2011届江苏省高考复习专题(内部)系列:——第二课时 函数的定义域和值域..
更新时间:2023-05-11 18:14:01 阅读量: 实用文档 文档下载
2011届江苏省高考复习专题(内部)系列:(共62套)
函数的定义域与值域
【学习目标】
1. 掌握求常规函数的定义域与值域的方法。
2. 了解特殊情形下的函数的定义域与值域的求法。 3. 以极度的热情投入学习,体会成功的快乐。 【学习重点】
基本初等函数的定义域与值域的求法。 【学习难点】
复合函数的定义域与值域的求法。
[自主学习] 一、定义域:
1.函数的定义域就是使函数式 的集合. 2.常见的三种题型确定定义域:
① 已知函数的解析式,就是 . ② 复合函数f [g(x)]的有关定义域,就要保证内函数g(x)的 域是外函数f (x)的 域.
③实际应用问题的定义域,就是要使得 有意义的自变量的取值集合. 二、值域:
1.函数y=f (x)中,与自变量x的值 的集合.
2.常见函数的值域求法,常用的方法有:①观察法;②配方法;③反函数法;④不等式法;⑤单调性法;⑥数形法;⑦判别式法;⑧有界性法;⑨换元法
例如:① 形如y=
12 x
2
,可采用 法;② y=2x 1(x 2),可采用 法
3x 2
3
或 法;③ y=a[f (x)]2+bf (x)+c,可采用 法;④ y=x-采用 法;⑤ y=x-
x
2
x
,可
,可采用 y=
sinx2 cosx
可采用
法等.
[典型例析]
(A)例1. 求下列函数的定义域: (1)y=
(x 1)
|x| x
; (2)y=
1
3
x 3
2
5 x
2
; (3)y=
x 1x 1
2011届江苏省高考复习专题(内部)系列:(共62套)
变式训练1:求下列函数的定义域: (1)y=
lg(2 x) x x
2
+(x-1) ; (2)y=
x
2
lg(4x 3)
+(5x-4); (3)y=
25 x
2
+lgcosx;
( B)例2. 设函数y=f(x)的定义域为[0,1],求下列函数的定义域. (1)y=f(3x); (2)y=f();
x1
(3)y=f(x
小结:
13
) f(x
13
)
; (4)y=f(x+a)+f(x-a).
2011届江苏省高考复习专题(内部)系列:(共62套)
(B)例3. 求下列函数的值域:
x x
2
(1)y=x x 1
2
; (2)y=x-
2x
; (3)y=
2
e 1e 1
x
x
.
(4)y=
1 x2x 5
; (5)y=|x|
x
.
小结:
(C)例4已知函数f(x)=x2-4ax+2a+6 (x∈R).
(1)求函数的值域为[0,+∞)时的a的值;
(2)若函数的值均为非负值,求函数f(a)=2-a|a+3|的值域.
2011届江苏省高考复习专题(内部)系列:(共62套)
[当堂检测]
1.若函数y f(x)的定义域为[ 1,1],求函数y f(x ) f(x )的定义域
4
4
1
1
__________。
2.已知g(x) 1 2x,f g(x)
1 xx
22
(x 0), 求f()2
1
3.
求函数y 2x _______________.
1
4.设函数f1(x) x2,f2(x) x 1,f3(x) x2,则f1(f2(f3(2007))) 5.已知函数f(x),g(x)分别由下表给出
则f[g(1)]的值为 6.函数f x
;当g[f(x)] 2时,x .
lg 4 x x 3
的定义域为_____________________
7.(08北京模拟)若函数y 为 2 。
12
x 2x 4的定义域、值域都是闭区间[2,2b],则
2b的
8.(08北京模拟)对于任意实数a,b,定义min{a,b}
f(x) x 3, g(x) log2x
a, a b,
b, a b.
设函数
,则函数h(x) min{f(x),g(x)}的最大值是__________ .
[学后反思]____________________________________________________ _______
_____________________________________________________________
_____________________________________________________________
正在阅读:
2011届江苏省高考复习专题(内部)系列:——第二课时 函数的定义域和值域..05-11
《中学英语教学法》模拟试题(第二套)(附答案) - 图文03-18
2018年云南大学硕士论文格式模板04-30
2017年个人工作总结范文6篇04-29
我的警察爸爸作文300字06-27
医院建筑门诊空间设计现状与重点 - 图文06-30
润扬长江公路大桥世业州互通立交箱梁施工方案11.1405-20
2013c2驾照科目一知识点04-13
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- 定义域
- 值域
- 江苏省
- 课时
- 函数
- 复习
- 内部
- 高考
- 专题
- 系列
- 2011
- 医疗器械产品放行控制程序
- 经济地理学(高等教育出版社)题纲
- 第9章人体的物质运输复习
- 高中历史 时间表 必修一必修二
- 浅析网站因何会被搜索引擎惩罚
- 10 专题十 电功和电功率(计算题)
- 关于县级公安机关教育训练工作的思考
- 小学二年级数学上册全套单元试卷
- 哲学与人生 普遍联系与人际和谐 教学设计
- 2014—2015学年度上学期高一班主任工作总结
- 美食广场消防安全培训资料
- 七年级数学-方程
- 文明施工和文物保护保证体系及措施
- 电子CAD课程设计报告
- 公司劳动合同范本之聘用中国员工劳务合同(二)发展与协调
- 江苏省高邮市八桥镇初级中学八年级物理上册 第四章《透镜及其应用》五、光的折射 透镜的奥妙教案 苏科版
- 红外防盗栅栏的安装方法
- 工业发展总体思路
- 生产车间管理制度
- 2012年二级建造师考试市政工程案例分析汇总