A Combining Method of Quasi-Cyclic LDPC
更新时间:2023-07-20 07:38:01 阅读量: 实用文档 文档下载
- a站推荐度:
- 相关推荐
LDPC码
IEEECOMMUNICATIONSLETTERS,VOL.9,NO.9,SEPTEMBER2005823
ACombiningMethodofQuasi-CyclicLDPCCodesbytheChineseRemainderTheorem
SehoMyungandKyeongcheolYang,Member,IEEE
Abstract—Inthispaperweproposeamethodofconstructingquasi-cycliclow-densityparity-check(QC-LDPC)codesoflargelengthbycombiningQC-LDPCcodesofsmalllengthastheircomponentcodes,viatheChineseRemainderTheorem.ThegirthoftheQC-LDPCcodesobtainedbytheproposedmethodisalwayslargerthanorequaltothatofeachcomponentcode.Byapplyingthemethodtoarraycodes,wepresentafamilyofhigh-rateregularQC-LDPCcodeswithno4-cycles.SimulationresultsshowthattheyhavealmostthesameperformanceasrandomregularLDPCcodes.
IndexTerms—ChineseRemainderTheorem,circulantpermu-tationmatrix,low-densityparity-check(LDPC)codes,quasi-cyclic.
Theoutlineofthepaperisasfollows.InSectionII,wereviewQC-LDPCcodesandde nenotationforourpresenta-tion.WeproposeamethodtoextendQC-LDPCcodesbasedontheCRTinSectionIIIandpresentafamilyofQC-LDPCcodeswithno4-cyclesbyapplyingtheproposedmethodtoarraycodesinSectionIV.Finally,wegiveconcludingremarksinSectionV.
II.QUASI-CYCLICLDPCCODES
AQC-LDPCcodeischaracterizedbytheparity-checkmatrixwhichconsistsofsmallsquareblockswhicharethezeromatrixorcirculantpermutationmatrices.LetCbetheQC-LDPCcodesoflengthnL,whoseparity-checkmatrixisgivenby
a P11Pa12···Pa1(n 1)Pa1n
Pa21Pa22···Pa2(n 1)Pa2n
(1)H= ........ ..···..
Pam1
Pam2
···
Pam(n 1)
Pamn
whereP=(Pij)istheL×Lpermutationmatrixde nedby
1ifi+1≡jmodL
(2)Pij=
0otherwiseandaij∈{0,1,...,L 1,∞}.Forsimplenotation,wedenotethezeromatrixbyP∞.
Forourconvenienceweintroducesomede nitions.
1)MotherMatrix:Them×nbinarymatrixM(H)canbeuniquelyobtainedbyreplacingzeromatricesandcir-culantpermutationmatricesby‘0’and‘1’,respectively,fromtheparity-checkmatrixHofaQC-LDPCcodein(1).ThenM(H)iscalledthemothermatrixofH.
2)ExponentMatrix:TheexponentmatrixE(H)ofHin(1)isde nedby
a11a12···a1(n 1)a1n
.......E(H)= ...···.. .(3)
am1
am2
···
am(n 1)
amn
NotethatithasthesamesizeasthemothermatrixofH.
3)ExponentCoupling:Aparity-checkmatrixHcanbeobtainedbycombininganexponentmatrixEandthecirculantpermutationmatrixP.Asanexample,Hin(1)willbeexpressedasH=E PwhereEisgivenbyE(H)in(3).Thisprocedureiscalledanexponentcoupling.
4)Block-Cycle:Ifthereisacyclegeneratedby1’sinM(H),itiscalledablock-cycle.
I.INTRODUCTION
L
OW-DENSITYparity-check(LDPC)codes rstdiscov-eredbyGallager[3]havearemarkableperformancewithiterativedecodingthatisveryclosetotheShannonlimitoveradditivewhiteGaussiannoise(AWGN)channels[5],[6].MostmethodsfordesigninggoodLDPCcodesarebasedonrandomconstruction,butalgebraicallystructuredLDPCcodesmaybeneededforimplementationpurposes.InthecaseofrandomLDPCcodesoflargecodelength,asigni cantamountofmemoryisneededtostoretheirparity-checkmatrices.Also,itishardtoaccessthememoryandencodedataef ciently.Quasi-cyclicLDPC(QC-LDPC)codesmaybeagoodcandidatetosolvethememoryproblemduetotheiralgebraicstructures.TherequiredmemoryforstoringQC-LDPCcodescanbereducedbyafactor1/L,whenL×Lcirculantper-mutationmatricesorthezeromatrixareemployed.Recently,severalcodingtheoristsproposedsomeclassesofQC-LDPCcodesbasedoncirculantpermutationmatricesandanalyzedtheirproperties[1],[2],[4],[8].ThesecodesperformquitewellcomparedtorandomLDPCcodes.
ThemaincontributionofthepaperistoproposeamethodforconstructingQC-LDPCcodesoflargelengthfromQC-LDPCcodesofsmalllengthusingtheChineseRemainderTheorem(CRT).Byapplyingthemethodtoarraycodes,wepresentafamilyofhigh-rateregularQC-LDPCcodeswithno4-cycles.
ManuscriptreceivedMarch2,2005.TheassociateeditorcoordinatingthereviewofthisletterandapprovingitforpublicationwasProf.MarcFossorier.ThisworkwassupportedinpartbytheCenterforBroadbandOFDMMobileAccess(BrOMA)atPOSTECH,supportedbytheITRCprogramoftheKoreanMinistryofInformationandCommunication(MIC)underthesupervisionoftheInstituteofInformationTechnologyAssessment(IITA).
TheauthorsarewiththeDepartmentofElectronicsandElectricalEngi-neering,PohangUniversityofScienceandTechnology(POSTECH),Pohang,Korea(e-mail:kcyang@postech.ac.kr).
DigitalObjectIdenti er10.1109/LCOMM.2005.09030.
c2005IEEE1089-7798/05$20.00
LDPC码
8245)ExponentChain:Ablock-cycleoflength2linM(H)canberepresentedasanexponentchainasfollows:
Pa1→···→Pa2l→Pa1
or
(a1,···,a2l,a1).
HerebothPaiandPai+1arelocatedineitherthesame
columnablockorthesamerowblockofH,andbothandPi+2arelocatedinthedistinctcolumnandrowblocks.Sincethecyclesofshortlengthmaydegradetheperfor-manceofLDPCcodes,itiscriticaltounderstandtheirstruc-ture.Duetothespecialstructureoftheirparity-checkmatricesforQC-LDPCcodes,thecyclesmaybeeasilyanalyzedinanalgebraicway.Thefollowingpropositionwas rstpresentedbyFossorierin[2].
Proposition1([2]):LetPa1→Pa2→···→Pa2lPa→1betheexponentchaincorrespondingtoa2l-block-cycle.Ifristheleastpositiveintegersuchthat
2lr·
( 1)i 1ai≡0modL,
(4)
i=1
thentheblock-cycleleadstoacycleoflength2lr.
Itiseasilycheckedthatr|L,thatis,rdividesLduetoits
choiceinProposition1.
BININGOFQC-LDPCCODESBYTHECRTInthissectionweintroduceasimplemethodtoobtaintheexponentmatrixforaQC-LDPCcodeoflargelengthbycombiningtheexponentmatricesforgivenQC-LDPCcodesofsmallerlength.
Fork=1,2,...,s,letCkbeaQC-LDPCcodewhoseparity-checkmatrixHkisanmLandmotherk×nLmatriceskbinarymatrix.ThecorrespondingexponentaregivenbyE(HM(Hk)=(akij)andM(Hk)L,respectively.Assumethatallk)arethesameandgcd(wewishtoconstructE(Hl,L)andk)=1foralll,k(l=k).Now,M(H)foraQC-LDPCcodeCwhoseparity-checkmatrixHisanmL×nLmatrix.TheideacomesfromtheChineseRemainderTheorem(CRT)[7]inthefollowing.
CombiningbytheCRT
Step1)Ifak
ij=∞for1≤k≤s,then
a sij=
akijbkL
k
modL
k=1
where
L=L1L2···Ls,L L
k=
k
andbkL k≡1modLk.Otherwise,a StepE(H2))=The(aexponentmatrixE(H)forijH=∞is.
de nedby
Step3)Theijparity-check).
matrixHisobtainedbyexpo-nentcouplingofE(H)andP,i.e.,H=E(H) PwherePistheL×Lcirculantpermutationmatrixde nedin(2).
Forsimplicity,considertwoQC-LDPCcodesCL(H1andCsuchthatgcd(2
1,L2)=1,E1)=(aij),E(H2)=(bij)
IEEECOMMUNICATIONSLETTERS,VOL.9,NO.9,SEPTEMBER2005
andM(H1)=M(H2)in(1).BythecombiningbasedontheCRT,theexponentmatrixE(H)=(cij)isgivenby
cij≡aijA1L2+bijA2L1
modL1L2.
(5)
whereA1andAmodL2aretwointegerssuchthatAmodL1L2≡11andA2Lobtained1≡1byexponent2.Thentheparity-checkmatrixHcanbecouplingofE(H)andtheL1L2×L1L2circulantpermutationmatrixPin(2).SinceM(H1)=M(H2)=M(H),a2l-block-cycleinthemothermatrixcanberepresentedbythechains(a(cbb1,a2,...,a2l,a1),1,2,...,b2l,b1),and(c1,c2,...,c2Hl,c),1)respectively.whereaHi,bTheseiandchainsicomefromE(arecloselyrelated1),E(Hin2)andE(thefollowing.
Theorem2:Ifr1,r2,andraretheleastpositiveintegerssuchthat
r
2l1·( 1)i 1ai≡0modL1,(6)i=1
r 2l2·( 1)i 1bi
≡0modL2,(7)i=1r·
2l( 1)i 1ci
≡0modL1L2,
(8)
i=1
thentheblock-cycleleadstoacycleoflength2lr,andacycleoflength2lrinH1,acycle
oflength2lr21,HFurthermore,r=r2andH,respectively.Proof.ByProposition1,itiseasily1r2.
checkedthattheblock-cycleleadstoacycleoflength2lr1,acycleoflength2lrandacycleoflength2lrinH,respectively.2,Therefore,itsuf cestoshowthat1,Hr=2andHrcanbe1ramongtheexponentsin(5),(8)expressed2.Fromtherelationas
rA 2l1L2·( 1)i 1
arA
2li+2L1·( 1)i 1bi≡0
modL1L2.
i=1
i=1
Thisequationcanbedividedintotwoparts:
rA 2l1L2·( 1)i 1ai≡0modL1,i=1rA 2l2L1·
( 1)i 1bi≡0
modL2.
i=1
SinceArand1L2r≡1modL1andA2L1,r≡1modL2,wehave
r1|2|r.Notethatgcd(r12)=1sincer1|L1,r2|L2andgcd(L1,L2)=1.Thereforer1r2|r.Ontheotherhand,wehave
2l 2 r 1c
l1r2·( 1)ii=r2A1L2r1( 1)i 1ai
i=1
i=1
2l
+r1A2
L1r2
( 1)i 1bi
≡0modLi=1
1L2
whichimpliesr=r1r2.
Theorem2impliesthatifweapplytheexponentcouplingtoE(H)andtheLin(2),thenwecan1L2obtain×L1La2circulantpermutationmatrixPnewQC-LDPCcodeCwith
LDPC码
MYUNGandYANG:ACOMBININGMETHODOFQUASI-CYCLICLDPCCODESBYTHECHINESEREMAINDERTHEOREM
825
Fig.1.PerformanceofsomeregularQC-LDPCcodesconstructedwiththeexponentcombiningbytheCRT.
girthlargerthanorequaltothoseofC1andC2.Theorem2canbedirectlyextendedtothegeneralcasewithmorethantwoQC-LDPCcodes.
IV.AFAMILYOFQC-LDPCCODESWITHNO4-CYCLESThecombiningbytheCRTcanbeusedtoconstructalargeQC-LDPCcodewithno4-cyclesfromsmallQC-LDPCcodesascomponentcodes.Here,onlyarraycodeswillbeconsideredascomponentcodes,eventhoughotherQC-LDPCcodescanbenaturallyemployed.
TheexponentmatrixEofanarraycodeC(p,m)isde nedbyEij=(i 1)(j 1)for1≤i≤mand1≤j≤p[1].Herepisprimeandmisapositiveintegersuchthatm≤p.Theparity-checkmatrixH(p,m)ofC(p,m)canbeobtainedbyexponentcouplingofEandthep×pcirculantpermutationmatrixPin(2).Itiswell-knownthatthegirthofC(p,m)is6[1],[9].
Theorem3:LetC(p,m)bethearraycodewithparity-checkmatrixH(p,m)foraprimepandapositiveintegerm≤p.Fori=1,2,letpibeaprime(p1=p2)andE(Hi)bethem×p1p2exponentmatrixofHi,respectively,where
H1=[H
(p1,m)H(p1,m)···H(p1,m)]p ,
2times
H2=[H
(p2,m)H(p2,pm)···H(p2,m)].times
1LetEbethem×p1p2matrixoverZE(Hp1p2obtainedby
combiningE(Hmp1)and2)basedontheCRTandletbethe2
H
ofEandthe1p2×p2p1p2matrixobtainedbyexponentcoupling1p2×p1p2circulantpermutationmatrixin(2).ThentheQC-LDPCcodewithparity-checkmatrixHhasno4-cycles.
Proof.Letr1andr2betheleastpositiveintegerssatisfying(6)and(7)for4-block-cyclesinHp1andH2,respectively.Sincethe(i+j11)thandthe(i+j2p1)thcolumnblocksin
H1arethesameforjareno1=j4-cycles2,thereexist4-cyclesbetweenthem.But,therebetweenthe(i1+j1p1)thandthe(i2+jotherhand,2pthe1)thcolumnblocksinH(i+j1fori1=icolumn2.OntheblocksinH1p1)thandthe(i+j2p1)th(jj2aredistinctsince(i+j.Therefore,there1p1) (i+jareno4-cycles2p1)=between1 2)pthe1=0modp(i+j21p1)thandthe(i+jandH2p1)thcolumnblocksinH2.Thisimpliesthatr1r2>1hasno4-cyclesbyTheorem2. ThemethodgiveninTheorem3cannotbedirectlyusedtoconstructlow-rateQC-LDPCcodesoflargelength,sincethenumberofrowblocksareconstant.However,itmaybepossibletoconstructlow-rateQC-LDPCcodeswithoutshortcyclesinasimilarway.NotethatthecombiningmethodbasedontheCRTcanbeappliedtoconstructingQC-LDPCcodes,regardlessofwhethertheyareregularornot.
Figure1showsthebiterrorrate(BER)andframeerrorrate(FER)performanceoftheshortenedQC-LDPCcodescon-structedbythecombiningmethodviatheCRToveranAWGNchannel.Here,(N,K,j)(p1,p2)denotes(codelength,infor-mationlength,columnweight)(arraycodesC(p1,j),C(p2,j)).Theyhavelittleperformancedegradationduetotheirrestrictedstructure,ascomparedwithrandomlyconstructedregularLDPCcodeswiththesameparameters.Inthecasethatthecolumnweightislargerthan3,therearenoseriouserror oorsatFER=10 4.
V.CONCLUDINGREMARKS
WediscussedhowtocombineQC-LDPCcodesofsmalllength,basedontheCRT.WeshowedthatthemethodcanbeusedforconstructingQC-LDPCcodeswithno4-cycles.Byapplyingthemethodtoarraycodesascomponentcodes,wepresentedafamilyofQC-LDPCcodeswithno4-cycles.ThisapproachcanbedirectlyextendedtootherQC-LDPCcodes.
REFERENCES
[1]J.L.Fan,“Arraycodesaslow-densityparity-checkcodes,”inProc.2nd
Int.Symp.TurboCodes,Brest,France,Sept.4-7,2000,pp.543-546.[2]M.P.C.Fossorier,“Quasi-cycliclowdensityparitycheckcodesfrom
circulantpermutationmatrices,”rm.Theory,vol.50,pp.1788-1794,Aug.2004.
[3]R.G.Gallager,“Low-densityparity-checkcodes,”rm.
Theory,vol.IT-8,pp.21-28,Jan.1962.
[4]J.-L.Kim,U.N.Peled,I.Perepelitsa,V.Pless,andS.Friedland,“Explicit
constructionoffamiliesofLDPCcodeswithno4-cycles,”rm.Theory,vol.50,pp.2378-2388,Oct.2004.
[5]D.J.C.MacKayandR.M.Neal,“NearShannonlimitperformanceof
low-densityparity-checkcodes,”Electron.Lett.,vol.32,pp.1645-1646,Aug.1996.
[6]T.J.Richardson,A.Shokrollahi,andR.Urbanke,“Designofcapacity-approachinglow-densityparity-checkcodes,”rm.The-ory,vol.47,pp.619-637,Feb.2001.
[7]K.H.Rosen,ElementaryNumberTheoryandItsApplications.Reading,
MA:Addison-Wesley,pp.322-324,2000.
[8]R.M.Tanner,D.Sridhara,T.Fuja,andD.J.Costello,Jr.,“LDPC
blockandconvolutionalcodesbasedoncirculantmatrices,”rm.Theory,vol.50,pp.2966-2984,Dec.2004.
[9]K.YangandT.Helleseth,“Ontheminimumdistanceofarraycodesas
LDPCcodes,”rm.Theory,vol.49,pp.3268-3271,Dec.2003.
正在阅读:
A Combining Method of Quasi-Cyclic LDPC07-20
Excel练习题03-09
振动攻丝机的毕业设计论文05-10
都市人的辟谷养生2试题及答案01-13
家乡的年味作文(7篇)03-24
S版二年级语文上册《小猫刮胡子》教案03-10
【2010—2013年】天津市高中地理学业水平考试试卷汇编05-14
感恩批评作文550字06-23
卷接包设备全面整修方案10-31
- 1Orthogonal polynomial method and odd vertices in matrix models
- 2admm_slides_Alternating Direction Method of Multipliers
- 3An I-band calibration of the SBF method at blue colours
- 4贡献边际分析法(Contribution Analysis Method)
- 5Orthogonal polynomial method and odd vertices in matrix models
- 6Method of Designing Missile Controller Based on Multi-Objective Optimization
- 7Load and memory balanced mesh partitioning for a parallel envelope method
- 8一种改进的QC-LDPC码码型构造
- 9NonClinical Dose Formulation Analysis Method Validation and Sample Analysis
- 10Quasi-Spherical Gravitational Collapse in higher dimension and the effect of equation of st
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Combining
- Method
- Cyclic
- Quasi
- LDPC
- 3月25号3U8833对3U8834出团通知书(1)
- 电磁感应经典大题及答案
- 移民推荐信样本5封
- 人教版九年级英语第十三单元教学设计
- 爱国作文:中国的太阳永不落
- 图书馆新馆Logo设计
- 信息练习综合题(文字录入)
- 2012最新项目合作协议书范本
- 九年级物理下册 第15章 电功与电热导学案2
- 物质运输的载体教学设计
- 成为一名《金牌主持人的十项关键》
- 关于我国上市公司并购融资方式的几点建议
- 第八讲:免费网络资源检索及开题报告前的文献调研
- 公路工程进度管理办法
- 2008年6月英语四级真题及答案
- 云南省委常委、昆明市委书记仇和在市委九届七次全体(扩大)会议上的讲话
- 蛮力法、动态规划法、回溯法和分支限界法求解01背包问题
- 电网谐波检测分析方法
- 乌鲁木齐南郊客运站时刻表
- 邹坞镇中心卫生院2011年度传染病防治工作总结