二元一次方程组的应用题复习教学案精编

更新时间:2023-09-21 04:43:01 阅读量: 自然科学 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

二元一次方程组应用

二元一次方程组解决实际问题的基本步骤:

1、 审题,搞清已知量和待求量,分析数量关系. ( 审题,寻找等量关系) 2、考虑如何根据等量关系设元,列出方程组. (设未知数,列方程组) 3、列出方程组并求解,得到答案.(解方程组)

4,检查和反思解题过程,检验答案的正确性以及是否符合题意. (检验,答) 列方程组解应用题的常见题型:

(1) 和差倍总分问题:较大量=较小量+多余量,总量=倍数×倍量 (2) 产品配套问题:加工总量成比例 (3) 速度问题:速度×时间=路程

(4) 航速问题:此类问题分为水中航速和风中航速两类

1. 顺流(风):航速=静水(无风)中的速度+水(风)速 2. 逆流(风):航速=静水(无风)中的速度--水(风)速 (5) 工程问题:工作量=工作效率×工作时间

一般分为两种,一种是一般的工程问题;另一种是工作总量是单位一的工程问题 (6) 增长率问题:原量×(1+增长率)=增长后的量,原量×(1+减少率)=减少后的量 (7) 浓度问题:溶液×浓度=溶质

(8) 银行利率问题:免税利息=本金×利率×时间,税后利息=本金×利率×时间—本金×利

率×时间×税率

(9) 利润问题:利润=售价—进价,利润率=(售价—进价)÷进价×100% (10) 盈亏问题:关键从盈(过剩)、亏(不足)两个角度把握事物的总量 (11) 数字问题:首先要正确掌握自然数、奇数偶数等有关的概念、特征及其表示 (12) 几何问题:必须掌握几何图形的性质、周长、面积等计算公式

1

(13) 年龄问题:抓住人与人的岁数是同时增长的

二元一次方程组是最简单的方程组,其应用广泛,尤其是生活、生产实践中的许多问题,大多需要通过设元、布列二元一次方程组来加以解决,现将常见的几种题型归纳如下:

一、数字问题

例1 一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.

变式练习:一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字交换位置,那么得到的新两位数比原来的两位数的一半还少9,求这个两位数。

二、利润问题

例2一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少?

变式练习:1、某工厂去年的利润(总产值——总支出)为200万元,今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元,问去年的总产值、总支出各是多少万元?

2

三、配套问题

例3 某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?

变式练习:现有190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,一个盒身与两个盒底配成一个完整盒子,问用多少张铁皮制成盒身,多少张铁皮制成盒底,可以正好制成一批完整的盒子?

五、货运问题

例5 某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨的体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨?

【中考赏析】

例1(2006年南京市)某停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场有50辆中、小型汽车,这些车共缴纳停车费230元,问中、小型汽车各有多少辆?

3

例2(2006年四川省眉山市)某蔬菜公司收购蔬菜进行销售的获利情况如下表所示: 销售方式 每吨获利(元) 直接销售 100 粗加工后销售 250 精加工后销售 450 现在该公司收购了140吨蔬菜,已知该公司每天能精加工蔬菜6吨或粗加工蔬菜16吨(两种加工不能同时进行).

(1)如果要求在18天内全部销售完这140吨蔬菜,请完成下列表格:

销售方式 获利(元) 全部直接销售 全部粗加工后销售 尽量精加工,剩余部分直接销售 (2)如果先进行精加工,然后进行粗加工,要求在15天内刚好加工完140吨蔬菜,则应如何分配加工时间?

家庭作业

1.为满足市民对优质教育的需求,某中学决定改变办学条件,计划拆除一部分旧校舍,建造新校舍,拆除旧校舍每平方米需80元,建新校舍每平方米需700元. 计划在年内拆除旧校舍与建造新校舍共7200平方米,在实施中为扩大绿地面积,新建校舍只完成了计划的80%,而拆除旧校舍则超过了计划的10%,结果恰好完成了原计划的拆、建总面积.

(1)求:原计划拆、建面积各是多少平方米?

(2)若绿化1平方米需200元,那么在实际完成的拆、建工程中节余的资金用来绿化大约是多少平方米?

4

2、小红家去年结余5000元,估计今年可结余9500元,并且今年收入比去年高15%,支出比去年低10%,求去年的收入和支出各是多少?

3、某玩具工厂广告称:“本厂工人工作时间:每天工作8小时,每月工作25天;待遇:熟练工人按计件付工资,多劳多得,计件工资不少于800元,每月另加福利工资100元,按月结算;……”该厂只生产两种玩具:小狗和小汽车。熟练工人晓云元月份领工资900多元,她记录了如下表的一些数据: 小狗件数(单位:个) 1 2 3 小汽车个数(单位:总时间(单位:分) 总工资(单位:元) 个) 1 2 2 35 70 85 2.15 4.30 5.05 元月份作小狗和小汽车的数目没有限制,从二月分开始,厂方从销售方面考虑逐月调整为:k月份每个工人每月生产的小狗的个数不少于生产的小汽车的个数的k倍(k=2,3,4,……,12),假设晓云的工作效率不变,且服从工厂的安排,请运用所学数学知识说明厂家广告是否有欺诈行为?

5

列二元一次方程组解应用题专项训练

1、一名学生问老师:“您今年多大?”老师风趣地说:“我像您这样大时,您才出生;您到我这么大时,我已经37岁了。”请问老师、学生今年多大年龄了呢?

2、某长方形的周长是44cm,若宽的3倍比长多6cm,则该长方形的长和宽各是多少?

3、已知梯形的高是7,面积是56cm2,又它的上底比下底的三分之一还多4cm,求该梯形的上底和下底的长度是多少?

4、某校初一年级一班、二班共104人到博物馆参观,一班人数不足50人,二班人数超过50人,已知博物馆门票规定如下:1~50人购票,票价为每人13元;51~100人购票为每人11元,100人以上购票为每人9元

(1)若分班购票,则共应付1240元,求两班各有多少名学生? (2)请您计算一下,若两班合起来购票,能节省多少元钱? (3)若两班人数均等,您认为是分班购票合算还是集体购票合算?

6

本文来源:https://www.bwwdw.com/article/yv6h.html

Top