高中数学知识点总结及公式大全

更新时间:2024-03-14 23:14:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

高中数学知识点总结

文档贡献:smysl

1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。

中元素各表示什么?

注重借助于数轴和文氏图解集合问题。

空集是一切集合的子集,是一切非空集合的真子集。

3. 注意下列性质:

(3)德摩根定律:

4. 你会用补集思想解决问题吗?(排除法、间接法)

的取值范围。

6. 命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。)

原命题与逆否命题同真、同假;逆命题与否命题同真同假。

7. 对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?

(一对一,多对一,允许B中有元素无原象。)

8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域)

9. 求函数的定义域有哪些常见类型?

10. 如何求复合函数的定义域?

义域是_____________。

11. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?

12. 反函数存在的条件是什么? (一一对应函数)

求反函数的步骤掌握了吗?

(①反解x;②互换x、y;③注明定义域)

13. 反函数的性质有哪些?

①互为反函数的图象关于直线y=x对称; ②保存了原来函数的单调性、奇函数性;

14. 如何用定义证明函数的单调性? (取值、作差、判正负) 如何判断复合函数的单调性?

∴……)

15. 如何利用导数判断函数的单调性?

值是( ) A. 0

B. 1

C. 2

D. 3

∴a的最大值为3)

16. 函数f(x)具有奇偶性的必要(非充分)条件是什么? (f(x)定义域关于原点对称)

注意如下结论:

(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。

17. 你熟悉周期函数的定义吗?

函数,T是一个周期。)

如:

18. 你掌握常用的图象变换了吗?

注意如下“翻折”变换:

19. 你熟练掌握常用函数的图象和性质了吗?

的双曲线。

应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系——二次方程

②求闭区间[m,n]上的最值。

③求区间定(动),对称轴动(定)的最值问题。 ④一元二次方程根的分布问题。

由图象记性质! (注意底数的限定!)

利用它的单调性求最值与利用均值不等式求最值的区别是什么?

20. 你在基本运算上常出现错误吗?

21. 如何解抽象函数问题? (赋值法、结构变换法)

22. 掌握求函数值域的常用方法了吗?

(二次函数法(配方法),反函数法,换元法,均值定理法,判别式法,利用函数单调性法,导数法等。)

如求下列函数的最值:

23. 你记得弧度的定义吗?能写出圆心角为α,半径为R的弧长公式和扇形面积公式吗?

24. 熟记三角函数的定义,单位圆中三角函数线的定义

25. 你能迅速画出正弦、余弦、正切函数的图象吗?并由图象写出单调区间、对称点、对称轴吗?

(x,y)作图象。

27. 在三角函数中求一个角时要注意两个方面——先求出某一个三角函数值,再判定角的范围。

28. 在解含有正、余弦函数的问题时,你注意(到)运用函数的有界性了吗?

29. 熟练掌握三角函数图象变换了吗? (平移变换、伸缩变换) 平移公式:

图象?

30. 熟练掌握同角三角函数关系和诱导公式了吗?

“奇”、“偶”指k取奇、偶数。

A. 正值或负值

B. 负值

C. 非负值

D. 正值

31. 熟练掌握两角和、差、倍、降幂公式及其逆向应用了吗? 理解公式之间的联系:

应用以上公式对三角函数式化简。(化简要求:项数最少、函数种类最少,分母中不含三角函数,能求值,尽可能求值。) 具体方法:

(2)名的变换:化弦或化切 (3)次数的变换:升、降幂公式

(4)形的变换:统一函数形式,注意运用代数运算。

32. 正、余弦定理的各种表达形式你还记得吗?如何实现边、角转化,而解斜三角形?

(应用:已知两边一夹角求第三边;已知三边求角。)

33. 用反三角函数表示角时要注意角的范围。

34. 不等式的性质有哪些?

答案:C

35. 利用均值不等式:

值?(一正、二定、三相等) 注意如下结论:

36. 不等式证明的基本方法都掌握了吗?

(比较法、分析法、综合法、数学归纳法等) 并注意简单放缩法的应用。

(移项通分,分子分母因式分解,x的系数变为1,穿轴法解得结果。) 38. 用“穿轴法”解高次不等式——“奇穿,偶切”,从最大根的右上方开始

39. 解含有参数的不等式要注意对字母参数的讨论

40. 对含有两个绝对值的不等式如何去解?

(找零点,分段讨论,去掉绝对值符号,最后取各段的并集。)

证明:

(按不等号方向放缩)

42. 不等式恒成立问题,常用的处理方式是什么?(可转化为最值问题,或“△”问题)

43. 等差数列的定义与性质

0的二次函数) 项,即:

44. 等比数列的定义与性质

46. 你熟悉求数列通项公式的常用方法吗?

例如:(1)求差(商)法 解:

[练习]

(2)叠乘法

解:

(3)等差型递推公式

[练习]

(4)等比型递推公式

[练习]

(5)倒数法

47. 你熟悉求数列前n项和的常用方法吗?

例如:(1)裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。

解:

[练习]

(2)错位相减法:

(3)倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加。

[练习]

48. 你知道储蓄、贷款问题吗?

△零存整取储蓄(单利)本利和计算模型:

若每期存入本金p元,每期利率为r,n期后,本利和为:

△若按复利,如贷款问题——按揭贷款的每期还款计算模型(按揭贷款——分期等额归还本息的借款种类)

若贷款(向银行借款)p元,采用分期等额还款方式,从借款日算起,一期(如一年)后为第一次还款日,如此下去,第n次还清。如果每期利率为r(按复利),那么每期应还x元,满足

p——贷款数,r——利率,n——还款期数

49. 解排列、组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。

(2)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一

(3)组合:从n个不同元素中任取m(m≤n)个元素并组成一组,叫做从n个不

50. 解排列与组合问题的规律是:

相邻问题捆绑法;相间隔问题插空法;定位问题优先法;多元问题分类法;至多至少问题间接法;相同元素分组可采用隔板法,数量不大时可以逐一排出结果。 如:学号为1,2,3,4的四名学生的考试成绩

则这四位同学考试成绩的所有可能情况是( ) A. 24 B. 15 解析:可分成两类:

C. 12

D. 10

(2)中间两个分数相等

相同两数分别取90,91,92,对应的排列可以数出来,分别有3,4,3种,∴有10种。 ∴共有5+10=15(种)情况 51. 二项式定理 性质:

(3)最值:n为偶数时,n+1为奇数,中间一项的二项式系数最大且为第

表示)

52. 你对随机事件之间的关系熟悉吗?

A B

的和(并)。

(5)互斥事件(互不相容事件):“A与B不能同时发生”叫做A、B互斥。

(6)对立事件(互逆事件):

(7)独立事件:A发生与否对B发生的概率没有影响,这样的两个事件叫做相互独立事件。

53. 对某一事件概率的求法:

分清所求的是:(1)等可能事件的概率(常采用排列组合的方法,即

(5)如果在一次试验中A发生的概率是p,那么在n次独立重复试验中A恰好发生

如:设10件产品中有4件次品,6件正品,求下列事件的概率。 (1)从中任取2件都是次品;

(2)从中任取5件恰有2件次品;

(3)从中有放回地任取3件至少有2件次品;

解析:有放回地抽取3次(每次抽1件),∴n=103

而至少有2件次品为“恰有2次品”和“三件都是次品”

(4)从中依次取5件恰有2件次品。 解析:∵一件一件抽取(有顺序)

分清(1)、(2)是组合问题,(3)是可重复排列问题,(4)是无重复排列问题。

54. 抽样方法主要有:简单随机抽样(抽签法、随机数表法)常常用于总体个数较少时,它的特征是从总体中逐个抽取;系统抽样,常用于总体个数较多时,它的主要特征是均衡成若干部分,每部分只取一个;分层抽样,主要特征是分层按比例抽样,主要用于总体中有明显差异,它们的共同特征是每个个体被抽到的概率相等,体现了抽样的客观性和平等性。

55. 对总体分布的估计——用样本的频率作为总体的概率,用样本的期望(平均值)和方差去估计总体的期望和方差。

要熟悉样本频率直方图的作法:

(2)决定组距和组数; (3)决定分点; (4)列频率分布表; (5)画频率直方图。

如:从10名女生与5名男生中选6名学生参加比赛,如果按性别分层随机抽样,则组成此参赛队的概率为____________。

56. 你对向量的有关概念清楚吗?

(1)向量——既有大小又有方向的量。

在此规定下向量可以在平面(或空间)平行移动而不改变。 (6)并线向量(平行向量)——方向相同或相反的向量。 规定零向量与任意向量平行。

(7)向量的加、减法如图:

(8)平面向量基本定理(向量的分解定理)

的一组基底。

(9)向量的坐标表示

表示。

57. 平面向量的数量积

数量积的几何意义:

(2)数量积的运算法则

[练习]

答案: 答案:2 答案:

58. 线段的定比分点

※. 你能分清三角形的重心、垂心、外心、内心及其性质吗? 59. 立体几何中平行、垂直关系证明的思路清楚吗? 平行垂直的证明主要利用线面关系的转化:

线面平行的判定:

线面平行的性质:

三垂线定理(及逆定理):

线面垂直:

面面垂直:

a b ??

60. 三类角的定义及求法

(1)异面直线所成的角θ,0°<θ≤90°

(2)直线与平面所成的角θ,0°≤θ≤90°

(三垂线定理法:A∈α作或证AB⊥β于B,作BO⊥棱于O,连AO,则AO⊥棱l,∴∠AOB为所求。)

三类角的求法:

①找出或作出有关的角。

②证明其符合定义,并指出所求作的角。

③计算大小(解直角三角形,或用余弦定理)。 [练习]

(1)如图,OA为α的斜线OB为其在α内射影,OC为α内过O点任一直线。

(2)如图,正四棱柱ABCD—A1B1C1D1中对角线BD1=8,BD1与侧面B1BCC1所成的为30°。 ①求BD1和底面ABCD所成的角; ②求异面直线BD1和AD所成的角; ③求二面角C1—BD1—B1的大小。

(3)如图ABCD为菱形,∠DAB=60°,PD⊥面ABCD,且PD=AD,求面PAB与面PCD所成的锐二面角的大小。

(∵AB∥DC,P为面PAB与面PCD的公共点,作PF∥AB,则PF为面PCD与面PAB的交线……) 61. 空间有几种距离?如何求距离?

点与点,点与线,点与面,线与线,线与面,面与面间距离。

将空间距离转化为两点的距离,构造三角形,解三角形求线段的长(如:三垂线定理法,或者用等积转化法)。

如:正方形ABCD—A1B1C1D1中,棱长为a,则: (1)点C到面AB1C1的距离为___________; (2)点B到面ACB1的距离为____________;

(3)直线A1D1到面AB1C1的距离为____________; (4)面AB1C与面A1DC1的距离为____________; (5)点B到直线A1C1的距离为_____________。

62. 你是否准确理解正棱柱、正棱锥的定义并掌握它们的性质? 正棱柱——底面为正多边形的直棱柱

正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。

正棱锥的计算集中在四个直角三角形中:

它们各包含哪些元素?

63. 球有哪些性质?

(2)球面上两点的距离是经过这两点的大圆的劣弧长。为此,要找球心角! (3)如图,θ为纬度角,它是线面成角;α为经度角,它是面面成角。

(4)S球?4?R,V球?24?R3 3 (5)球内接长方体的对角线是球的直径。正四面体的外接球半径R与内切球半径r之比为R:r=3:1。

如:一正四面体的棱长均为2,四个顶点都在同一球面上,则此球的表面 积为( ) A.3?B.4?C.33?D.6?

答案:A

64. 熟记下列公式了吗?

(1)l直线的倾斜角??0,?,k?tan????y2?y1??????,x1?x2?

?x2?x1?2? P1x1,y1,P2x2,y2是l上两点,直线l的方向向量a?1,k (2)直线方程:

点斜式:y?y0?k?x?x0?(k存在) 斜截式:y?kx?b

?????? 一般式:Ax?By?C?0(A、B不同时为零) (3)点Px0,y0到直线l:Ax?By?C?0的距离d???Ax0?By0?CA?B22

(4)l1到l2的到角公式:tan??k2?k1

1?k1k2 l1与l2的夹角公式:tan??k2?k1

1?k1k2 65. 如何判断两直线平行、垂直?

A1B2?A2B1???l1∥l2

A1C2?A2C1? k1?k2?l1∥l2(反之不一定成立) A1A2?B1B2?0?l1⊥l2

66. 怎样判断直线l与圆C的位置关系? 圆心到直线的距离与圆的半径比较。

直线与圆相交时,注意利用圆的“垂径定理”。 67. 怎样判断直线与圆锥曲线的位置?

联立方程组?关于x(或y)的一元二次方程?“?”??0?相交;??0?相切;??0?相离

68. 分清圆锥曲线的定义

第二定义:e?PFPK?c a 0?e?1?椭圆;e?1?双曲线;e?1?抛物线

14.四种命题的相互关系

原命题 互逆 逆命题 若p则q 若q则p 互 互 互 为 为 互 否 否 逆 逆 否 否 否命题 逆否命题 若非p则非q 互逆 若非q则非p 15.充要条件

(1)充分条件:若p?q,则p是q充分条件.

(2)必要条件:若q?p,则p是q必要条件.

(3)充要条件:若p?q,且q?p,则p是q充要条件.

注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 16.函数的单调性

(1)设x1?x2??a,b?,x1?x2那么

f(x1)?f(x2)?0?f(x)在?a,b?上是增函数;

x1?x2f(x1)?f(x2)?0?f(x)在?a,b?上是减函数. (x1?x2)?f(x1)?f(x2)??0?x1?x2(2)设函数y?f(x)在某个区间内可导,如果f?(x)?0,则f(x)为增函数;如果f?(x)?0,则f(x)为减函数.

17.如果函数f(x)和g(x)都是减函数,则在公共定义域内,和函数f(x)?g(x)也是减函数; 如果函数y?f(u)和u?g(x)在其对应的定义域上都是减函数,则复合函数y?f[g(x)]是增函数.

(x1?x2)?f(x1)?f(x2)??0?18.奇偶函数的图象特征

奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数.

19.若函数y?f(x)是偶函数,则f(x?a)?f(?x?a);若函数y?f(x?a)是偶函数,则f(x?a)?f(?x?a).

20.对于函数y?f(x)(x?R),f(x?a)?f(b?x)恒成立,则函数f(x)的对称轴是函数x?a?ba?b;两个函数y?f(x?a)与y?f(b?x) 的图象关于直线x?对称. 22a21.若f(x)??f(?x?a),则函数y?f(x)的图象关于点(,0)对称; 若

2f(x)??f(x?a),则函数y?f(x)为周期为2a的周期函数.

nn?122.多项式函数P(x)?anx?an?1x??a0的奇偶性

多项式函数P(x)是奇函数?P(x)的偶次项(即奇数项)的系数全为零. 多项式函数P(x)是偶函数?P(x)的奇次项(即偶数项)的系数全为零. 23.函数y?f(x)的图象的对称性

(1)函数y?f(x)的图象关于直线x?a对称?f(a?x)?f(a?x)

?f(2a?x)?f(x).

(2)函数y?f(x)的图象关于直线x?a?b对称?f(a?mx)?f(b?mx) 2?f(a?b?mx)?f(mx).

24.两个函数图象的对称性

(1)函数y?f(x)与函数y?f(?x)的图象关于直线x?0(即y轴)对称. (2)函数y?f(mx?a)与函数y?f(b?mx)的图象关于直线x?(3)函数y?f(x)和y?f?1a?b对称. 2m(x)的图象关于直线y=x对称.

25.若将函数y?f(x)的图象右移a、上移b个单位,得到函数y?f(x?a)?b的图象;若将曲线f(x,y)?0的图象右移a、上移b个单位,得到曲线f(x?a,y?b)?0的图

象.

26.互为反函数的两个函数的关系

f(a)?b?f?1(b)?a.

27.若函数y?f(kx?b)存在反函数,则其反函数为y?1?1[f(x)?b],并不是ky?[f?1(kx?b),而函数y?[f?1(kx?b)是y?1[f(x)?b]的反函数. k28.几个常见的函数方程

(1)正比例函数f(x)?cx,f(x?y)?f(x)?f(y),f(1)?c.

(2)指数函数f(x)?a,f(x?y)?f(x)f(y),f(1)?a?0.

(3)对数函数f(x)?logax,f(xy)?f(x)?f(y),f(a)?1(a?0,a?1). (4)幂函数f(x)?x,f(xy)?f(x)f(y),f(1)??.

(5)余弦函数f(x)?cosx,正弦函数g(x)?sinx,f(x?y)?f(x)f(y)?g(x)g(y),

?'xf(0)?1,limx?0g(x)?1. x29.几个函数方程的周期(约定a>0)

(1)f(x)?f(x?a),则f(x)的周期T=a; (2)f(x)?f(x?a)?0,

1(f(x)?0), f(x)1或f(x?a)??(f(x)?0),

f(x)12或?f(x)?f(x)?f(x?a),(f(x)??0,1?),则f(x)的周期T=2a; 21(f(x)?0),则f(x)的周期T=3a; (3)f(x)?1?f(x?a)f(x1)?f(x2)(4)f(x1?x2)?且f(a)?1(f(x1)?f(x2)?1,0?|x1?x2|?2a),则

1?f(x1)f(x2)f(x)的周期T=4a;

(5)f(x)?f(x?a)?f(x?2a)f(x?3a)?f(x?4a)

?f(x)f(x?a)f(x?2a)f(x?3a)f(x?4a),则f(x)的周期T=5a; (6)f(x?a)?f(x)?f(x?a),则f(x)的周期T=6a.

或f(x?a)?

30.分数指数幂 (1)a(2)amn??1n?mnam1mn(a?0,m,n?N,且n?1). (a?0,m,n?N,且n?1).

??a31.根式的性质

n(1)(na)?a.

(2)当n为奇数时,nan?a; 当n为偶数时,nan?|a|??32.有理指数幂的运算性质 (1) a?a?arsrrsrrrsr?s?a,a?0.

??a,a?0(a?0,r,s?Q).

(2) (a)?a(a?0,r,s?Q). (3)(ab)?ab(a?0,b?0,r?Q).

注: 若a>0,p是一个无理数,则ap表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.

33.指数式与对数式的互化式

logaN?b?ab?N(a?0,a?1,N?0).

34.对数的换底公式

logmN (a?0,且a?1,m?0,且m?1, N?0).

logmann推论 logamb?logab(a?0,且a?1,m,n?0,且m?1,n?1, N?0).

mlogaN?35.对数的四则运算法则

若a>0,a≠1,M>0,N>0,则 (1)loga(MN)?logaM?logaN;

M?logaM?logaN; Nn(3)logaM?nlogaM(n?R).

(2) loga2236.设函数f(x)?logm(ax?bx?c)(a?0),记??b?4ac.若f(x)的定义域为

R,则a?0,且??0;若f(x)的值域为R,则a?0,且??0.对于a?0的情形,需要

单独检验.

37. 对数换底不等式及其推广

1,则函数y?logax(bx) a11 (1)当a?b时,在(0,)和(,??)上y?logax(bx)为增函数.

aa11)和(,??)上y?logax(bx)为减函数. , (2)当a?b时,在(0,aa 若a?0,b?0,x?0,x?推论:设n?m?1,p?0,a?0,且a?1,则 (1)logm?p(n?p)?logmn.

(2)logamlogan?loga2m?n. 238. 平均增长率的问题

如果原来产值的基础数为N,平均增长率为p,则对于时间x的总产值y,有

y?N(1?p)x.

39.数列的同项公式与前n项的和的关系

n?1?s1,( 数列{an}的前n项的和为sn?a1?a2?an???sn?sn?1,n?240.等差数列的通项公式

?an).

an?a1?(n?1)d?dn?a1?d(n?N*);

其前n项和公式为

n(a1?an)n(n?1)?na1?d 22d1?n2?(a1?d)n. 22sn?41.等比数列的通项公式

an?a1qn?1?a1n?q(n?N*); q其前n项的和公式为

?a1(1?qn),q?1?sn??1?q

?na,q?1?1?a1?anq,q?1?或sn??1?q.

?na,q?1?142.等比差数列?an?:an?1?qan?d,a1?b(q?0)的通项公式为

?b?(n?1)d,q?1?an??bqn?(d?b)qn?1?d;

,q?1?q?1?其前n项和公式为

?nb?n(n?1)d,(q?1)?sn??. d1?qnd(b?)?n,(q?1)?1?qq?11?q?43.分期付款(按揭贷款)

ab(1?b)n每次还款x?元(贷款a元,n次还清,每期利率为b). n(1?b)?144.常见三角不等式 (1)若x?(0,?2),则sinx?x?tanx.

),则1?sinx?cosx?2. 2(3) |sinx|?|cosx|?1.

(2) 若x?(0,45.同角三角函数的基本关系式

?sin2??cos2??1,tan?=

46.正弦、余弦的诱导公式

sin?,tan??cot??1. cos?(n为偶数) (n为奇数) (n为偶数) (n为奇数) n?n??(?1)2sin?,sin(??)?? n?12?(?1)2cos?,?

n?)co?s,n??(?12 cos(??)??n?12?(?1)2si?n,?47.和角与差角公式

sin(???)?sin?cos??cos?sin?;

cos(???)?cos?cos?sin?sin?;

tan??tan?tan(???)?.

1tan?tan?sin(???)sin(???)?sin2??sin2?(平方正弦公式); cos(???)cos(???)?cos2??sin2?.

asin??bcos?=a2?b2sin(???)(辅助角?所在象限由点(a,b)的象限决

b定,tan?? ).

a48.二倍角公式

sin2??sin?cos?.

cos2??cos2??sin2??2cos2??1?1?2sin2?.

2tan?. tan2??1?tan2?49. 三倍角公式

sin3??3sin??4sin3??4sin?sin(??)sin(??).

33cos3??4cos3??3cos??4cos?cos(??)cos(??)333tan??tan3???tan3???tan?tan(??)tan(??).

1?3tan2?3350.三角函数的周期公式

函数y?sin(?x??),x∈R及函数y?cos(?x??),x∈R(A,ω,?为常数,且A≠0,ω>0)的周期T?????.

2??;函数y?tan(?x??),x?k???2,k?Z(A,ω,?为常数,且A

≠0,ω>0)的周期T??. ?

51.正弦定理

abc???2R. sinAsinBsinC52.余弦定理

a2?b2?c2?2bccosA; b2?c2?a2?2cacosB; c2?a2?b2?2abcosC.

53.面积定理

111aha?bhb?chc(ha、hb、hc分别表示a、b、c边上的高). 222111(2)S?absinC?bcsinA?casinB.

2221(3)S?OAB?(|OA|?|OB|)2?(OA?OB)2. 2(1)S?54.三角形内角和定理

在△ABC中,有A?B?C???C???(A?B)

?C?A?B???2C?2??2(A?B). 222k55. 简单的三角方程的通解

sinx?a?x?k??(?1)arcsina(k?Z,|a|?1). cosx?a?x?2k??arccosa(k?Z,|a|?1).

tanx?a?x?k??arctana(k?Z,a?R).

特别地,有

sin??sin????k??(?1)k?(k?Z).

cos??cos????2k???(k?Z).

tan??tan????k???(k?Z).

56.最简单的三角不等式及其解集

sinx?a(|a|?1)?x?(2k??arcsina,2k????arcsina),k?Z.

sinx?a(|a|?1)?x?(2k????arcsina,2k??arcsina),k?Z. cosx?a(|a|?1)?x?(2k??arccosa,2k??arccosa),k?Z.

cosx?a(|a|?1)?x?(2k??arccosa,2k??2??arccosa),k?Z.

tanx?a(a?R)?x?(k??arctana,k???2),k?Z.

tanx?a(a?R)?x?(k???2,k??arctana),k?Z.

57.实数与向量的积的运算律 设λ、μ为实数,那么

(1) 结合律:λ(μa)=(λμ)a; (2)第一分配律:(λ+μ)a=λa+μa; (3)第二分配律:λ(a+b)=λa+λb. 58.向量的数量积的运算律: (1) a·b= b·a (交换律);

(2)(?a)·b= ?(a·b)=?a·b= a·(?b); (3)(a+b)·c= a ·c +b·c. 59.平面向量基本定理

如果e1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且

只有一对实数λ1、λ2,使得a=λ1e1+λ2e2.

不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底. 60.向量平行的坐标表示

设a=(x1,y1),b=(x2,y2),且b?0,则ab(b?0)?x1y2?x2y1?0. 53. a与b的数量积(或内积) a·b=|a||b|cosθ. 61. a·b的几何意义

数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积. 62.平面向量的坐标运算

(1)设a=(x1,y1),b=(x2,y2),则a+b=(x1?x2,y1?y2).

(2)设a=(x1,y1),b=(x2,y2),则a-b=(x1?x2,y1?y2). (3)设A(x1,y1),B(x2,y2),则AB?OB?OA?(x2?x1,y2?y1).

(4)设a=(x,y),??R,则?a=(?x,?y).

(5)设a=(x1,y1),b=(x2,y2),则a·b=(x1x2?y1y2). 63.两向量的夹角公式

cos??x1x2?y1y2x?y?x?yAB?AB 21212222(a=(x1,y1),b=(x2,y2)).

64.平面两点间的距离公式 dA,B=|AB|??(x2?x1)2?(y2?y1)2(A(x1,y1),B(x2,y2)).

65.向量的平行与垂直

设a=(x1,y1),b=(x2,y2),且b?0,则 A||b?b=λa ?x1y2?x2y1?0. a?b(a?0)?a·b=0?x1x2?y1y2?0. 66.线段的定比分公式

设P1(x1,y1),P2(x2,y2),P(x,y)是线段P1P2的分点,?是实数,且PP1??PP2,则

x1??x2?x??OP?1??1??OP2OP? ??1???y?y1??y2?1???1t?(). ?(1?t)OP?OP?tOP121??67.三角形的重心坐标公式

△ABC三个顶点的坐标分别为A(x1,y1)、B(x2,y2)、C(x3,y3),则△ABC的重心的坐标是G(x1?x2?x3y1?y2?y3,). 3368.点的平移公式

''???x?x?h?x?x?h''?OP?OP?PP?? . ?''???y?y?k?y?y?k注:图形F上的任意一点P(x,y)在平移后图形F上的对应点为P(x,y),且PP的坐标为(h,k).

69.“按向量平移”的几个结论

'''''

(1)点P(x,y)按向量a=(h,k)平移后得到点P(x?h,y?k).

(2) 函数y?f(x)的图象C按向量a=(h,k)平移后得到图象C,则C的函数解析式为y?f(x?h)?k.

(3) 图象C按向量a=(h,k)平移后得到图象C,若C的解析式y?f(x),则C的函数解析式为y?f(x?h)?k.

(4)曲线C:f(x,y)?0按向量a=(h,k)平移后得到图象C,则C的方程为

. f(x?h,y?k)?0(5) 向量m=(x,y)按向量a=(h,k)平移后得到的向量仍然为m=(x,y).

70. 三角形五“心”向量形式的充要条件

设O为?ABC所在平面上一点,角A,B,C所对边长分别为a,b,c,则 (1)O为?ABC的外心?OA?OB?OC. (2)O为?ABC的重心?OA?OB?OC?0.

(3)O为?ABC的垂心?OA?OB?OB?OC?OC?OA. (4)O为?ABC的内心?aOA?bOB?cOC?0. (5)O为?ABC的?A的旁心?aOA?bOB?cOC. 71.常用不等式:

(1)a,b?R?a?b?2ab(当且仅当a=b时取“=”号).

22222'''''''a?b?ab(当且仅当a=b时取“=”号). 2333(3)a?b?c?3abc(a?0,b?0,c?0).

(2)a,b?R??(4)柯西不等式

(a2?b2)(c2?d2)?(ac?bd)2,a,b,c,d?R.

(5)a?b?a?b?a?b. 72.极值定理

已知x,y都是正数,则有

(1)若积xy是定值p,则当x?y时和x?y有最小值2p; (2)若和x?y是定值s,则当x?y时积xy有最大值推广 已知x,y?R,则有(x?y)?(x?y)?2xy (1)若积xy是定值,则当|x?y|最大时,|x?y|最大; 当|x?y|最小时,|x?y|最小.

(2)若和|x?y|是定值,则当|x?y|最大时, |xy|最小; 当|x?y|最小时, |xy|最大.

73.一元二次不等式ax?bx?c?0(或?0)(a?0,??b?4ac?0),如果a与

2212s. 422ax2?bx?c同号,则其解集在两根之外;如果a与ax2?bx?c异号,则其解集在两根之

间.简言之:同号两根之外,异号两根之间.

x1?x?x2?(x?x1)(x?x2)?0(x1?x2); x?x1,或x?x2?(x?x1)(x?x2)?0(x1?x2).

74.含有绝对值的不等式 当a> 0时,有

x?a?x2?a??a?x?a.

2

x?a?x2?a2?x?a或x??a.

75.无理不等式 (1)(2)(3)?f(x)?0? . f(x)?g(x)??g(x)?0?f(x)?g(x)??f(x)?0?f(x)?0?. f(x)?g(x)??g(x)?0或?g(x)?0?f(x)?[g(x)]2???f(x)?0?. f(x)?g(x)??g(x)?0?f(x)?[g(x)]2?76.指数不等式与对数不等式 (1)当a?1时,

af(x)?ag(x)?f(x)?g(x);

?f(x)?0?logaf(x)?logag(x)??g(x)?0.

?f(x)?g(x)?(2)当0?a?1时,

af(x)?ag(x)?f(x)?g(x);

?f(x)?0?logaf(x)?logag(x)??g(x)?0

?f(x)?g(x)?77.斜率公式

k?y2?y1(P1(x1,y1)、P2(x2,y2)).

x2?x178.直线的五种方程

(1)点斜式 y?y1?k(x?x1) (直线l过点P1(x1,y1),且斜率为k). (2)斜截式 y?kx?b(b为直线l在y轴上的截距).

y?y1x?x1?(y1?y2)(P1(x1,y1)、P2(x2,y2) (x1?x2)).

y2?y1x2?x1xy(4)截距式 ??1(a、b分别为直线的横、纵截距,a、b?0)

ab(5)一般式 Ax?By?C?0(其中A、B不同时为0).

(3)两点式

79.两条直线的平行和垂直

(1)若l1:y?k1x?b1,l2:y?k2x?b2 ①l1||l2?k1?k2,b1?b2; ②l1?l2?k1k2??1.

(2)若l1:A1x?B1y?C1?0,l2:A2x?B2y?C2?0,且A1、A2、B1、B2都不为零, ①l1||l2?A1B1C1; ??A2B2C2

②l1?l2?A1A2?B1B2?0; 80.夹角公式 (1)tan??|k2?k1|.

1?k2k1(l1:y?k1x?b1,l2:y?k2x?b2,k1k2??1)

A1B2?A2B1|.

A1A2?B1B2(l1:A1x?B1y?C1?0,l2:A2x?B2y?C2?0,A1A2?B1B2?0).

(2)tan??|直线l1?l2时,直线l1与l2的夹角是81. l1到l2的角公式

?. 2k2?k1.

1?k2k1(l1:y?k1x?b1,l2:y?k2x?b2,k1k2??1)

AB?A2B1(2)tan??12.

A1A2?B1B2(l1:A1x?B1y?C1?0,l2:A2x?B2y?C2?0,A1A2?B1B2?0).

(1)tan??直线l1?l2时,直线l1到l2的角是

?. 282.四种常用直线系方程

(1)定点直线系方程:经过定点P0(x0,y0)的直线系方程为y?y0?k(x?x0)(除直线

x?x0),其中k是待定的系数; 经过定点P0(x0,y0)的直线系方程为A(x?x0)?B(y?y0)?0,其中A,B是待定的系数.

(2)共点直线系方程:经过两直线l1:A1x?B1y?C1?0,l2:A2x?B2y?C2?0的交点的直线系方程为(A1x?B1y?C1)??(A2x?B2y?C2)?0(除l2),其中λ是待定的系数.

(3)平行直线系方程:直线y?kx?b中当斜率k一定而b变动时,表示平行直线系方程.与直线Ax?By?C?0平行的直线系方程是Ax?By???0(??0),λ是参变量.

(4)垂直直线系方程:与直线Ax?By?C?0 (A≠0,B≠0)垂直的直线系方程是

Bx?Ay???0,λ是参变量.

83.点到直线的距离

A?B84. Ax?By?C?0或?0所表示的平面区域

设直线l:Ax?By?C?0,则Ax?By?C?0或?0所表示的平面区域是: 若B?0,当B与Ax?By?C同号时,表示直线l的上方的区域;当B与Ax?By?C异号时,表示直线l的下方的区域.简言之,同号在上,异号在下.

若B?0,当A与Ax?By?C同号时,表示直线l的右方的区域;当A与Ax?By?C异号时,表示直线l的左方的区域. 简言之,同号在右,异号在左.

85. (A1x?B1y?C1)(A2x?B2y?C2)?0或?0所表示的平面区域 设曲线C:(A1x?B1y?C1)(A2x?B2y?C2)?0(A1A2B1B2?0),则

(A1x?B1y?C1)(A2x?B2y?C2)?0或?0所表示的平面区域是:

d?|Ax0?By0?C|22(点P(x0,y0),直线l:Ax?By?C?0).

本文来源:https://www.bwwdw.com/article/z148.html

Top