03第三章 极限与函数的连续性

更新时间:2024-05-15 06:19:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

第三章 极限与函数的连续性

§1 极限问题的提出

§2 数列的极限

1. 用定义证明下列数列的极限为零: (1) ?lim?(2) ?lim?n?1?;

n???n2???1??sin?n??;

n???n?(3) ?lim?n????n??;

?n???(?1)n(4) ?lim?2?;

n??n?????(5) ?lim?(n???1???n?)?;

n??10n(6) ?lim??;

n???n!?(7) ?lim?n????a???1??; n???an?n!?; n???nn?(8) ?lim?1???2??3???????n(9) ?lim??;

n???n2?(10) ?lim??n??1???a?n????a??1?. ?n?2.用定义证明: 3n2?n?(1) ?lim?2????;

n???2n???1???n2???n??????; (2) ?lim?n???n???n???1??,??????n?为偶数,??n(3) ?lim?xn?????,其中 ?xn?????

n???n???1???,??????n?为奇数;??n???????????????????????????????n???3k,???n???1???,??????????n????k??1??(k???1,?2,??)?,? (4) ?lim?xn?????,其中 ?xn???????????n??n??????n???2????,??????n????k???2.?3???n???n?3.用定义证明:

(1) 若?lim?an???a?,则对任一正整数?k?,有?lim?an?k???a?;

n??n??(2) 若?lim?an???a?,则?lim??an?????a|?.反之是否成立?

n??n??(3) 若?lim?an???a?,且?a???b?,则存在?N?,当?n???N?时,有?an???b?;

n??(4) 若?lim?an???a?,且?an???0?,则?lim?an???a?.

n??n?? 4.极限的定义改成下面形式是否可以?(其中“???”是逻辑符号,表示“存在”.)

|xn?-?a??|

n???lim?xn???a?,?lim?yn???a?.

n??n?? 7.利用极限的四则运算法则求极限: 3n3???2n2???n???1 (1) ?lim??; 32n???n???3n?2(?2)n???3n?; (2) ?lim?n??(?2)n?1???3n?11?1??????????n??; (3) ?lim?2n??1?1??????????n44 (4) ?lim?(n?1????n??????????n????)?.

n??8.求下列极限: (1) ?lim?(n??111??????????)?; 1???2?????n(n???1)111??????????)?; n2(n???1)2(2n)2 (2) ?lim?(n?? (3) ?lim?(n??1n??12???1n??22???????1n??n2)?;

132n?1 (4) ?lim?(???2???????n)?;

n??222 (5) ?lim?(1???nn??1?2?)?cos?n;

(6) ?lim????????;

n???n(7) ?lim?????????????????????????;

n??n (8) ?lim[(?n???1)n???nn]?,?0???a???1;

n?????n?? (9) ?lim?????????????;

n????2n (10) ?lim?nn??1?????????????????n?1??;

2??????????????n? (11) ?lim?nn???; ?n!?1 (12) ?lim?n?n?lnn??.

n?? 9.证明:若???an??,??bn???中一个是收敛数列,另一个是发散数列,则???an???bn??是发散数列;又问???anbn??和???n????(?bn???0)?是否也是发散数列?为什么? 10.设?xn???(?1)n?,证明???xn??发散. 11.若?a1,?a2,???,?am?为?m?个正数,证明:

n??nnlim?n?a1n???a2?????am???max(a1,?a2,???,?am).

?a??bn? 12.设?lim?an???a?,证明:

n??[n?a] (1) ?lim?n???a?;

n??n (2) 若?a???0,?an???0?,则?lim?n?an???1?.

n?? 13.利用单调有界原理,证明?lim?xn?存在,并求出它:

n?? (1) ?x1????2??,??x2????2xn?1??,???n???2,?????; (2) ?x1????c?????,??xn????c???xn?1??,???n???2,?????; cn (3) ?xn??????(c>0)??;

n!x,xn???1???n?1?,???n???1,?????. (4) ?x0??????1???xn?1 14.若?x1???a????,??y1???b???0?(a???b)?,

?xn?1????xnyn??,??yn?1???xn???yn?,? 2证明:?lim?xn????lim?yn?.

n??n?? 15.证明:若?an???0?,且?lim?n??an???l???1,?lim?an????.

n??an?1 16.设?lim?an???a,证明:

n?? (1) ?lim?a1???a2???????an(又问,它的逆命题成立否?) ??a?;

n??nn?? (2) 若?an???0,则?lim?n?a1?a2???an????a?. 17.应用上题的结果证明下列各题:

?1?1???????????n?????; (1) ?lim??3n??n (2) ?lim?n?a?????1??(a???0);

n??(3) ?lim?n?n?????1?;

n??(4) ?lim?nn??????0;

?n!?11?????????????????nn??????; (5) ?lim?n??n(6) 若?lim?bn?1???a??(bn???),则?lim?n?bn???a?. n??bn??n18.用定义证明下列数列为无穷大量: (1) ???n?; !??; (2) ???n??? (3) ???ln?n??; ?1? (4) ?1????????????.

?3n 19.证明:若???xn??为无穷大量,???yn??为有界变量,则???xn???yn?为无穷大量. 20.(1) 两个无穷大量的和的极限如何?试讨论各种可能性?

(2)讨论无穷大量和无穷小量的和、差、商的极限的情形; (3)讨论无穷大量和无穷小量的乘积可能发生的各种情形.

1?? 21.利用?lim??1???????e?,求下列极限:

n??n???1? (1) ?lim??1?????;

n???n?1?? (2) ?lim??1?????; n??n?1??nnn1?? (3) ?lim??1?????;

n??2n??1?? (4) ?lim??1???2??.

n??n??nn

§3 函数的极限

1.用极限定义证明下列极限: (1) ?lim?(2) ?lim?x?3x???31???;

x??1x2???92x???31???; x2???96(3) ?lim?x?1x???1???2; ?x????1(4) ?lim?x?1(x?2)(x?1)???0;

x???3(5) ?lim?x2?5???3;

x?2(6) ?lim?x?1x(x?1)1???; x2???12x????; 2x???9x???1???1; x???2(7) ?lim?x?3(8) ?lim?x??x2???x(9) ?lim??????;

x??x???1x2???5(10) ?lim?2???1.

x??x???12.用极限的四则运算法则求下列极限: x2???1(1) ?lim?2??;

x?02x???x???1x2???1(2) ?lim?2??;

x?12x???x???1(x???1)3???(1???3x)(3) ?lim???;

x?0x2???2x3(4) ?lim?x?1x2????x??x??;

(5) ?lim?x?31?x??2??; x???3x2???5x???6(6) ?lim?2?;

x?3x????x?????xn???1(7) ?lim?m?(?n?,?m?为正整数);

x?1x???1

1(2) lim??arctan?x?cos?;

x???x1(3) lim?(cos?x);

x?0x2excos?x??5?(4) lim?.

x?01???x2???ln(1?x)17.证明方程?x3???px???q???0???(p??0)?有且只有一个实根.

§5 无穷小量与无穷大量的比较

1. 当?x???0时,以?x?为标准求下列无穷小量的阶: (1) sin??x????sin?x; (2) (3)

1???(1???x); 1?x3?|x|????x2;

(4) 1???tan?x???1???sin?x; (5) ln?(1???x)?; (6)

5x2???4x3;

(7) n1???x????; (8) ex???1.

2.当?x?????时,以?x?为标准求下列无穷大量的阶: (1) x2???x6;

(2) 4x2????x4???x5; (3)

31x2?sin?;

x|x|; (4) 1???1?????x3?1(5) 2;

x?2x???31(6) x2?arctan?.

x3.当?x??0?时,下列等式成立吗? (1) ?o?(?x2?)???o?(?x?)?; (2) ?O?(?x2?)????(?x?)?;

?o?(?x2?)???o?(?x3?)?; (3) ?x??o?(?x2?)(4) ????o?(?x?)?;

xo?(?x2?)???o?(?x?)?; (5) ?o?(?x)(6) ?o?(?x?)???O?(?x2?). 4.试证下列各题:

(1) x?sin??x????O?(?x?)???(?x??0?); (2) 2x3???2x2???O?(?x3?)?????(x??); (3) o?(g(x))???o?(g(x))???o?(g(x))?????x?x0?; (4) o?(xm)???o?(xn)???o?(xn)?????x?0????m???n???0?; (5) o?(xm)?o?(xn)???o?(xm?n)?????x?0????m???n???0?. 5.证明下列各式:

(1) tan?x???x?????(?x???0?)?; (2) arcsin?x???x?????(?x???0?)?; (3) arctan?x???x?????(?x???0?)?; ?(4) 1???cos?x???x2?????(?x???0?)?;

?32(5) ex???????x?????(?x???0?)?;

(6) (1?x)a???????x?????(?x???0?),?其中???????. 6.运用等价无穷小量求极限:

?x; (1) lim?x??x???cos?x2?arctan?1???x2???1(2) lim?;

x?01???cos?x?(3) lim?x?0x?ln(1?x);

sin?x22ex???1(4) lim?.

x?0x?sin?x7.设?f(x)???g(x)??(x?x0)?,证明:

?f(x)???g(x)????o?(?f(x)?)?或?f(x)???g(x)????o?(?g(x)?)?.

8.设?x???a?时,f1(x)?与?f2(x)?维等价无穷小,g1(x)?与?g2(x)?是等价无穷大,且 ?lim?f2(x)g2(x)?存在,求证

x?a?lim?f1(x)g1(x)???lim?f2(x)g2(x)?.

x?ax?a

本文来源:https://www.bwwdw.com/article/zf07.html

Top