =B
三、(本题共2小题,每小题5分,满分10分) (1)设2
(,,),(,e ,)0,sin ,y
u f x y z x z y x ?===其中,f ?都具有一阶连续偏导数,且
0.z
?
?≠?求.
du dx (2)设函数()f x 在区间[0,1]上连续,并设
1
(),f x dx A =?
求11
()().
x
dx f x f y dy ??
四、(本题共2小题,每小题6分,满分12分)
(1)计算曲面积分
,zdS ∑
??
其中∑为锥面z =在柱体222x y x +≤内的部分.
(2)将函数()1(02)f x x x =-≤≤展开成周期为4的余弦函数.
五、(本题满分7分)
设曲线L 位于平面xOy 的第一象限内,L 上任一点M 处的切线与y 轴总相交,交点记为.A 已知,MA OA =且L 过点33
(,),22
求L 的方程.
六、(本题满分8分)
设函数(,)Q x y 在平面xOy 上具有一阶连续偏导数,曲线积分
2(,)L
xydx Q x y dy +?
与路径无关,并且对任意t
恒有(,1)
(1,)
(0,0)
(0,0)
2(,)2(,),t t xydx Q x y dy xydx Q x y dy +=+?
?
求(,).Q x y
七、(本题满分8分)
假设函数()f x 和()g x 在[,]a b 上存在二阶导数,并且()0,()()()()0,g x f a f b g a g b ''≠====试证:
(1)在开区间(,)a b 内()0.g x ≠
(2)在开区间(,)a b 内至少存在一点,ξ使
()()
.()()f f g g ξξξξ''=''
八、(本题满分7分)
设三阶实对称矩阵A 的特征值为1231,1,λλλ=-==对应于1λ的特征向量为101,1????=??????
ξ求.A
九、(本题满分6分)
设A 为n 阶矩阵,满足('=AA I I 是n 阶单位矩阵,'A 是A 的转置矩阵),0,
十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上) (1)设X 表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,
则2
X 的数学期望2
()E X =____________.
(2)设X 和Y 为两个随机变量,且
34
{0,0},{0}{0},77
P X Y P X P Y ≥≥=≥=≥=
则{max(,)0}P X Y ≥=____________.
十一、(本题满分6分)
设随机变量X 的概率密度为
()X f x = e 0x - 0
x x ≥<,
求随机变量e X Y =的概率密度().Y f y
1996年全国硕士研究生入学统一考试
数学(一)试卷
一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)
(1)设2lim()8,x
x x a x a
→∞+=-则a =_____________.
(2)设一平面经过原点及点(6,3,2),-且与平面428x y z -+=垂直,则此平面方程为_____________. (3)微分方程22e x
y y y '''-+=的通解为_____________.
(4)
函数ln(u x =+
在点(1,0,1)A 处沿点A 指向点(3,2,2)B -方向的方向导数为_____________.
(5)设A 是43?矩阵,且A 的秩()2,r =A 而102020,103????=????-??
B 则()r AB =_____________.
二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)
(1)已知2
()()
x ay dx ydy
x y +++为某函数的全微分,a 则等于 (A)-1 (B)0 (C)1
(D)2
(2)设()f x 具有二阶连续导数,且0
()
(0)0,lim
1,x f x f x
→'''==则 (A)(0)f 是()f x 的极大值 (B)(0)f 是()f x 的极小值
(C)(0,(0))f 是曲线()y f x =的拐点
(D)(0)f 不是()f x 的极值,(0,(0))f 也不是曲线()y f x =的拐点 (3)设0(1,2,),n a n >= 且1n n a ∞
=∑收敛,常数(0,),2π
λ∈则级数21
(1)(tan )n n n n a n λ
∞
=-∑ (A)绝对收敛
(B)条件收敛
(C)发散
(D)散敛性与λ有关
(4)设有()f x 连续的导数220
,(0)0,(0)0,()()(),x
f f F x x t f t dt '=≠=-?
且当0x →时,()F x '与k x 是同阶
无穷小,则k 等于
(A)1
(B)2 (C)3
(D)4
(5)四阶行列式
1122334
4
0000000
a b a b a b b a 的值等于
(A)12341234a a a a b b b b -
(B)12341234a a a a b b b b + (C)12123434()()a a b b a a b b --
(D)23231414()()a a b b a a b b --
三、(本题共2小题,每小题5分,满分10分)
(1)求心形线(1cos )r a θ=+的全长,其中0a >是常数.
(2)
设1110,1,2,),n x x n +=== 试证数列{}n x 极限存在,并求此极限.
四、(本题共2小题,每小题6分,满分12分)
(1)计算曲面积分
(2),S
x z dydz zdxdy ++??
其中S 为有向曲面22
(01)z x y z =+≤≤,其法向量与z 轴正向的夹角为锐角.
(2)设变换 2u x y
v x a y =-=+可把方程2222260z z z x x y y ???+
-=????简化为20,z
u v
?=??求常数.a
五、(本题满分7分) 求级数21
()2
2n
n n -1∞
=∑的和.
六、(本题满分7分) 设对任意0,x >曲线()y f x =上点(,())x f x 处的切线在y 轴上的截距等于
01(),x
f t dt x
?求()f x 的一般表达式.
七、(本题满分8分)
设()f x 在[0,1]上具有二阶导数,且满足条件(),(),f x a f x b ''≤≤其中,a b 都是非负常数,c 是(0,1)内任意一点.证明()2.2b f c a '≤+
八、(本题满分6分)
设,T
A =-I ξξ其中I 是n 阶单位矩阵,ξ是n 维非零列向量,T
ξ是ξ的转置.证明
(1)2
=A A 的充要条件是 1.T
=ξξ
(2)当1T
=ξξ时,A 是不可逆矩阵.
九、(本题满分8分)
已知二次型222
123123121323(,,)55266f x x x x x cx x x x x x x =++-+-的秩为2,
(1)求参数c 及此二次型对应矩阵的特征值. (2)指出方程123(,,)1f x x x =表示何种二次曲面.
十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)
(1)设工厂A 和工厂B 的产品的次品率分别为1%和2%,现从由A 和B 的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,则该次品属A 生产的概率是____________.
(2)设,ξη
是两个相互独立且均服从正态分布2
)N 的随机变量,则随机变量ξη-的数学期望()E ξη-=____________.
十一、(本题满分6分)
设,ξη是两个相互独立且服从同一分布的两个随机变量,已知ξ的分布率为1
(),1,2,3.3
P i i ξ=== 又设max(,),min(,).X Y ξηξη==
(1)
(2)求随机变量X 的数学期望().E X
1997年全国硕士研究生入学统一考试
数学(一)试卷
一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)
(1)201
3sin cos
lim
(1cos )ln(1)
x x x x x x →+++=_____________.
(2)设幂级数
1
n
n n a x
∞
=∑的收敛半径为3,则幂级数
1
1
(1)
n n
n na x ∞
+=-∑的收敛区间为_____________.
(3)对数螺线e θ
ρ=在点2(,)(e ,
)2
π
π
ρθ=处切线的直角坐标方程为_____________.
(4)设12243,311t -????=??
??-??
A B 为三阶非零矩阵,且,=AB O 则t =_____________.
(5)袋中有50个乒乓球,其中20个是黄球,30个是白球,今有两人依次随机地从袋中各取一球,取后不放回,则第二
个人取得黄球的概率是_____________.
二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)
(1)二元函数(,)f x y = 22
(,)(0,0)0(,)(0,0)
xy
x y x y x y ≠+=,在点(0,0)处
(A)连续,偏导数存在 (B)连续,偏导数不存在 (C)不连续,偏导数存在
(D)不连续,偏导数不存在
(2)设在区间[,]a b 上()0,()0,()0.f x f x f x '''><>令
1231
(),()(),[()()](),2
b a S f x dx S f b b a S f a f b b a ==-=+-?
则
(A)123S S S << (B)213S S S << (C)312S S S <<
(D)231S S S <<
(3)设2sin ()e sin ,x t x
F x tdt π
+=
?
则()F x
(A)为正常数 (B)为负常数 (C)恒为零
(D)不为常数
(4)设111122232333,,,a b c a b c a b c ????????????===??????????????????
ααα则三条直线 1112223330,0,0
a x
b y
c a x b y c a x b y c ++=++=++= (其中220,1,2,3i i a b i +≠=)交于一点的充要条件是 (A)123,,ααα线性相关
(B)123,,ααα线性无关
(C)秩123(,,)r =ααα秩12(,)r αα
(D)123,,ααα线性相关12,,αα线性无关
(5)设两个相互独立的随机变量X 和Y 的方差分别为4和2,则随机变量32X Y -的方差是 (A)8 (B)16 (C)28 (D)44
三、(本题共3小题,每小题5分,满分15分)
(1)计算2
2
(),I x
y dv Ω
=
+???其中Ω为平面曲线
220
y z x ==绕z 轴旋转一周所成的曲面与平面8z =所围成的
区域.
(2)计算曲线积分
()()(),c
z y dx x z dy x y dz -+-+-? 其中c 是曲线 221
2x y x y z +=-+=从z 轴正向往z 轴负向看c
的方向是顺时针的.
(3)在某一人群中推广新技术是通过其中掌握新技术的人进行的,设该人群的总人数为,N 在0t =时刻已掌握新技术的人数为0,x 在任意时刻t 已掌握新技术的人数为()(x t 将()x t 视为连续可微变量),其变化率与已掌握新技术人数和未掌握新技术人数之积成正比,比例常数0,k >求().x t
正在阅读:
考研数学历年真题(1987-2013)年数学一_可直接打印(纯试题)04-16
B32686-A334-M中文资料06-06
桥梁基础及下部构造开工报告09-19
办公室综合协调工作四大职能01-30
西师版六年级语文上册教案(17)10、“妙极了”与“糟透了”03-17
大豆膳食纤维项目可行性研究报告04-30
上海某超高层甲级办公楼施工组织设计-典尚设计-三维动画效果图06-06
初中通知书评语10-20
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- 数学
- 真题
- 历年
- 试题
- 考研
- 直接
- 打印
- 1987
- 2013
- 企业公开转让说明书
- 中心小学学生综合素质评价方案
- 考研英语(短文写作)-试卷5
- 美庐奶粉常见营养素作用介绍
- 食品安全责任保险条款
- 泗县双语中学届上学期高三级摸底考试数学试卷理科
- 高级财务会计习题及答案版
- 关于校园的导游词5篇
- 高明区代理发表职称论文发表-机电安装施工技术要点论文选题题目
- 青年志愿者协会职责
- 高中英语课文经典句子背诵
- 【优质课教学设计】记金华的双龙洞-语文-小学(教学实录试讲稿)
- 《网络安全知识》判断题
- 2022年统编版五年级语文下册语文园地四教案设计
- 新人教版七年级下册复习资料
- 初中物理电路故障及动态电路分析解题技巧和经典题型(含详细答案)
- 古代人智慧名人名言_名人名言
- 【最新】江苏省江阴市青阳片 七年级语文5月月考试题苏教版
- 新北师大版七年级数学下册《等可能事件的概率(2)》导学案
- 完整word版项目管理师培训大纲