基于单片机的电子负载毕业论文(含原理图+程序)

更新时间:2024-05-07 00:35:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

摘 要

电子负载的原理是控制内功率MOSFET或晶体管的导通量,靠功率管的耗散功率消耗电能的设备,它的基本工作方式有恒压、恒流、恒阻、恒功率这几种。

本设计从直流电子负载系统方案分析入手,详细讨论了整个系统的硬件电路和软件实现,并给出较为合理的解决方案。为便于控制的实现和功能的扩展,采用了STC89C52 单片机作为核心控制器,设计了DA输出控制电路、AD电压电流检测电路、键盘电路、显示电路和驱动电路,通过软、硬件的协调配合,实现了整个设计。通过运放、PI调节器及负反馈控制环路来控制MOSFET的栅极电压,从而达到其内阻变化。这个控制环路是整个电路的核心实质,MOS管在这里既作为电流的控制器件同时也作为被测电源的负载。控制MOS管的导通量,其内阻发生相应的变化,从而达到流过该电子负载的电流恒定,实现恒流工作模式。

本设计能实现电子负载的恒流控制:能够检测被测电源的电流、电压及功率并由液晶显示。在额定使用环境下,恒流方式时不论输入电压如何变化(在一定范围内),电子负载将根据设定值来吸收电流,流过该电子负载的电流恒定。

关键词:电子负载; 恒流模式; PI调节器; AD转换; DA转换

毕业论文(论文) ABSTRACT

ABSTRACT

The principle of electronic load is control of transistors inside power MOSFET or the guide flux of power tube, it is a consumption power equipment which depends on the dissipation power of tube, there are four basic working ways that persistence pressure, constant current, the constant resistance, constant power .

This design start with the analysis of DC electric load system solutions, it discussed the realization of the whole system hardware circuit and software in detail, and give a reasonable solution. In order to realize the control and the expansion of function conveniently, we adopted the STC89C52 microcontroller as the core controller, and designed the DA output control circuit, AD voltage current detection circuit, keyboard circuit, display circuit and drive circuit, through the coordination between hardware and software, finally, we realized the whole design. PI adjuster and negative feedback control loop of the circuit which control the grid voltage of MOSFET, so as to change its resistance. The core essences are the op-amp, MOS tube here both as a control device and as a power load tested. Controlling the guide flux of the MOS tube, the resistance of the MOS tube will change accordingly, thus the current which flows the electronic load current will constant, At last, we realized constant current work pattern.

This design can realize the Constant-current control of the electronic load: it can measured the current, voltage and power of Measured power and the LCD display. If it use situations in rated, no matter how the input voltage change in the constant-current mode (within a certain range), the electronic load will be based on setting to absorb the current, the current which flows the electronic load will constant.

Key words: electronic load; constant-current pattern; PI adjuster; AD transform; DA conversion

东华理工大学毕业设计(论文) 目 录

目 录

绪 论 ................................................................. 1 第一章 电子负载系统设计方案 ........................................... 2 1.1 电子负载工作原理 ................................................ 2 1.2 系统设计要求 .................................................... 3 1.3 系统总体设计方案论证 ............................................ 3 1.4 系统具体设计方案 ................................................ 5 第二章 电子负载硬件系统设计 ........................................... 6 2.1 核心处理器的设计 ................................................. 6 2.2 显示模块的设计 ................................................... 7 2.3 键盘模块 ......................................................... 8 2.4 D/A转换模块的选择 .............................................. 10 2.5 采样电路模块 .................................................... 11 2.5.1 电压采样电路 ................................................ 12 2.5.2 电流采样电路 ................................................ 12 2.5.3 输入的模拟量采样 ............................................ 13 2.6 电流取样PI控制器等组成的负反馈控制模块 ......................... 14 2.7 PI调节器 ....................................................... 15 2.8 功率电路模块 .................................................... 17 2.8.1 电子模拟负载方式的选择 ...................................... 17 2.8.2 功率耗散MOS管的选型 ........................................ 17 2.9 电源电路的设计 .................................................. 18 第三章 电子负载软件系统设计 .......................................... 21 3.1 电压电流A/D采样程序设计 ........................................ 22 3.2 液晶显示子程序 .................................................. 22 3.3 D/A转化程序 .................................................... 23 3.4 键盘识别处理程序设计 ............................................ 24 第四章 系统调试 ...................................................... 25 4.1 硬件调试 ........................................................ 25 4.2 软件调试 ....................................................... 26 4.3 软硬件综合调试 .................................................. 26 第五章 结论 .......................................................... 27 致 谢 ................................................................ 28 参考文献 .............................................................. 29 附录一 整体电路原理图 ................................................. 30 附录二 电子负载设计程序 ............................................... 31

东华理工大学毕业设计(论文) 绪 论

绪 论

在人们生活的多个领域都要用到负载测试,如充电电源试验、蓄电池放电试验以及购买电池、电源时等都需要负载测试。当前,国内外对上述产品的试验一般都采用传统的静态负载(如电阻、电阻箱、滑线变阻器等)能耗放电的办法进行。

随着电力电子技术的、计算机技术和自动控制技术的迅速发展,为电源检测技术带来了革命性的变化。由于铁道电气化供电、电气牵引、信号控制 、无线通信、计算机指挥调度中心及家庭日常生活等应用领域都在大量应用各种各样的电源,因此人们对电子负载的需求越来越多,对其性能要求也越来越高。而传统的电源检测技术面临着极大的挑战。为准确检测电源的可靠性和带载能力,因此把电力电子技术和微机控制技术有机地结合起来,实现电源的可靠检测。

从电源类型来看,电子负载可分为直流电子负载和交流电子负载两种。直流电子负载比起交流电子负载,应用的历史较长,范围更广。最初在实验室,利用电力电子器件的特性,通过分析等值电路,用电力电子元件搭建电子电路来模拟负载,可以实现定电阻、定电压等特性。随后又有工作人员将单片机技术应用到电子负载中,逐步可实现定电流模式和可编程斜率模式。单片机技术与变换器电路的密切结合还使得电子负载可以工作在其它多种模式下:定功率模式、动态电阻模式、短路模式等。

随着功率场效应晶体管 (MOSFET),绝缘栅双极型晶体管(IGBT)和场效应晶闸管(McT)等主要开关器件的出现以及电力电子变换器拓扑的发展,由于变换器能更好的将一种电能变为另一种或多种形式的电能,交流电子负载也得到了实现。交流电子负载是可以模拟传统真实阻抗负载的电力电子装置,它能模拟一个固定或变化的负载,甚至将试验的电能反馈回电网,其设计初衷是交流电源出厂试验。交流电源出厂试验通常采用电阻箱耗能的办法,它存在调节不便、自动化程度低、耗电量大等缺点,而采用交流电子负载进行试验可有效克服这些缺点,它可使试验更加简单、灵活,且大大降低试验的成本。

电子负载可以模拟真实环境中的负载(用电器)。它有恒流、恒阻、恒压和恒功率功能,以及短路,过流,动态等等,应该说所有的电源厂家都会有用,而且也必须有。电子负载分为直流电子负载和交流电子负载,由于电子负载的应用方面问题,直流电子负载应用比较广泛,本文主要介绍直流电子负载。

电子负载与传统的模拟电阻性负载相比具有节能、体积小、重量轻、成本低、效率高等优点,由于电子负载所具有的性能特点和优点,电子负载被越来越多地应用到各种试验场合。因此,电子负载的研究具有广阔的市场和广泛的应用前景。

1

东华理工大学毕业设计(论文) 第一章 电子负载系统设计方案

第一章 电子负载系统设计方案

1.1 电子负载工作原理

电子负载用于测试直流稳压电源、蓄电池等电源的性能。电子负载的原理是控制内功率MOSFET或晶体管的导通量(占空比),靠功率管的耗散功率消耗电能的设备,它能够准确检测出负载电压,精确调整负载电流,同时可以实现模拟负载短路,模拟负载是感性阻性和容性,容性负载电流上升时间。它的基本工作方式有恒压、恒流、恒阻、恒功率这几种。 (1)恒定电流方式

在定电流模式中,在额定使用环境下, 不论输入电压大小如何变化, 电子负载将根据设定值来吸收电流。

若被测电压在5~10V变化,设定电流为100mA,则当调节被测电压值时,负载上的电流值应维持在100mA不变, 而此时负载值是可变的。定电流模式能用于测试电压源及AD/ DC电源的负载调整率。负载调整率是电源在负载变动情况下能够提供稳定的输出电压的能力, 是电源输出电压偏差率的百分比。 (2)恒定电阻方式

此种状态下,负载如纯电阻,吸收与电压成线性正比的电流。此方式适用于测试电压源,电流源的启动与限流特性。

在定电阻模式中, 电子负载将吸收与输入电压成线性的负载电流。若负载设定为1 kΩ, 当输入电压在1~10 V 变化时, 电流变化则为10~100 mA 。 (3)恒定电压方式

在定电压方式下电子负载将吸收足够的电流来控制电压达到设计值。定电压模式能被使用于测试电源的限流特性。另外, 负载可以模拟电池的端电压, 故也可以使用于测试电池充电器。 (4)恒定功率方式

在定功率工作模式时,电子负载所流入的负载电流依据所设定的功率大小而定,

2

东华理工大学毕业论文(论文) 第一章 电子负载系统设计方案

此时负载电流与输入电压的乘积等于负载功率设定值,即负载功率保持设定值不变。 本电子负载机实现了在恒流模式下一定范围内的正常工作,PI调节器的基准电压由单片机D/A转换输出。用A/D转换器与单片机连接把电路中电压电流的模拟信号转换为数字信号,然后用液晶显示方式显示出即时的电压电流。

1.2 系统设计要求

根据电子负载的原理,设计出实现恒流模式下的电子负载:能够检测被测电压型电源的电流、电压及功率并由液晶显示。在额定使用环境下,恒流方式为不论输入电压如何变化(在一定范围内),电子负载将根据设定值来吸收电流,流过该电子负载的电流恒定。

设计出最大功率为 100W,电流O一20A,电压O一50V的直流电子负载。

1.3 系统总体设计方案论证

根据系统的设计要求,得出以下三种方案:

方案一:如图1-1所示,运用传统的电子负载设计方式,通过比较器的比较结果及反馈来控制MOSFET的栅极电压,从而达到其内阻变化的目的。

方案二:如图1-2所示,采用了单片机作为核心控制器,设计了AD电压电流检测电路、键盘电路、液晶显示电路和驱动电路,ATmegal6单片机为核心处理器。键盘、串口通讯和LCD实现人机交互,MOS管电路为电子负载主电路。单片机输出一定占空比的PWM控制信号,控制功率电路MOS管的导通和关断时间,来获得实际所需的工作电流、电压。电路中的检测电路为电压、电流负反馈回路,通过A/D采集到单片机,与预置值进行比较,作为单片机进一步调节PWM占空比的依据。

图1-1 传统的电子负载设计

3

东华理工大学毕业论文(论文) 第一章 电子负载系统设计方案

显 示 Atmeg A/D 转换 电流检测 电压检测 按键输入 PWM 控制 功率控制

图1-2 方案二系统设计模块

方案三:为便于控制的实现和功能的扩展,如图1-3所示为新型电子负载设计系统模块框图。采用了STC89C52 单片机作为核心控制器,设计了DA输出控制电路、AD电压电流检测电路、键盘电路、液晶显示电路和驱动电路,通过软、硬件的协调配合,实现了整个设计。通过运放、PI调节器及负反馈控制环路,是整个电路的核心实质,来控制MOSFET的栅极电压,从而达到其内阻变化。MOS管在这里既作为电流的控制器件同时也作为被测电源的负载,通过PI调节器控制MOS管的导通量,从而达到流过该电子负载的电流恒定,实现恒流工作模式。

VerfLCD显示D/A转化PI调节器UfMOS管R被测电源STC89C52单片机RR键 盘A/D转化电流检测A/D转化电压检测图1-3 方案三系统模块框图

4

东华理工大学毕业论文(论文) 第一章 电子负载系统设计方案

经过比较,传统的设计方案主要靠硬件实现,成本较高。而且采用运放进行比较控制MOS管只有通和断两种情况,不能实现逐渐改变MOS管导通角的变化,不易控制。方案二通过单片机输出一定占空比的PWM控制信号,控制MOS管的导通和关断时间,来获得实际所需的工作电流、电压。这对于占空比的细调节不易控制,误差较大。方案三采用通过软、硬件的协调配合,实现了整个设计。通过运放、PI调节器及负反馈控制环路,能够较精确的控制MOS管的导通量,实现无静差的调节。故整个设计采用方案三。

1.4 系统具体设计方案

电子负载系统由软、硬件共同组成。考虑到价格、工作速度、开发成本和可靠性等因素,合理地分配了硬件和软件资源,对于某些既可用硬件实现,又可用软件实现的功能,在进行设计时,充分考虑了硬件和软件的特点,高效地分配其资源,协调其功能。

电子负载系统的硬件部分包括以下部分: (1) 单片机的选择与I/O的分配 (2) 液晶显示模块 (3) 键盘模块 (4) D/A转换模块

(5) A/D转换电压电流采样模块

(6) 电流取样PI控制器等组成的负反馈控制模块 (7) 电源电路模块

电子负载系统的控制程序,包括以下部分:

(l)人一机联系程序。包括按键信息输入程序和液晶显示输出程序等。 (2)数据采集和处理程序。主要是D/A转换程序、A/D转换程序、电压电流采样程序。

本制作的电子负载,主要实现其恒流工作模式,如图1-3所示为方案三系统模块框图。电路的核心实质是一个电流取样PI控制器负反馈控制环路,MOS管在这里既作为电流的控制器件同时也作为被测电源的负载。PI控制器控制MOS管的导通量变化与截止,从而达到保持电流恒定的目的。控制部分采用STC89C52单片机来完成,设定值通过键盘输入送往单片机,再通过DA输出电路产生基准电压送往PI控制器与实际电压相比较,基准电压与实际电压相比较的偏差控制MOS管的导通量变化与截止,从而达到保持电流恒定的目的。用A/D转换器把电路中的电压电流的模拟信号转换为数字信号,通过单片机来控制转化,然后用液晶显示显示出即时的电压电流。

5

东华理工大学毕业设计(论文) 第二章 电子负载硬件系统设计

第二章 电子负载硬件系统设计

2.1 核心处理器的设计

核心处理器负责控制与协调其他各个模块工作,并进行简单的数字信号处理。在整个电子负载系统中,主控器是系统的控制中心,其工作效率的高低关系到系统效率的高低以及系统运行的稳定性。设计过程中用单片机作为主控制器。

方案一:采用ATMEL 公司的AT89C51,51单片机价格便宜,应用广泛,实现较为复杂。但烧程序就不方便。

方案二:STC89C51与AT89C51基本性能相同,但STC89C51 RMB较多,8K flash,串口可以直接烧程序,可以和Keil直连。

本设计采用Keil软件实现其软件部分的设计,故选择方案二。

P1.0P1.1P1.2P1.3P1.4P1.5VCCP1.6P1.712345678U1P1.0(T2)P1.1(T2EX)P1.2P1.3P1.4P1.5P1.6P1.7P3.3(INT1)P3.2(INT0)P3.5(T1)P3.4(T0)EA/VPPXTAL1XTAL2RSTP3.7(RD)P3.6(WR)(AD0)P0.0(AD1)P0.1(AD2)P0.2(AD3)P0.3(AD4)P0.4(AD5)P0.5(AD6)P0.6(AD7)P0.7(A8)P2.0(A9)P2.1(A10)P2.2(A11)P2.3(A12)P2.4(A13)P2.5(A14)P2.6(A15)P2.7VCCGND(RXD)P3.0(TXD)P3.1ALE/PROGPSEN39383736353433322122232425262728P0.0P0.1P0.2P0.3P0.4P0.5P0.6P0.7JP2P2.0P2.1P2.2P2.3P2.4P2.5VCCVCCGND12345678S17R101KR910KC110uFP3.313P3.212P3.515P3.414C32VCC311918Y1RST9130PC430PP3.717P3.61640VCC20GND10113029液晶 显示插座

RST图2-1 STC89C52单片机与液晶显示模块连接电路

表2-1 单片机I/O口分配

I/O口 P0.0--P0.7 P1.0—P1.3 P1.0—P1.4 应用 4×4矩阵键盘输入 D/A转换输出 液晶显示模块 I/O口 P2.2—P2.7 XTAL1--XTAL2 RESET 应用 A/D采样输入 时钟输入 单片机复位信号

6

东华理工大学毕业论文(论文) 第二章 电子负载硬件系统设计

单片机总控制电路如图2-1所示:STC89C52单片机在系统中主要实现以下功能:设定值通过D/A转换输出基准电压;实际工作电压、电流A/D采样;LCD显示;键盘输入等。表2-1为电子负载系统中STC89C52的I/O口分配连接情况。

2.2 显示模块的设计

方案一:采用数码管显示。数码管具有接线简单、成本低廉、配置简单灵活、编程容易、对外界环境要求较低、易于维护等特点。电压和电流的显示可以用数码管,但数码管显示的信息量有限,只能显示简单的数字,其电路复杂,占用的系统I/O资源较多,显示信息少,不宜显示大量信息。

方案二:考虑到本系统中显示的内容以及系统的实用性,采用液晶显示(LCD)。液晶显示具有功耗低、体积小、质量轻、无辐射危害、平面直角显示以及影响稳定不闪烁、画面效果好、分辨率高、抗干扰能力强等优点。点阵式LCD不仅可以显示字符、数字,还可以显示各种图形、曲线及汉字,并且可以实现屏幕上下左右滚动、动画、闪烁、文本特征显示等功能。

本次设计中要测量实际的电压电流值,采用的是Nokia 5110液晶显示模块可以显示出电压电流等汉字,一面了然、外观比较好看。而且液晶显示功耗低、体积小、质量轻、无辐射危害,与单片机连接较简单。故经过比较选择方案二

Nokia 5110液晶显示特点:

(1) 性价比高,可以显示15个汉字、30个字符,价格相对便宜; (2) 接口简单,仅四根I/O线即可驱动;

(3) 速度快,是LCD12864的20倍,是LCD1602的40倍;

(4) Nokia5110工作电压2.3V,正常显示时工作电流200uA以下,具有掉电模式,适合电池供电的便携式移动设备。

MOSILCD液晶显示STC89C52MOSISPI时钟生成器

图2-2 单片机与LCD通信

如图2-1所示为STC89C52单片机与液晶显示模块连接电路。如图2-2所示为单片

7

东华理工大学毕业论文(论文) 第二章 电子负载硬件系统设计

机与LCD通信过程。

液晶的主要工作原理 (1)SPI接口时序写数据/命令

Nokia5110(PCD8544)的通信协议是一个没有MISO只有MOSI的SPI协议:

图2-3 串行总线协议―――传送1个字节

(2)Nokia5110的初始化

接通电源后,内部寄存器和RAM的内容是不确定的,这需要一个RES低电平脉冲复位一下。

图2-4 Nokia 5110复位时

(3)显示英文字符

英文字符占用6*8个点阵,通过建立一个ASCII的数组font6x8[][6]来寻址。 (4)显示汉字

显示汉字可以采用两种点阵方式,一种是12*12点阵,一种是16*16点阵。

2.3 键盘模块

方案一:非矩阵式键盘结构比较简单,使用方便,适合于较少开关量的输入场合。每个按键需占用一根I/O 口线, 在按键数量较多时,I/O 口浪费大, 电路结构显得复杂。并且此键盘是用于按键较少或操作速度较高的场合。

方案二:矩阵式键盘则适合于输入命令或者数据较多、功能复杂的系统。采用矩阵式键盘结构可以最大限度地使用单片机的引脚资源,矩阵式键盘适用于按键数量较多的场合, 由行线和列线组成, 按键位于行列的交叉点上,节省I/O 口,因此其应用十分广泛。

8

东华理工大学毕业论文(论文) 第二章 电子负载硬件系统设计

在系统设计中需要通过键盘中输入设定值,通过D/A转化输出实际值。所以需要有0-9的数字键、小数点等等按键,按键较多,所以键盘模块采用方案二。

VCCR110KS1P0.0S5P0.1S9P0.2S13P0.3P0.7P0.6R210KS2S3R310KS4R410KR5S6S7S810KR610KR7S14S15S1610KR8P0.5P0.4S10S11S1210K

图2-5 4×4矩阵键盘电路图

如图2-5所示:本系统通过矩阵电路进行按键输入,采用的是4x4矩阵键盘, 电子负载系统中按键需要实现的功能有:

(l) 0-9数字键:本设计中采用专用的数字输入按键,每次按下数字键一次,送往单片机,按位输入的数据提取出来,转换为十进制数据。

(2) 小数点键:本设计中精度要求较高,输入的设定值会有需要带小数点。在第一位按键扫描后,每次按下小数点键,在按下确认键后与数字键一样通过液晶显示显示出来。

(3)自动调节启动停止按键:该按键把电子负载功能划分为设置和调节两部分,没有按下该按键时,默认为功能设置,此时单片机只预置数据输入、按键查询、预置数据LCD显示等功能;而当按下该按键1次后,单片机将转为执行负载调节、A/D采集、实际数据LCD显示等功能。

(4)预置数据确定按键:按下该按键后,将取消其他键的功能,并把按输入的数据送往提取出来,送往单片机,之后转换为十进制数据,通过液晶显示显示出来。 (5)复位清零键:当输入有误时,按下该键可以清除显示屏。

按键采用逐行扫描法进行识别,单片机逐行扫描各键,先让每行输出低电平,检测各列是否有低电平产生,如果检测到列有低电平输出,说明有键按下,接着让每行分别依次输出低电平,其余行行输出高电平,在检测每一列的低电平情况,两次低电平的交叉处便是键按下的地方。

9

东华理工大学毕业论文(论文) 第二章 电子负载硬件系统设计

2.4 D/A转换模块的选择

方案一DAC0832是8分辨率的D/A转换集成芯片。这个DA芯片以其接口简单、转换控制容易等优点,在单片机应用系统中得到广泛的应用。D/A转换器由8位输入锁存器、8位DAC寄存器、8位D/A转换电路及转换控制电路构成。

方案二:TLC5615 D/A采用的是串行数模转换器。TLC5615是一个串行1O位DAC芯片,性能比早期电流型输出的要好。只需要通过3根串行总线就可以完成1O位数据的串行输入,易于和工业标准的微处理器或微控制器(单片机)接口,适用于电池供电的测试仪表,是具有串行接口的数模转换器。

本设计需要测出电压值、电流值,对设定值的精确度要求更高。所以采用1O位DAC芯片,分辨率较高。同时模拟数字转换器TLC5615采用接口简单的,使得硬件电路大为简化,线路板面积缩小,成本降低,故选择方案二。

如图2-6所示为D/A转换输出电路原理图。D/A变换输出采用TLC5615与单片机连接设定值通过键盘输入送往单片机,再通过DA输出电路产生基准电压送往PI控制器与实际电压相比较。

U3P1.0P1.1P1.2P1.312348765P1.0P1.1P1.2P1.3VCCP1.4VREFP1.5+2.5VP1.6GNDP1.712345678U1P1.0(T2)P1.1(T2EX)P1.2P1.3P1.4P1.5P1.6P1.7P3.3(INT1)P3.2(INT0)P3.5(T1)P3.4(T0)EA/VPPXTAL1XTAL2RSTP3.7(RD)P3.6(WR)(AD0)P0.0(AD1)P0.1(AD2)P0.2(AD3)P0.3(AD4)P0.4(AD5)P0.5(AD6)P0.6(AD7)P0.7(A8)P2.0(A9)P2.1(A10)P2.2(A11)P2.3(A12)P2.4(A13)P2.5(A14)P2.6(A15)P2.7VCCGND(RXD)P3.0(TXD)P3.1ALE/PROGPSEN39383736353433322122232425262728P0.0P0.1P0.2P0.3P0.4P0.5P0.6P0.7P2.0P2.1P2.2P2.3P2.4P2.5TLC5615P3.313P3.212P3.515P3.414C3VCC31230PY1C41918RST930PP3.177P3.16640VCC20GND101130291 图2-6 D/A转换输出电路原理图

在电路设计中VREF = 2Vrefin×N/1024;其中,Verfin为 TLC5615的参考电压,取1.5V,N为输入设定值的二进制数。VREF为到PI调节器与实际值相比较的基准电压。如图2-7所示为TLC5615与反相器的连接图,见式(2-1)为D/A变换输出通过一个反相器送到PI调节器的基准电压与输入给定电压的关系。

VREF = 5N/1024 (2-1) (N为输入设定值的二进制数)

10

东华理工大学毕业论文(论文) 第二章 电子负载硬件系统设计

如图2-8 TLC5615的时序图可以看出,当片选CS为低电平时,输入数据DIN由时钟SCLK同步输入或输出,而且最高有效位在前,低有效位在后。输入时SCLK的上升沿把串行输入数据DIN移入内部的16位移位寄存器,SCLK的下降沿输出串行数据DOUT,片选CS的上升沿把数据传送至DAC寄存器。

R24U3P1.01P1.12P1.23P1.348765VCCVREF1KR231KOP37-12VR1412V-VREFTLC5615+2.5VGND

图2-7 TLC5615与反相器连接图 图2-8 TLC5615时序图

2.5 采样电路模块

方案一采用8位A/D转换器ADC0809是一种8路模拟输入的8位逐次逼近式A/D转换器,为CMOS型单芯片器件。其作用可根据地址译码信号来选择8路模拟输入而共用一个A/D转换器。但其占用端口多,转换频率低于1M。

方案二采用10位A/D转换器TLC1549系列具有串行控制、连续逐次逼近型的模数转换器,它采用两个差分基准电压高阻输入和一个三态输出构成三线接口。TLC1549采用CMOS工艺。内部具有自动采样保持、可按比例量程校准转换范围、抗噪声干扰功能,而且在设计时使在满刻度时总误差最大仅为 3.8 mV,因此可广泛应用于模拟量和数字量的转换电路。

两者相比,TLC1549系列器件性能优良、速度快、功耗低、精度高、可靠性好、接口简便,实用价值高,同时与10位的TLC5615 DA输出基准电压精度相同,不会导致电路精度降低,故选择方案二。

采样电路是检测和测量环节的重要技术手段,为了让负载准确工作在恒流方式下,设计中对被测电源的输出电压和MOS管的电流进行实时采样。采样A/D选用10位精度的TLC1549、精度较高。

采样电路包括电压采样电路和电流采样电路,如图2-9所示为电压电流采样电路原理图。从功率电路采集实际工作电压和电流,反馈到单片机,再通过液晶显示出来,实现自动循环的调节。

11

东华理工大学毕业论文(论文) 第二章 电子负载硬件系统设计

2.5.1 电压采样电路

电压采样电路中,由于电子负载的输入电压范围比较宽,实际工作电压较高,采样前首先进行了分压设计。如图2-9所示采用1/11的分压,输出送往A/D采样TLC1549添加一个电压跟随器,没有放大作用,输出电压与输入电压相同,提高了输入阻抗,对电路进行缓冲,起到承上启下的作用。同时取到隔离作用,减小了电磁干扰的影响,减小了强电流功率电路对控制电路的损害。

如图2-9所示,被试电源两端的电压U与电压采样点电压Ub的关系为

Ub=R19/( R19+ R18)U=10K/(10K+100K)U=1/11U (2-2) 所以 U=11Ub (2-3)

R1360K-VREFR1140K12V0.75uFQ2IRFP460R18100KC5R+UfR1240KOP37-12VR1412VR151KOP37U5VCC1Ua123GND48VCC7P3.46P3.35P3.2R161KVCC1Ub123GND4U4-12VUbUaR1910KR17o.25R-12VR201KOP378VCC7P3.76P3.65P3.5-12VR211KTLC1549TLC1549 图2-9 电压电流采样电路原理图

2.5.2 电流采样电路

电流采样电路中,首先借助采样电阻R17将电流信号转换为电压信号,输出送往A/D采样TLC1549添加一个电压跟随器,不取到放大作用。如图2-9所示,提高电路带负载能力,取到缓冲、隔离作用。

如图2-9所示负载电流I与电流采样点电压Ua的关系为

I=Ua/R17=Ua/0.25 (2-4)

采样电阻R17的电阻为0.25欧姆,为锰铜采样电阻,阻值较小,但可以承受大功率,采样电阻分流对整个电路影响较小。采样电阻R17电流-电压转换元件(I/V

12

东华理工大学毕业论文(论文) 第二章 电子负载硬件系统设计

converter),落在R17上的电压降通过PI调节器与基准电压(VERF)比较,控制MOS管的导通量变化与截止,从而达到保持电流恒定的目的。这种电阻适用于高功率及高电流的电源供应器,电路板的电路侦测,具有稳定性佳,低温度系数,散热性好的特性。

2.5.3 输入的模拟量采样

U5VCC1Ua123GND48VCC7P3.46P3.35P3.2

图2-10 tlc1549引脚图

TLC1549

图2-11 tlc1549时序图

(1)TLC1549工作原理

TLC1549具有6种串行接口时序模式,这些模式是由I/O CLOCK周期和CS定义。根据TLC1549的功能结构和工作时序,其工作过程可分为3个阶段:模拟量采样、模拟量转换和数字量传输。如图2-11所示为TLC1549的时序图。 (2)输入模拟量采样

在第3个I/O CLOCK下降沿,输入模拟量开始采样,采样持续7个I/O CLOCK周期,采样值在第10个I/O CLOCK下降沿锁存。 (3)数字量得传输

当片选CS由低电平变为高时,I/O CLOCK禁止且A/D转换结果的三态串行输出DATA OUT处于高阻状态;当串行接口将CS拉至有效时,即CS由高变为低时,CS复位内部时钟,控制并使能DA-TA OUT和I/O CLOCK,允许I/O CLOCK工作并使DATA

13

东华理工大学毕业论文(论文) 第二章 电子负载硬件系统设计

OUT脱离高阻状态。串行接口把输入/输出时钟序列供给I/O CLOCK并接收上一次转换结果。首先移出上一次转换结果数字量对应的最高位,下一个I/O CLOCK的下降沿驱动。DATA OUT输出上一次转换结果数字量对应的次高位,第9个I/OCLOCK的下降沿将按次序驱动DATA OUT输出上一次转换结果数字量的最低位,第10个I/OCLOCK的下降沿,DATA OUT输出一个低电平,以便串行接口传输超过10个时钟;I/O CLOCK从主机串行接口接收长度在10~16个时钟的输入序列。CS的下降沿,上一次转换的MSB出现在DATA OUT端。10位数字量通过DATA OUT发送到主机串行接口。为了开始传输,最少需要10个时钟脉冲,如果I/OCLOCK传送大于10个时钟,那么在第10个时钟的下降沿,内部逻辑把DATA OUT拉至低电平以确保其余位清零。在正常转换周期内,即规定的时间内CS端由高电平至低电平的跳变可以终止该周期,器件返回初始状态(输出数据寄存器的内容保持为上一次转换结果)。由于可能破坏输出数据,所以在接近转换完成时要小心防止CS拉至低电平。

2.6 电流取样PI控制器等组成的负反馈控制模块

电子负载的核心实质是一个电流取样PI控制器组成的负反馈控制环路,也是电子负载的功率控制电路。MOS管在这里既作为电流的控制器件同时也作为被测电源的负载。采样电阻R17电流-电压转换元件(I/V converter),落在R17上的电压降通过PI调节器与基准电压(VERF)比较,控制MOS管的导通量变化与截止,从而达到保持电流恒定的目的。

R1360K-VREFR1140K12V0.75uFQ2IRFP460R18100KC5R+UfR1240KOP37-12VR1412VR151KOP37U5VCC1Ua123GND48VCC7P3.46P3.35P3.2R161KVCC1Ub123GND4U4-12VUbUaR1910KR17o.25R-12VR201KOP378VCC7P3.76P3.65P3.5-12VR211KTLC1549TLC1549 图2-12电流取样PI控制器等组成的负反馈控制电路

14

东华理工大学毕业论文(论文) 第二章 电子负载硬件系统设计

如图2-12所示为电流取样PI控制器等组成的负反馈控制电路。这个电路中,设定值与实际值相比较。当R17上的电压降Uf即实际值大于设定值VERF时,通过PI调节器的调节,减小MOS管的导通角,减小MOS管的导通量,使MOS管的内阻增大,流过电阻R17的电流减小,则电压降Uf慢慢减小并等于设定值,从而实现电子负载的恒流工作模式;当R17上的电压降Uf即实际值小于设定值VERF时。通过PI调节器的调节,增大MOS管的导通角,增大MOS管的导通量,使MOS管的内阻减小,流过电阻R17的电流增大,则电压降Uf慢慢增大并等于设定值,从而实现电子负载的恒流工作模式,这是一个PI调节器调节过程。

2.7 PI调节器

对于电子负载的设计需要较高的精确度,同时控制MOS管的导通量的变换也需要一个不停的变化调节过程,而不是传统的采用运放比较器组成的反馈电路来实现。传统的仅靠比较器来比较设置值与实测值,比较后的输出作用于MOS管。这样组成的反馈系统误差很大、精度低,只能控制MOS管的通或断,就只有全导通或全关闭两种极值情况,很难准确的消除误差实现其恒流模式的控制。所以需要一个更加精确的调节器来控制MOS管的导通量,使其导通角能够在可承受电压范围内,按照偏差的大小,对实测值与给定值的偏差分别进行比例和积分运算,取其和构成连续信号以控制调节导通角的增大或缩小达到设定值等于实际值。

R1360K-VREFR1140KC5UinUex12V0.75uFUexUexmUfR1240KOP37-12VR14KpiUin

0t

图2-13 PI调节器 2-14 PI调节器的输出特性

如图2-13所示为 PI调节器,PI调节器的输出电压Uex由比例和积分两个部分组成,在零初始状态和阶跃输入信号作用下,其输出电压的时间特性如图2-14 所示,由图可以看出比例积分作用的物理意义。当突加输入电压Uin时,由于开始瞬间电容

15

东华理工大学毕业论文(论文) 第二章 电子负载硬件系统设计

C相当于短路,反馈回路只有电阻R1,使输出电压Uex突跳到KPIUin。此后,随着电容C被充电,开始体现积分作用,Uex不断线性增长,直到达到输出限幅值或运算放大器饱和。这样,当单闭环调速系统采用比例积分调节器后,在突加输入偏差信号△Un的动态过程中,在输出端Uct立即呈现Uct=KPI△Un,实现快速控制,发挥了比例控制的长处;在稳态时,又和积分调节器一样,又能发挥积分控制的作用,△Un=0,Uct保持在一个恒定值上,实现稳态无静差。

因此,比例积分控制综合了比例控制和积分控制两种规律的优点,又克服了各自的缺点,扬长避短,互相补充。比例部分能够迅速响应控制作用,积分控制则最终消除稳态偏差。作为控制器,比例积分调节器兼顾了快速响应和消除静差两方面的要求。故PI调节器应用在电子负载的设计中,实现对MOS导通角的有效控制,具有积分作用的调节器,只要被调量即电子负载电路中的实测值与设定值之间有偏差,其输出就会不停的变化。反复调节,消除稳态误差,实现无静差的调节。

PI调节器是一种线性控制器,它根据给定值r(t)与实际输出值c(t)构成控制偏差

e(t)= r(t)—c(t) (2-5) 将偏差的比例(P)和积分(I)通过线性组合构成控制量,对被控对象进行控制,其控制规律为

u(t)?Kp[e(t)?1TI(2-6) ?e(t)dt]

0t其中u(t)为PI控制器的输出,e(t)为PI调节器的输入,Kp为比例系数,TI为积分时间常数。

1.比例环节即时成比例的反映控制系统的偏差信号e(t),偏差一旦产生,控制器立即产生控制作用,以减少偏差。通常随着Kp值的加大,闭环系统的超调量加大,系统响应速度加快,但是当Kp增加到一定程度,系统会变得不稳定。

2.积分环节主要用于消除静差,提高系统的无差度。积分作用的强弱取决于积分常数TI,TI越大,积分作用越弱,反之越强。通常在Kp不变的情况下,TI越大,即积分作用越弱,闭环系统的超调量越小,系统的响应速度变慢。

本次电子负载设计,为了较快且更加精确的消除误差。对于PI调节器,如图2-14 所示的PI调节器,取R11、R12=40K,R13=60K ,C=0.75uF

Kp=R13/R11=1.5 (2-6) 所以本设计的PI调节器的Kp取1.5,TI取0.03S。

TI= RC=0.03S (2-6)

16

东华理工大学毕业论文(论文) 第二章 电子负载硬件系统设计

2.8 功率电路模块

2.8.1 电子模拟负载方式的选择

方案一:晶体管式电子模拟负载:晶体管是通过一定的工艺,将两个PN结结合在一起的器件。通过基极电流可以控制集电极电流,从而可以达到控制晶体管作为一个可变负载的目的。大功率晶体管构成的功率恒流源充当负载,通过吸收电源提供的大电流,从而模拟复杂的负载形式。即通过将恒压、恒流、恒阻误差信号经过放大,再送入逻辑或控制电路,用选中的误差信号来调整晶体管的内阻,以达到模拟变化负载的目的。由于晶体管属于电流控制性器件,在控制变化速度上较慢,因此适合模拟一些电流恒定或是变化缓慢的实际负载。其次,晶体管还存在温度系数为负的问题,所以在使用过程中还需要考虑温度补偿的问题。

方案二:场效应管式电子模拟负载:场效应晶体管(MOSFET)工作在不饱和区时,漏极与源极之间的伏安特性可以看作是一个受栅一源电压控制的可变电阻。用MOSFET作可变电阻具有工作速度快,可靠性控制灵敏等优点,而且既无机械触点,也无运动部件,噪声低、寿命长。MOSFET的通态电阻较大,且负载电流较小。所以MOSFET适合模拟一些变化速度较快,但电流不大的实际负载。

综合电子负载的特性,故选择方案二场效应管式电子模拟负载。 2.8.2 功率耗散MOS管的选型

方案一:采用MTY25N60E MOS管,它常用于电力领域的应用。专为高电压、高速开关芯片,可以应用于电力供应、电机控制、PWM变流器等领域。

方案二:采用IRFP460芯片,TIP122芯片效率比方案低,总功耗相对较高。其通用参数为:

(1)漏极-源极击穿电压Vdss=500V (2)静态导通电阻Rds(on)=0.25? (3)漏源连续导通电流Id=22A (4)功 率:Ptot=278W (5)极 性:NPN

鉴于MOS管的良好开关特性,在此次设计中,对被测电源功率的控制,也就是对电流的控制,故选用方案二。

场效应管是一种单极型晶体管,它只有一个P-N结,在零偏压的状态下,它是导通的,如果在其栅极(G)和源极(S)之间加上一个反向偏压(称栅极偏压),在反向电场作用下,P-N变厚(称耗尽区),沟道变窄,漏极电流变小。当反向偏压达到一定时,

17

东华理工大学毕业设计(论文) 致 谢

致 谢

本次毕业设计我有幸选择钱敏老师作为我的指导老师,钱老师作为我们自动化系的系主任,本身有繁重教学任务和工作任务,但他利用教学之余和工作之余的时间督促教导我们完成毕业设计。经常下班时间到了,他还耐心的为我讲解问题,在整个设计过程中钱老师给予了我耐心细致的指导。钱老师渊博的专业知识和严谨的治学态度给我留下了深刻的印象。

不仅如此,钱老师还在工作精神和为人处世上给予我们谆谆教诲,使我们明白和懂得了作为一个电子专业的毕业生所应保有的心态和品质。在此对钱老师的细心教导和帮助表示深深的感谢。

此外,还要感谢赵永科老师,当钱老师去开会或者上课时,看到赵永科老师在实验室,我去问他问题。我知道他很忙,但他还是很耐心的帮我解决问题,从原理到具体的小电路,都耐心的为我讲解分析。真的要感谢赵老师,在整个毕业设计过程中给我的启发和帮助。

同时我也要感谢夏洪老师,感谢夏老师帮助我修改论文,在我论文修改过程中给我提出了很多建议和意见,夏老师一丝不苟和认真的态度让我对他心生佩服,在此对夏老师表达深深的谢意。

我也要感谢我寝室的段慧同学对本次设计的软件部分给予了关心和帮助,当我碰到问题,她细心的帮我,寻找错误的地方,修改电路,分析电路,修改程序等等,这些对我做本次设计提供了很多方便之处,在此对段慧表达深深的谢意。还有本班的各位同学在设计学习中给予的意见和大力支持也一并表示感谢。

最后,我要再一次感谢钱老师,没有他一路上耐心的指导,和他为我们上的自动控制系统课程。我是很难完成这次毕业设计的。

28

东华理工大学毕业设计(论文) 参考文献

参考文献

[1] 张毅刚·单片机原理与应用·北京·高等教育出版社,2009.7 [2] 童诗白等著·模拟电子技术基础·北京·高等教育出版社,2006.5 [3] 朱金刚·智能电子负载的设计·实验技术与管理·2006·23(6)·26-29 [4] 杨振吉· 付永杰·电子负载的设计·计量技术·2003·(5)·24-25 [5] 张汉屏·自制电子负载仪·电子制作·2010·VOL.06·28-29 [6] 丁锐霞·新型电子负载的研究·北方工业大学·2008·16

[7] 王利军·TLC1549串口传输与单片机的AD设计·国外电子元器件·2007.10 [8] 黄志瑛等·功率MOSFET在电子负载中的应用·科技资讯·2008 [9] 沈宏 吕强·浅谈直流电子负载·企业标准化·2008· 09期 [10] 通用集成电路速查手册 [11] WWW.21IC.COM.CN芯片查询网站

[12] WWW.ALLDATASHEET.COM芯片查询网站

[13] MOTOROLA公司 Simiconductor Technical Data. 1998

[14] C L Chu, J F Chen. Self-load Bank for UPS Testing by Cireulating Current Method.

Proc. IEE Elect. Power Applieant.1993.141(4):191一196.

[15] Ayres C A, Barbi1.A. Family of Converters for Power Recycling during UPS’s

Burn—in Test[A ] .Proc.fIEEE 26th Annual Meeting of Power Electronics Conferenee,ESC[C]’94.1995:1.486~492

29

东华理工大学毕业设计(论文) 附录一整体电路原理图

附录一整体电路原理图

+12VVCC78121R22VCC2.5V17805C100.1uFC110.33uFC120.1uF250C130.33uF8C140.33uFS1P0.0S5P0.1S9S10S11S1210KR7S13P0.3GNDP0.6P0.5P0.4T1~220V4D2C6470uFC80.33uFR110KS2R210KS3R310KS4R410KTL4316C70.33uF3C90.1uFR5S6S7S810KR6-12V7912U1P1.0P1.1P1.2P1.3P1.4P1.5VCCP1.6P1.712345678P1.0(T2)P1.1(T2EX)P1.2P1.3P1.4P1.5P1.6P1.7P3.3(INT1)P3.2(INT0)P3.5(T1)P3.4(T0)EA/VPPXTAL1XTAL2RSTP3.7(RD)P3.6(WR)(AD0)P0.0(AD1)P0.1(AD2)P0.2(AD3)P0.3(AD4)P0.4(AD5)P0.5(AD6)P0.6(AD7)P0.7(A8)P2.0(A9)P2.1(A10)P2.2(A11)P2.3(A12)P2.4(A13)P2.5(A14)P2.6(A15)P2.7VCCGND(RXD)P3.0(TXD)P3.1ALE/PROGPSEN39383736353433322122232425262728P0.0P0.1P0.2P0.3P0.4P0.5P0.6P0.7JP2P2.0P2.1P2.2P2.3P2.4P2.5VCCVCCGND12345678P0.2S14S15S1610KR810KS17R101K液晶 显示插座R910KC110uFU3P1.0P1.1P1.2P1.312348765VCCVREFR241KR231KOP37-12VR1412V-VREFP3.313P3.212P3.515P3.41421RSTTLC5615+2.5VGNDC330PY1C430PVCC311918RST9P3.717P3.61640VCC20GND10113029R1360K-VREFR1140KC5R+12V0.75uFQ2IRFP460R18100KUfR1240KUbOP37-12VR1412VR151KOP37UaR1910KR17o.25R-12VR20U4OP371K8VCC7P3.76P3.65P3.5-12VR211KU5VCC1Ua123GND48VCC7P3.46P3.35P3.2R161K-12VTLC1549VCC1Ub123GND4TLC1549

30

东华理工大学毕业设计(论文) 附录二电子负载程序设计

附录二电子负载程序设计

****************************************

*主程序 *

*****************************************

#include \ #include \ #include \ #include \ #include \ main() {

rst=0; //液晶初始化 delay(1); rst=1; init(); clear();

writehanzi(0,0,0); writehanzi(2,0,2); writehanzi(4,0,3);

writehanzi(6,0,4); keychu(); }

****************************************

*键盘处理子程序 *

*****************************************

#include \void keychu() {

uint value,value1; //DA输出变量值 float x=0,out=0,dianl=0; uchar

readkey,flag=0,readkey1,readkey2,readkey3,readkey4,readkey5,zan,readkey6; //存储键值变量

bit flag2=0,flag1=0,flag0=0; //小数点及切换标志位

31

东华理工大学毕业论文(论文) 附录二 电子负载程序设计

while( 1 ) {

if(flag==0) // 第一位扫描 {

readkey=keyscan(); zan=readkey; if(readkey==12) {

if(readkey!=NOKEY&&readkey!=10&&readkey!=11&&readkey!=15&&readkey!=14) {

flag=1; //输入第二位

writeshuzi(0,2,readkey); //显示第一位 }

else //无按键显示0 {

flag=0;

writeshuzi(0,2,0); } } } }

if(flag==1) //第二位扫描 {

readkey1=keyscan();

if(readkey1!=15) //未确认扫描 {

if(readkey1!=11) //清除键 {

if(readkey1!=zan) //防止连输入 { zan=readkey1; if(zan==10) //检测是否小数点,是则置第二位标志位,否则显示输入值 {

flag1=1; flag2=1; }

if(readkey1!=NOKEY&&readkey1!=14) //有键值且非模式切换键,则显示数值 {

flag=2; //第三位输入 writeshuzi(1,2,readkey1); } }}

32

东华理工大学毕业论文(论文) 附录二 电子负载程序设计

else //清除键清零,重新输入 {

flag=0;

flag1=0; //清除小数点标志 writeshuzi(0,2,0); } }

else //确认输入 { //赋值输出 x=readkey; //锁定按键 flag=6;

flag3=1; //显示测得电压电流 writehanzi(0,0,5); //显示测得电压电流 writehanzi(2,0,2); writehanzi(0,2,5); writehanzi(2,2,1); writehanzi(0,4,6); writehanzi(2,4,7); out=x*0.25;

value=1024*out/4.0; dianl=x/11.0;

value1=1024*dianl/4.0; //恒流基准电压输出 tlc5615(value1);

adzh(); //电压显示 adzh_1();

power(); //电流、功率显示 }}

if(flag==2) //扫描第三位 {

readkey2=keyscan();

if(readkey2!=15) //未确认 {

if(readkey2!=11) //未清零 {

if(flag1) //第二位有小数点,则不允许再输入小数点 { if(readkey2!=zan&&readkey2!=10) { zan=readkey2;

if(readkey2!=NOKEY&&readkey2!=14) //非小数点,非切换,显示数值 {

flag=3; //第四位输入 writeshuzi(2,2,readkey2); } }

33

东华理工大学毕业论文(论文) 附录二 电子负载程序设计

else //小数点无效 {

flag=2; }} else {

if(readkey2!=zan) { zan=readkey2;

if(zan==10) flag1=1; //第二位无小数点,第三位输入小数点,置第三位小数标志位

if(readkey2!=NOKEY&&readkey2!=14) {

flag=3;

writeshuzi(2,2,readkey2); }

} }} else {

flag=0; flag1=0; flag2=0;

writeshuzi(0,2,0); writeshuzi(1,2,11); } } else {

if(flag1&&flag2) //第二位小数 {

x=readkey; flag=6; flag3=1;

writehanzi(0,0,5); //显示测得电压电流 writehanzi(2,0,2); writehanzi(0,2,5); writehanzi(2,2,1); writehanzi(0,4,6); writehanzi(2,4,7); out=x*0.25;

value=1024*out/4.0; dianl=x/11.0;

value1=1024*dianl/4.0; //恒流基准电压输出 tlc5615(value1);

34

东华理工大学毕业论文(论文) 附录二 电子负载程序设计

tlc5615_1(value);

adzh(); //电压显示 adzh_1(); //电流显示 power();

} //无小数 输出 else {

x=readkey*10+readkey1; flag=6; flag3=1;

writehanzi(0,0,5); //显示测得电压电流 writehanzi(2,0,2); writehanzi(0,2,5); writehanzi(2,2,1); writehanzi(0,4,6); writehanzi(2,4,7); out=x*0.25;

value=1024*out/4.0;

dianl=x/11.0; //恒流基准电压输出 tlc5615(value1); adzh(); //电压显示 adzh_1(); //电流显示 power(); } }}

if(flag==3) // 扫描第四位 {

readkey3=keyscan();

if(readkey3!=15) //未确认 {

if(readkey3!=11) //未清零 {

if(flag1) //前两位有小数输入 ,不允许输入小数 {

if(readkey3!=zan&&readkey3!=10) { zan=readkey3;

if(readkey3!=NOKEY&&readkey3!=14) //无切换 {

flag=4; //第五位输入 writeshuzi(3,2,readkey3); } } else {

35

东华理工大学毕业论文(论文) 附录二 电子负载程序设计

flag=3; }}

else //无小数,则正常输出 {

if(readkey3!=zan) { zan=readkey3;

if(readkey3!=NOKEY&&readkey3!=14) {

flag=4;

writeshuzi(3,2,readkey3); } } } }

else {

flag=0; flag1=0; flag2=0;

writeshuzi(0,2,0); writeshuzi(1,2,11); writeshuzi(2,2,11); }

} // else

{ // if(flag2) {

x=readkey+readkey2*0.1; flag=6; flag3=1;

writehanzi(0,0,5); writehanzi(2,0,2); writehanzi(0,2,5); writehanzi(2,2,1); writehanzi(0,4,6); writehanzi(2,4,7); out=x*0.25;

value=1024*out/4.0; dianl=x/11.0;

tlc5615(value1); adzh(); adzh_1(); // power();

36

//清零,重新输入 确认输入 第二位小数输入是赋值 //显示测得电压电流 //恒流基准电压输出 //电压显示 电流显示 东华理工大学毕业论文(论文) 附录二 电子负载程序设计

}

else {

if(flag1!=1) //不是小数,三位数无效,重新输入 {

flag=0;

writeshuzi(0,2,0); writeshuzi(1,2,11); writeshuzi(2,2,11); }

else //第三位输入小数点,则按下面公式赋值 {

x=readkey*10+readkey1; flag=6; flag3=1;

writehanzi(0,0,5); //显示测得电压电流 writehanzi(2,0,2); writehanzi(0,2,5); writehanzi(2,2,1); writehanzi(0,4,6); writehanzi(2,4,7); out=x*0.25;

value=1024*out/4.0; dianl=x/11.0;

value1=1024*dianl/4.0; //恒流基准电压输出 tlc5615(value1);

adzh(); //电压显示 adzh_1(); //电流显示 power(); } } }}

if(flag==4) //扫描第五位数 {

readkey4=keyscan();

if(readkey4!=15) //未确认 {

if(readkey4!=11) //未清零 {

if(readkey4!=zan&&readkey4!=10&&flag2!=1) //输入小数点无效 { zan=NOKEY;

if(readkey4!=NOKEY&&readkey4!=14) {

flag=5; //第六位输入

37

本文来源:https://www.bwwdw.com/article/yn5g.html

Top