高一数学教案:球的体积和表面积

更新时间:2024-05-27 05:23:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

球的体积和表面积

一. 教学目标

1. 知识与技能

⑴通过对球的体积和面积公式的推导,了解推导过程中所用的基本数学思想方法:“分

割——求和——化为准确和”,有利于同学们进一步学习微积分和近代数学知识。 ⑵能运用球的面积和体积公式灵活解决实际问题。 ⑶培养学生的空间思维能力和空间想象能力。 2. 过程与方法

通过球的体积和面积公式的推导,从而得到一种推导球体积公式V=

4πR3和面积公式S=43πR2的方法,即“分割求近似值,再由近似和转化为球的体积和面积”的方法,体现了极限思想。 3. 情感与价值观

通过学习,使我们对球的体积和面积公式的推导方法有了一定的了解,提高了空间思维能力和空间想象能力,增强了我们探索问题和解决问题的信心。 二. 教学重点、难点

重点:引导学生了解推导球的体积和面积公式所运用的基本思想方法。 难点:推导体积和面积公式中空间想象能力的形成。 三. 学法和教学用具

1. 学法:学生通过阅读教材,发挥空间想象能力,了解并初步掌握“分割、求近似值 的、再由近似值的和转化为球的体积和面积”的解题方法和步骤。 2. 教学用具:投影仪 四. 教学设计

(一) 创设情景

⑴教师提出问题:球既没有底面,也无法像在柱体、锥体和台体那样展开成平面图形,那么怎样来求球的表面积与体积呢?引导学生进行思考。

⑵教师设疑:球的大小是与球的半径有关,如何用球半径来表示球的体积和面积?激发学生推导球的体积和面积公式。 (二) 探究新知 1.球的体积:

如果用一组等距离的平面去切割球,当距离很小之时得到很多“小圆片”,“小圆片”的体积的体积之和正好是球的体积,由于“小圆片”近似于圆柱形状,所以它的体积也近似于圆柱形状,所以它的体积有也近似于相应的圆柱和体积,因此求球的体积可以按“分割——求和——化为准确和”的方法来进行。 步骤: 第一步:分割

如图:把半球的垂直于底面的半径OA作n等分,过这一组平行于底面的平面把半球切割成n个“小圆片”,“小圆为

些等分点,用片”厚度近似

R,底面是“小圆片”的底面。 n如图:

R?R3i?12[1?()]  (i?1、2??n) 得Vi???ri??nnn2

第二步:求和

1(1?1n)(2?n)V半球=v1?v2?v3???vn??R[1?]

63第三步:化为准确的和

当n→∞时, n→0 (同学们讨论得出) 所以 V半球=?R31(1?1?22)??R3 63V球?得到定理:半径是R的球的体积

4?R3 33

练习:一种空心钢球的质量是142g,外径是5cm,求它的内径(钢的密度是7.9g/cm) 2.球的表面积:

球的表面积是球的表面大小的度量,它也是球半径R的函数,由于球面是不可展的曲面,所以不能像推导圆柱、圆锥的表面积公式那样推导球的表面积公式,所以仍然用“分割、求近似和,再由近似和转化为准确和”方法推导。

思考:推导过程是以什么量作为等量变换的? 半径为R的球的表面积为 S=4πR 练习:长方体的一个顶点上三条棱长分别为3、4、5,是它的八个顶点都在同一球面上,则这个球的表面积是 。 (答案50元) (三) 典例分析 课本P47 例4和P29例5 (四) 巩固深化、反馈矫正

⑴正方形的内切球和外接球的体积的比为 ,表面积比为 。 (答案:33:1 ; 3 :1)

⑵在球心同侧有相距9cm的两个平行截面,它们的面积分别为49πcm和400πcm,求球的表面积。 (答案:2500πcm)

分析:可画出球的轴截面,利用球的截面性质求球的半径

2

2

2

2(五) 课堂小结

本节课主要学习了球的体积和球的表面积公式的推导,以及利用公式解决相关的球的问题,了解了推导中的“分割、求近似和,再由近似和转化为准确和”的解题方法。 (六) 评价设计

作业 P30 练习1、3 ,B(1)

本文来源:https://www.bwwdw.com/article/yzg7.html

Top