《微积分》(中国商业出版社 经管类)课后习题答案二

更新时间:2023-12-09 10:04:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

《微积分》(中国商业出版社 经管类)课后习题答案

习 题 二

1.列数列{xn}当n??时的变化趋势,判定它们是否收敛,在收敛时指出它们的极限: (1)xn?1a(?1)x?3 ; (2)(a?1) ;nn1n1nn(3)xn?1g ; (4)xn?(?1)n(1?) ; (5)xn?3?(?1)n ; (6)xn?sec ;

11???n?11?3?5???(2n?1)22 . ; (8)lim(7)lim11n??n??2?4?6???2n1?2???2(n?1)221?1n1n

解:1)收敛.因为当n??时,an??(a?1) ;所以xn?0 ;所以lim xn?lim x??x??1an?0 .

?3 n为偶数2)因为xn?xn???1? n为奇数?3 所以

xn是发散的;

3)发散的.因为当n??时,4)因为xn???1 n为偶数??1 n为奇数11?0;所以xn?1g???; nnxn是发散的;

所以

5)收敛的.因为当n??时, 6)收敛的.当n??时,

11?0;所以xn?3?(?1)n?3;即limxn?3; nnx??11?0;sec?1;即limxn?1; nnx??n(1?2n?1)1?3?5??(2n?1)n2??7)因为;

n(2?2n)2?4?6???2n1?n2所以limx??n?1; 1?n所以是收敛的;

2n?111?132 ??

1n?121?2n?11?(2)211?221?111???n?1228)因为

111?2???2(n?1)221? 所以lim 313; ?x??21?2n?12 所以是收敛的;

2.据我国古书记载,公元前三世纪战国时代的思想家庄子在其著作中提出“一尺之棰,日取其半,万世不竭”的朴素极限思想,将一尺长的木棒,“日取其半”,每日剩下的部分表示成数列,并考察其极限.

解:数列为1, , 2 , ? , 所以通项为an?12n?1112212n-1 ;

;所以liman?0;

x??

3.由函数图形判别函数极限是否存在,如存在则求出其值:

(1)limx?(??0) ; (2)limx?(??0) ;

x?0x??(3)limax(a?0 , ?1) ; (4)limax(a?0 , ?1) ;

x?0x??(5)limlogax(a?0 , ?1) ; (6)limarccosx ;

x?1x??1(7)limarctanx ; (8)limcosx .

x?1x??

解:1)当x?0时,limxu(u?0)?0 ;

x??2)limxu(u?0)?limx??1x?ux??(u?0)?0 ;

3)limax(a?0 , a?1)?1

x??4) 0

?0 a?1 .limax(a?0 , a?1)??x???1 a?1 .a?1 ;

1 a?1 ; 5)limlogax(a?0 , a?1)?0

x??16)limarccosx??所以cos???1 ;

x??17)limarctanx? .

x??1?48)limcosx的极限不存在

x??

4.求下列函数在指定点处的左、右极限,并判定函数在该点的极限是否存在:

(1)f(x)?xx , x?0 ; (2)f(x)?1x 1 3x, x?0 ;

(3)f(x)?arctan , x?0 ;

1? , x?1? , x?1 . (4)f(x)??1g(1?x)?arcsin(x?1) , 1?x?2?

解:1)lim?1f(x)??1?lim?f(x)?1 ;所以该点的极限不存在

x?0x?0 2)lim?1f(x)?0?lim?f(x)?? ;所以该点的极限不存在

x?0x?03)lim?1f(x)?-x?0?2?limf(x)?x?0??2 ;所以该点的极限不存在

4)lim?f(x)?x?11?limf(x)?0 ; 所以该点的极限不存在 1g2x?1?

5.用???或??N的方法陈述下列极限:

(1)lim?f(x)?A ; (2)lim?f(x)?A ;

x?ax?a(3)limf(x)?A ; (4)limf(x)?A .

x???x???

解:1)当0?x?a??时 f(x)?A??

2)当0?a-x??时 f(x)?A?? 3)当x?M时 f(x)?A?? 4)当x?-M时 f(x)?A??

6.用极限的严格定义(即???或??N的方法)证明下列极限: (1)lim1nn??4?0 ; (2)lim1?? ;

n??3n2?135?n2(3)lim?x?1?0 ; (4)lim10x?0 .

x??1x???

解:1)对于任意给定的?,要使???成立,只要使4n?所以对于任意给定的?,存在N?5?n23n?121?即n?141?4成立

1n?0

1?4?当n?N时恒有

n?0??成立,故limx??4 2)对于任意给定的?,要使

116?3?1??? n???成立即lim成立

x?xof(x)39?2所以对于正数?,存在N?16-3?9?2成立

当n?N时恒有

5?n25?n23n?12?1??成立 3所以lim1 ??x??3n2?13 3)由于f(x)?0?x?1所以对于任意给定的??0,存在???2当0?x?1??时 恒有f(x)?0??成立 故lim?x?1?0

x??14)对于任意给定的正数?要使10x?0??成立即x?1g?成立 所以存在X?1g? .当x?X时恒有x?1g?成立 即lim10x?0 .

x??

7.求下列极限:

(x?h)3?x3xn?1(1)lim ; (2)lim ;

h?0x?1x?1h(3)limx???1(arctanx?2x) ; (4)lim??1??x?2?? ; x?1?x?1x?x?1?x?32?3x(5)limx21?1?x2x?0 ; (6)limx?? ;

(7)lim

2x?1?3x?2?2x?4 ; (8)lim(x2?x?1?x2?x?3) .

x??(x?h)3?h3x3?3x2h?3xh2?h3?x3解:1)lim?lim?lim(3x2?3xh?h2)?3x2

h?0h?0h?0hhxn?12)lim?n x?1x?11????3)lim?arctanx?2x??lim(arctanx?1)??1 ?x????2?x?????4)lim(x?1x1(x?1)(x?1)x?1 ?2)?lim?limx?1x(x?1)x?1xx?1x?xx2?limx2(1?1?x2)?x25)limx?01?1?x2x?0??lim(1?1?x2)??2

x?06)lim1?x?32?3xx????1?x?9(2?3x)(1?x?3)3

?(2?3x)(x2?23x?4)(2?3x)(1?x?3)

??2 7)lim2x?1?3x?2?2x?4?lim(2x?1?3)(2x?1?3)x?2?2)(2x?1?3)x?4(

?lim ?lim ?22(x?4)x?2?2)(2x?1?3)(2x?1?3)x?4(

2(x?2?2)x?4

2 38)lim(x2?x?1?x2?x?3)

x???lim(x??2x?4x?x?1?x?x?32?4x22)

?lim(x??1?1113?2?1??xxxx)?1

8.求lim

5?4nn?15n?4n?1n??5n?1?3n?2 .

解:limn??5n?1?3n?214n()45?1 ?lim3n??55?9()n51?

9.下列数列{xn},当n??时是否是无穷小量? (1)xn?10503n ; (2)xn?1?(?1)n??1n ;

(3)xn?nn .

解:1)是无穷小量 因为limxn?0

n?? 2)是,因为limxn?0(n为奇数或者偶数)

n??3)不是.

10.当x?0时下列变量中哪些是无穷小量?哪些是无穷大量?

(1)y?100x3 ; (2)y?110100x2 ;

(3)y?log2(1?x) ; (4)y?cot4x ;

?(5)y?sec???x? ; (6)y?sin .

?2??1x1x

解:1)是无穷小,因为limy?0

x?02)是无穷大量,因为limy???

x?03)是无穷小量,因为limy?0

x?04)是无穷大量,因为limy???

x?05)是无穷大量,因为limy???

x?06)非大非小

11.已知lim

解:因为lim2arctanx2x2?lim? ,

x?0x?05x5x5x?x0f(x)存在,而limg(x)?0,证明limf(x)?0 . g(x)x?x0x?x0limf(x)f(x)x?x0lim?存在 x?x0g(x)limg(x)x?x0 而limg(x)?0

x?x0 所以limf(x)?0 ;

x?x0

12.设lim

x2?ax?b解:因为lim?limx?y?3

x?1x?1x?1x2?ax?b?3,求a,b.

x?1x?1 所以

x2?ax?b(x?1)(x?2) ?x?1x?1所以a?1,b??2

?ax?b??0,求a,b . 13.设lim???x??x?1???x2?1?

x2?1x2?1?ax2?ax?bx?b解:lim(?ax?b)?lim?0

x??x?1x??x?1所以即x2?1?ax2?ax?bx?b为一常数 所以a?1 b?-1

14.当x?0时,下列变量中与3x2?x4相比为同阶无穷小的是(B).

A.x B.x2 C.x3 D.x4

解:B. 因为lim

15.求lim 解:lim3n?9n48233x2?x4x?03x2?lim1x?03?x2?1 3n?9n248n?? .

5n?81n?21n5?9?3

n???lim5n?81n?2n??52?481?8nn

16.设x?a时f(x)??,g(x)??,则下列各式中成立的是(D).

A.f(x)?g(x)?? B.f(x)?g(x)?0 C.

11?0 D.?0

f(x)?g(x)f(x)

解:D.

因为x?a时f(x)??,g(x)??,所以

17.求下列极限 (1)lim

解:1)lim(2x?1)10(3x?4)5(2x?7)1511?0,?0. f(x)g(x)(2x?1)10(3x?4)5(2x?7)15x?? ; (2)lim(100?cosx) .

x??x3?xx2?1(2x?1)10(3x?4)5?limx??x??x15(2x?7)15x15?21035215?243 3211?x?1xx3(100?105x) 2)lim3(100?105x)?lim1x??x?xx??1?2x2

18.求下列极限:

(1)limsin2xx?sinx ; (2)lim ;

x?0sin3xx?0x?sinx(3)lim2arctanx??? ; (4)lim?nsin? ;

x?05xn???n?sinxx ; (6)lim ;

x????xx?0?1?cosx1?cosx2tanx?sinx ; (8)lim ;

1?cosxx?0x(5)lim(7)limx?0(9)lim

x?xcosxsin(x?1) ; (10)lim2 .

x?0tanx?sinxx?1x?5x?6解:1)limsin2x2x2?lim?

x?0sin3xx?03x31?sinxx?sinxx?0 ?lim2)limsinxx?0x?sinxx?01?x3)lim2arctanx2x2?lim?

x?0x?05x5x5sin1n??4)lim(nsin)?limn???nn??n?limn??

n??1nsinx(sinx)'cosx?lim?lim?1 5)limx????xx??(??x) ' x???16)lim?x?0x1?cosx?limxx2sin2x?0??lim(x)'x(2sin)'2x?0??2

7)2 8)lim9)limtanx?sinx(tanx?sinx)'1?lim?lim(2?cosx)?0

x?0x?0x?0cosxxx'x?cosxx(1?cosx)?lim?limcosx?1

1?cosxx?0tanx?sinxx?0sinx()x?0cosx10)lim

19.设lim

sin(x?1)?5x?6x?1x2?limx?111?lim?

x?1(x?1)(x?6)x?1x?17x2?ax?bsin(x2?1)x?1?3,求a,b .

解:因为limx2?ax?bsin(x2?1)x?1?limx2?ax?b?3

x?1(x?1)(x?1)所以x2?ax?b?(x?1)(x?5)

所以a?4 . b?-5

20.设xn?

解:因为n而limnn??1n?11n?11222?1n?22???1n?n2,用极限存在的夹逼准则求limxn .

n???xn?n1n?n2

1n?n2?1,limnn???1

n?1所以limxn?1

n??

21.求下列极限:

2?13??(1)lim?1?? ; (2)lim(1?)3 ;

x??xx???x?3xx(3)lim3x1?2x ; (4)lim(1?tanx)1?2cotx ;

x?0x?0?2x?3?(5)lim??x???2x?1?x?1 ; (6)lim?? .

x?0?3x?1?1?2x?1?x

33解:1)lim(1?)3x?lim[(1?)3]9?e9 .

x??x??xx?2?12??2 2)lim(1?)3?lim[(1?)2]3*(1?)?e3 .

x??x??xxxxx22x 3)lim3xx?01?2x?122lim[(1?2x)x]3x?0?2 .e3

4)lim(1?tanx)x?01-2cotx?lim[(1?tanx)x?02x?11?22x1tanx?2]*(1?tanx)?e-2 .

2x?3x?12)?lim(1?) 5)lim(x??2x?1x??2x?111?1?e .

2x?1xxx)?lim(1?) 6)lim(x?03x?1x?03x?1 =lim(1?x?011?3x1?3?3)x

=e .

?x?k?22.设lim??x???x??2x?limxsinx??2,求k . x解:因为limxsinx??2?limxx??2sin2x2x?2.

xx?k?2xk?*2k)?lim(1?)k?e2k?2 . 所以lim(x??x??xx所以k?1n2 .

23.判定下列函数在定义域上是否连续(说明理由):

?sinx1?2 , x?0 ,xsin , x?0 ,(1)f(x)?? (2)f(x)?? x??x?0 , x?0 ;???1 , x?0 . 12

解:1)因为limf(x)?0,而f(0)?0.所以f(x)在定义域上是连续的。

x?02)因为limf(x)??x?0?1 , x?0,而f(0)?1.所以f(x)在定义域上不连续.

?1 , x?0?

24.求下列极限: (1)limln(1?3x)1?tanx?1?tanx ; (2)lim ;

x?0sin4xx??sin2x1?x?1?sin(1) lim??x ; x???x?(3)

a?? (4)lim?cos? (a?0) ;

x???x?arctan2xtan2x?(x?2)cosxx2(5)limln(ex?ex)3?1?arccosxln(1?2x)x2x?1 ; (6)limx?0 ;

(1?x)a?(1?x)b ; (8)lim(7)lim(a , b?0) ;

x???ln(1?4x)x?0xln(1?x)?ln(1?x)x2?1(9)lim . ; (10)limx2x?0x?1lnxe?1

解:1)lim 2)limln(1?3x)3x3?lim? .

x?0sin4xx?04x41?tanx?1?tanx?2tanx?lim x?xsin2x(1?tanx?1?tanx)sin2xx?x?lim?11?tanx?1?tanx)x?xcox2x(

??1x?1sin(1x)()1 23)limx??x=

11sin(1x)lim[1?(?)]x??x

本文来源:https://www.bwwdw.com/article/z8y5.html

Top