竞赛专题--凸函数和琴生不等式

更新时间:2024-04-30 21:54:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

凸函数和琴生不等式

1..(02成都模拟试题)若函数y?sinx在区间(0,?)上是凸函数,那么在?ABC中,sinA?sinB?sinC的最大值为A

32313 B C D

2222分析:

?y?sinx在(0,?)上是凹函数,则:1A?B?C3(sinA?sinB?sinC)?sin()?sin60??33233sinA?sinB?sinC?2当且仅当sinA?sinB?sinC时,即A?B?C??3时,取等号;2.若a1,a2,?an是一组实数,且a1?a2???an?k(k为定值),试求:a1?a2???an的最小值分析:?f(x)?x2在(??,??)上是凸函数a1?a2???an2k21222?(a1?a2???an)?()?2nnnk2222?a1?a2???an?n当且仅当a1?a2???an时,取等号2223.已知xi?0,(i?1,2,?,n),n?2,x1?x2???xn?1,求证:(1?1n11)?(1?)n???(1?)n?n(n?1)nx1x2xn1111111证:?[(1?)n?(1?)n???(1?)n]?n(1?)n(1?)n?(1?)nnx1x2xnx1x2xn

?(1?1n111)(1?)?(1?)x1x2xn1n

bbb1bbb)(1?2)?(1?n)]?1?(12?n));a1a2ana1a2an1111111?[(1?)(1?)?(1?)]n?1?()n?1?nxx?xx1x2xnx1x2?xn12n(利用结论:[(1?又?nx1x2?xn?x1?x2???xn1?nn

111?[(1?)(1?)?(1?)]n?1?nx1x2xn?(1?(1?

1111)(1?)?(1?)?(n?1)nx1x2xn1n11)?(1?)n???(1?)n?n(n?1)nx1x2xn

4.若P为?ABC内任一点,求证?PAB、?PBC、?PCA中至少有一个小于或等于30?;证:设?PAB??、?PBC??、?PCA??,且?PAC??'、?PBA??'、?PCB??';PAsin??PBsin?'??依正弦定理有:PBsin??PCsin?'??sin?sin?sin??sin?'sin?'sin?'PCsin??PAsin?'???(sin?sin?sin?)2?sin?sin?sin?sin?'sin?'sin?'

sin??sin??sin??sin?'?sin?'?sin?'6)6???????'??'??'1?sin6()?()662?(1?sin?sin?sin??()321

2???30?,否则??150?时,?、?中必有一个满足??30??在?、?、?,中必有一个角满足sin??

补充练习:

1.若xi?R(1?i?n),?xi?1,求证:(x1??i?1n1111)(x2?)?(xn?)?(n?)n; x1x2xnn2xy;

2.已知x?0,y?0,x2?y2?1,求证:x3?y3?33.A、B、C为?ABC的三个内角,求证:cosA?cosB?cosC?;

2

本文来源:https://www.bwwdw.com/article/yvlg.html

微信扫码分享

《竞赛专题--凸函数和琴生不等式.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
下载全文
范文搜索
下载文档
Top