A cosmic abundance standard chemical homogeneity of the solar neighbourhood & the ISM dust-
更新时间:2023-07-26 17:22:01 阅读量: 实用文档 文档下载
- 阿根廷推荐度:
- 相关推荐
A representative sample of unevolved early B-type stars in nearby OB associations and the field is analysed to high precision using NLTE techniques. The resulting chemical composition is found to be more metal-rich and much more homogeneous than indicated
DRAFTVERSIONSEPTEMBER14,2008
APreprinttypesetusingLTEXstyleemulateapjv.03/07/07
ACOSMICABUNDANCESTANDARD:
CHEMICALHOMOGENEITYOFTHESOLARNEIGHBOURHOOD&THEISMDUST-PHASECOMPOSITION1
NORBERTPRZYBILLA2,M.FERNANDANIEVA2,3
AND
KEITHBUTLER4
DraftversionSeptember14,2008
arXiv:0809.2403v1 [astro-ph] 14 Sep 2008
ABSTRACT
ArepresentativesampleofunevolvedearlyB-typestarsinnearbyOBassociationsandthe eldisanalysedtohighprecisionusingNLTEtechniques.Theresultingchemicalcompositionisfoundtobemoremetal-richandmuchmorehomogeneousthanindicatedbypreviouswork.Armsscatterof~10%inabundancesisfoundforthesample,thesameasreportedforISMgas-phaseabundances.Acosmicabundancestandardforthepresent-daysolarneighbourhoodisproposed,implyingmassfractionsforhydrogen,heliumandmetalsofX=0.715,Y=0.271andZ=0.014.Goodagreementwithsolarphotosphericabundancesasreportedfromrecent3Dradiative-hydrodynamicalsimulationsofthesolaratmosphereisobtained.Asa rstapplicationweusethecosmicabundancestandardasaproxyforthedeterminationofthelocalISMdust-phasecomposition,puttingtightobservationalconstraintsondustmodels.
Subjectheadings:stars:abundances—stars:early-type—stars:fundamentalparameters—ISM:abundances
—dust,extinction—solarneighbourhood
1.INTRODUCTION
TheSunisuniqueamongthestarsbecauseindependentin-dicatorsallowitschemicalcompositiontobeconstrainedwithaprecisionunmatchedforanyotherstar.Thiscanbedonebyspectroscopicanalysisofitsphotosphereandbymeasure-mentofsolarwindandsolarenergeticparticles.SolarnebulaabundancescanbedeterminedfromCIchondrites,whichareunalteredsincetheformationofthesystem.ThewealthofinformationestablishedtheSunastheprincipalstandardforthechemicalcompositionofcosmicmatter(e.g.Grevesse&Sauval1998,GS98;Holweger2001;Asplundetal2005,AGS05).However,isa4.6Gyroldstarindeedrepresentativeofthecosmicmatterinitsneighbourhood5atpresent?
IdealindicatorsforpristineabundancesareunevolvedearlyB-starsofspectraltypesB0–B2.Slowlyrotatingstarsarepre-ferredastheirphotospheresshouldbeessentiallyunaffectedbymixingofCN-processedmaterial2000).TheatmospheresofearlyB-starsarealsounaf-fectedbyatomicdiffusionthatgivesrisetopeculiaritiesofmetalabundancesinmanylater-typestars(e.g.Smith1996).Amajorpracticaladvantageisalsotheirrelativelysimplephotosphericphysics,whichisrepresentedwellbyclassicalmodelatmospheres,unaffectedbycomplicationssuchasstel-larwindsorconvection.
Asaconsequence,earlyB-starsinthesolarneighbour-hoodweresubjectofseveralNLTEstudiesinthepast(e.g.Gies&LambertKilian1994;Da onetal.1999,2004,2005).Overall,theyfoundawiderangeofabundances,byaboutafactor~10,andanaveragemetallicityofonly~2/3solar(GS98).Hence,theimpressionarosethatthesolarneighbourhoodischemicallyhighlyheterogeneous,andthe
Electronicaddress:przybilla@sternwarte.uni-erlangen.de
1BasedonobservationsobtainedattheEuropeanSouthernObservatory,proposal074.B-0455(A).
2Dr.Remeis-Observatory,Sternwartstr.7,D-96049Bamberg,Germany3MPIforAstrophysics,Postfach1317,D-85741Garching,Germany4UniversityObservatory,Scheinerstr.1,D-86179Munich,Germany
5Weconsidertheregionatdistancesshorterthan~1kpc(and±500pcinGalactocentricdirection)assolarneighbourhoodinordertominimizebiasduetoGalacticabundancegradients,seeFig.1foraschematicoverview.
Sunanomalouslymetal-richcomparedtoyoungstars.
Both ndingsareproblematicintermsofGalacticchem-icalevolution.Dispersalofstellarnucleosynthesisproductsincreasesthemetallicityovertime(e.g.Chiappinietal.andhydrodynamicmixingtendstohomogenizetheinterstel-larmedium(ISM)locallyCharacteristictimescalesforhomogenizationareshort,rangingfrom106–108yrsonscalesof100-1000pcIncontrasttotheyoungstarstheinterstellargasshowsahighdegreeofchemicalhomogeneityinthesolarneighbour-hood(So a2004),withthermsscatterofmeanabundancesoftenbeinglessthan~10%.However,theISMgasphaseisnotsuitableasatracerforcosmicabundancesbecauseofse-lectivedepletionofelementsontodustgrains.Herewerein-vestigatetheconundrumofinhomogeneousstellarvs.homo-geneousISMgas-phaseabundancesinthesolarneighbour-hood,motivatedbyourprevious ndingofhomogeneousB-starabundancesforcarbon2008,NP08).
2.SAMPLEANALYSIS
Sixbrightandapparentlyslow-rotatingearlyBstarsinthesolarneighbourhood–randomlydistributedinOBassocia-tionsandinthe eld,andcoveringawiderangeofstellarpa-rameters–wereobservedinearly2005atESO/LaSilla,usingFEROSonthe2.2mtelescope.Spectrawithbroadwave-lengthcoverageandresolvingpowerλ/ λ≈48000wereobtained,atveryhigh-S/N(upto~800intheB-band).
Thequantitativeanalysisofthesamplestarswascar-riedoutfollowingthehybridNLTEapproachdiscussedbyNP07)andNP08.Inbrief,line-blanketedLTEmodelatmosphereswerecomputedwithAT-LAS91993)andNLTEline-formationcalculationswereperformedusingupdatedversionsofDETAILandSUR-FACEButler&State-of-the-artmodelatomswereadopted(seeTablewhichallowatmosphericparametersandelementalabundancestobeob-tainedwithhighaccuracy.
Multipleindependentspectroscopicindicatorswereconsid-eredsimultaneouslyforthedeterminationoftheatmosphericparameters,effectivetemperatureTeffandsurfacegravitylogg:allStark-broadenedBalmerlinesand4–6ionization
A representative sample of unevolved early B-type stars in nearby OB associations and the field is analysed to high precision using NLTE techniques. The resulting chemical composition is found to be more metal-rich and much more homogeneous than indicated
2PRZYBILLAETAL.
TABLE1
STELLARPARAMETERS&ELEMENTALABUNDANCES
HR6165
HR3055
HR1861
HR2928
HR3468
HR5285
ε(He)a10.99±0.05(20)10.94±0.05(16)10.99±0.05(14)10.99±0.05(14)10.99±0.05(14)10.99±0.05(13)ε(CII)b8.27±0.14(13)8.35±0.08(10)8.32±0.10(19)8.28±0.08(18)8.36±0.10(17)8.32±0.08(20)ε(CIII)b8.31±0.11(17)
8.30±0.05(7)
8.36±0.03(11)
8.27±0.02(5)
8.47±0.04(2)
8.42±0.06(2)
ε(CIV)b8.34(2)8.45(2)···
···
···
···
ε(NII)c8.16±0.12(73)
7.77±0.08(23)
7.75±0.09(61)8.00±0.12(61)7.92±0.10(56)7.76±0.08(47)ε(OI)d···
···
8.82±0.03(3)8.83±0.05(5)8.82±0.03(7)8.79±0.05(7)ε(OII)e8.77±0.08(51)8.79±0.10(41)
8.74±0.11(52)8.74±0.09(46)8.80±0.09(40)8.71±0.05(45)ε(NeI)f8.12±0.05(2)···
8.12±0.08(9)8.11±0.09(9)8.05±0.09(10)8.07±0.07(14)
ε(NeII)f8.14±0.07(16)8.07±0.07(8)8.08±0.09(14)8.03±0.12(8)8.06±0.03(2)···
ε(MgII)g7.62±0.03(3)
7.60±0.01(2)
7.58±0.10(6)7.56±0.03(3)7.51±0.10(6)7.50±0.05(4)ε(SiII)h···
···
7.47±0.17(2)7.56±0.08(2)7.51±0.10(5)7.22±0.13(6)ε(SiIII)h7.50±0.08(8)7.48±0.08(6)7.46±0.11(9)7.52±0.11(8)7.53±0.17(7)7.29±0.05(9)
ε(SiIV)h7.50±0.04(10)
7.51±0.18(5)
7.50±0.08(3)
7.48±0.14(2)
7.50±0.04(2)
···ε(FeII)i···
···
···
···
7.38(1)7.38(1)ε(FeIII)j
7.38±0.12(17)7.49±0.12(5)7.44±0.09(33)7.48±0.10(30)7.42±0.12(36)7.40±0.09(32)
A representative sample of unevolved early B-type stars in nearby OB associations and the field is analysed to high precision using NLTE techniques. The resulting chemical composition is found to be more metal-rich and much more homogeneous than indicated
ACOSMIC
ABUNDANCESTANDARD
3
FIG.2.—Comparisonofchemicalabundancestudies(NLTE)ofB-typestarsinthesolarneighbourhood.Redbars:presentwork;fulllineandthickfullline(forthesamestarsasinourwork):Kilian(1992,1994);dotted:Cunha&Lambert(1994),Cunhaetal.(2006)forNe;short-dashed:Gies&Lambert(1992),ex-cludingbrightgiantsandsupergiants;long-dashed:Da onetal.(1999,2001a,b,2003);dot-dashed:Morel&Butler(2008);triple-dot-dashed:Lyubimkovetal.(2004,2005).Binwidthisσ/2oftheindividualstudies.IronabundanceswerederivedassumingLTEinallpreviouswork.Solarabundancesarealsoindicated(⊙,GS98&AGS05:lowervalues).ThepanelforcarbonisreproducedfromNP08forcompleteness.Seethetextfordetails.
andSo a&Meyer(2001,SM01,seeTable2)toderiveareferencecomposition,inevitablyresultinginsub-solaraver-agevaluesandalargermsscatter.Theformerdiscrepancyhassincebeenlargelyremovedfromare-evaluationofso-larabundances(AGS05).However,thestatusquointermsofGalactochemicalevolutioncanonlybeunderstoodbyin-vokingand ne-tuningextraprocessessuchasinfall/out owofmaterialandlocalretentionofsupernovaproductsbylargeamounts.
Ontheotherhand,oursampleofearlyB-starsimpliesahighdegreeofhomogeneityforelementalabundancesinthesolarneighbourhood,withascatterof~10%,andabsolutevaluesofaboutsolar(GS98and/orAGS05,seeFig.2andTable2)6.TheonlyexceptionisN,whichismostsensitivetomixingoftheatmosphericlayerswithCN-processedmate-rial(e.g.Maeder&Meynet2000).InthiscasethepristineNabundancemaybeindicatedbythe3objectswiththelowestvalue,implyingapristineN/Cratioof0.31±0.05(bymass;errorbaradjustedtore ectadditionaluncertainties).
Althoughoursampleissmall,weregarditasrepresentativefortheearlyB-starpopulationinthesolarneighbourhood.ThestarssampletherelevantportionoftheH-burningphaseoftheobjectsintheHRDintermsofTeffandlogg(seeFig.1).Theyalsosampleonehemisphereofthesolarneighbourhood(insetofFig.1),halfofthemlocatedinOBassociationsandtheotherhalfinthe eld.All6starswereanalyzedbyKilian(1992,1994),whichweregardoneofthemostaccuratepre-viousstudiesintermsofstellarparameterandabundancede-termination.Kilian’svaluesforthe6starstypicallyspantheentireabundancerangeinhersampleof21stars(seeFig.2).Wethereforealso ndachanceselectionofstarswithsimilarchemicalcompositionforoursampleunlikely.Thisissup-portedfurtherbyacontrolsampleof6BA-typesupergiants(BA-SGs,Fig.1),forwhichmeanvaluesofε(O)=8.80±0.02andε(Mg)=7.55±0.07werederivedusingthesameanalysismethodologyasappliedhere(Przybillaetal.2006;Firnstein
HR5285isexcludedfromthesiliconmeanabundance–asymmetricsil-iconlinepro les(otherspeciesareunaffected)indicatenon-radialpulsationswhichmayberelatedtothesiliconpeculiarity.
6
2006).Thewideabundancerangesfoundinpreviousworkre ecttheloweraccuracyoftheanalyses,whileshiftsoftheabundancedistributionsrelativetoeachotherre ectsystem-atics,withdifferenttemperaturescalesbeingthemostimpor-tantamongthese.
The ndingofchemicalhomogeneityforoursampleisinexcellentaccordancewithresultsfromtheanalysisoftheISMgas-phaseinthesolarneighbourhood(So a2004,andreferencestherein)andwiththeoryregardingtheef -ciencyofhydrodynamicmixingintheISM(Edmunds1975;Roy&Kunth1995).ExcellentagreementisalsoobtainedwithelementalabundancesintheOrionnebula(Estebanetal.2004,E04,seeTable2),withtheexceptionofC,whichmaybeaconsequenceoftheatomicdatausedintheOrionanal-ysis(seeNP08forthestellarcase)plusoverestimateddustcorrections.
Inthefollowingwebrie yinvestigatetheimpactofthiscosmicabundancestandardonimportanttopicsofcontem-poraryastrophysics.
4.THECOSMICABUNDANCESTANDARD,SOLARABUNDANCES
&THEDUST-PHASECOMPOSITION
Ingeneral,excellentagreementofourB-starabundanceswithsolarvaluesfromrecent3Dradiative-hydrodynamicalsimulationsofthesolaratmosphere(AGS05)isobtained.TheoxygenvaluefallsbetweenGS98andAGS05values(seealsoCaffauetal.2008)andneoniscompatiblewithGS98.As-sumingourOandNeabundancestobealsorepresentativefortheSun,thiscouldlargelyresolvethediscrepanciesbetweenhelioseismicconstraintsandthesolarinteriormodelbasedonabundancesofAGS05asreviewedbyBasu&Antia(2008).OurcosmicabundancestandardalsofacilitatesaprecisedeterminationofdustdepletioninthelocalISMforthepri-maryconstituents.TheamountofmaterialincorporatedintodustgrainsisdeterminedbythedifferencebetweenourB-starabundancesandtheISMgas-phaseabundances,seeTable2.Accordingly,acompositionpoorincarbonbutrichinoxygenandrefractoryelementsisindicated.
Suchstudieswereundertakenpreviously,usinge.g.abun-dancesoftheSun,ofBstarsandofyoungF&Gstars(e.g.
A representative sample of unevolved early B-type stars in nearby OB associations and the field is analysed to high precision using NLTE techniques. The resulting chemical composition is found to be more metal-rich and much more homogeneous than indicated
4PRZYBILLAETAL.
TABLE2
CHEMICALCOMPOSITIONOFDIFFERENTOBJECTCLASSESINTHESOLARNEIGHBOURHOODANDOFTHESUN
Elem.
cosmicstandardBstars–thiswork
Oriongas+dustb
Bstarsc
YoungF&Gstarsc
ISMgas
ISMdustd
Sune/f
unitsoflog(El/H)+12/atomsper106Hnuclei–computedfromaveragestarabundances(meanvaluesoverallanalyzedlinesperelement);bE04;cSM01;ddifferencebetweenthecosmicstandardandISMgas-phaseabundances,inunitsofatomsper106Hnuclei;e/fGS98/AGS05,photosphericvalues;gSo a(2004);hMeyeretal.(1997),correctedaccordinglytoJensenetal.(2007);iCartledgeetal.(2004);jCartledgeetal.(2006)
ain
Snow&Witt1996,SM01,seeTable2)asproxiesforthedeterminationofthedust-phasecomposition,howeverwithmixedsuccess.Inparticular,Bstarswererejectedasreli-ableindicatorsasthederivedabundancesofmaterialindustatthattimeweretoolowtoproducetheobservedinterstellarextinction.OurstudyrevivesBstarsasproxiesoftheISMdust-phasecomposition,andevenmoresobecauseoftheex-tremelylowabundancescattercomparedtoallotherstandardsconsideredsofar,exceptfortheSun.
Thepresentresultsimplytightobservationalconstraintsondustmodelsintermsofcarbonabundance.Theobservedpropertiesofdustgrains,asinferredfromtheinterstellarex-tinctionlaw,havetobeproducedbyarathersmallamountofcarbon,posingachallengetomostdustmodels(seee.g.Snow&Witt1995).Wecancarryoutanimportantconsis-tencycheck,followingCartledgeetal.(2006):theOpre-dictedtobeincorporatedingrainsfromtheobservedMg,SiandFedustabundancesandarudimentarydustmodelagreeswiththederivedOdustabundancewithinthemutual(small)uncertainties.Fortherudimentarydustmodelweassumesil-icatestobepredominantlyMgSiO3,withonlyasmallfrac-tionofFeboundinsilicatesandonlyasmallfractionbeingofolivine-likecomposition.TheremainingMgandFefrac-tionisconsideredtobeinoxideform(MgO,FeO,Fe2O3,
Asplund,M.,etal.2005,ASPConf.Ser.,336,25(AGS05)Basu,S.,&Antia,H.M.2008,Phys.Rep.,457,217Becker,S.R.1998,ASPConf.Ser.,131,137Becker,S.R.,&Butler,K.1988,A&A,201,232Becker,S.R.,&Butler,K.1990,A&A,235,326
Butler,K.&Giddings,J.R.1985,inNewsletterofAnalysisofAstronomicalSpectra,No.9(Univ.London)
Caffau,E.,Ludwig,H.-G.,Steffen,M.,etal.2008,A&A,488,1031Cartledge,S.I.B.,Lauroesch,J.T.,etal.2004,ApJ,613,1037Cartledge,S.I.B.,Lauroesch,J.T.,etal.2006,ApJ,641,327
Chiappini,C.,Romano,D.,&Matteucci,F.2003,MNRAS,339,63Cunha,K.,&Lambert,D.L.1994,ApJ,426,170
Cunha,K.,Hubeny,I.,&Lanz,T.2006,ApJ,647,L143Da on,S.,Cunha,K.,&Becker,S.R.1999,ApJ,522,950
Da on,S.,Cunha,K.,Becker,S.R.,&Smith,V.V.2001a,ApJ,552,309Da on,S.,Cunha,K.,Butler,K.,&Smith,V.V.2001b,ApJ,563,325Da on,S.,Cunha,K.,Smith,V.V.,&Butler,K.2003,A&A,399,525Draine,B.T.2003,ARA&A,41,241Edmunds,M.G.1975,Ap&SS,32,483
Esteban,C.,etal.2004,MNRAS,355,229(E04)
Firnstein,M.2006,DiplomaThesis,Univ.Erlangen-Nuremberg
FroeseFischer,C.,&Tachiev,G.2004,At.DataNucl.DataTables,87,1Giddings,J.R.1981,Ph.D.Thesis,UniversityofLondonGies,D.R.,&Lambert,D.L.1992,ApJ,387,673
Grevesse,N.,&Sauval,A.J.1998,SpaceSci.Rev.,85,161(GS98)
Grevesse,N.,Asplund,M.,&Sauval,A.J.2007,SpaceSci.Rev.,130,105Holweger,H.2001,AIPConf.Proc.,598,23
Jensen,A.G.,Rachford,B.L.,&Snow,T.P.2007,ApJ,654,955
Fe3O4),seee.g.Draine(2003)foradiscussionofobserva-tionalevidence.
Finally,wecombineourB-starabundanceswithdataforS,ClandArfromtheanalysisoftheOrionnebula(E04)andsolarmeteoriticvaluesforotherabundantrefractoryelements(withε(El) 5,AGS05)toderivemassfractionsforhydro-gen,heliumandthemetals.ValuesofX=0.715,Y=0.271,Z=0.014andZ/X=0.020characterizethepresent-daycos-micmatterinthesolarneighbourhood(tobecomparedtoprotosolarvaluesX0=0.7133,Y0=0.2735andZ0=0.0132,Grevesseetal.2007).Thesecombinedabundancesareourrecommendedvaluesforawiderangeofapplicationsrequir-inganaccurateknowledgeofthechemicalcompositionatpresent(e.g.foropacitycalculations),examplesbeingmod-elsofstar/planetformationorstellarevolution(inparticularofshort-livedmassivestars),orfortheempiricalcalibrationofGalactochemicalevolutionmodels.
WeexpressourdeepgratitudetoU.Heberforconstantsup-portoftheprojectandusefulcommentsonthemanuscript,andthankM.Asplundforstimulatingdiscussion.M.F.N.ac-knowledgessupportbyDFG(grantHE1356/45-1).
Kilian,J.1992,A&A,262,17Kilian,J.1994,A&A,282,867
Kurucz,R.L.1993,CD-ROM13(Cambridge:SAO)
Lyubimkov,L.S.,Rostopchin,S.I.,Lambert,D.L.2004,MNRAS,351,745Lyubimkov,L.S.,Rostopchin,S.I.,etal.2005,MNRAS,358,193Maeder,A.,&Meynet,G.2000,ARA&A,38,143
Meyer,D.M.,Cardelli,J.A.,&So a,U.J.1997,ApJ,490,L103Meynet,G.,&Maeder,A.2003,A&A,404,975Morel,T.,&Butler,K.2008,A&A,487,307
Morel,T.,Butler,K.,Aerts,C.,etal.2007,A&A,457,651Nieva,M.F.,&Przybilla,N.2006,ApJ,639,L39
Nieva,M.F.,&Przybilla,N.2007,A&A,467,295(NP07)Nieva,M.F.,&Przybilla,N.2008,A&A,481,199(NP08)Przybilla,N.2005,A&A,443,293
Przybilla,N.,&Butler,K.2001,A&A,379,955Przybilla,N.,&Butler,K.2004,ApJ,609,1181
Przybilla,N.,Butler,K.,Becker,S.R.,etal.2000,A&A,359,1085
Przybilla,N.,Butler,K.,Becker,S.R.,Kudritzki,R.P.2001,A&A,369,1009Przybilla,N.,Butler,K.,Becker,S.R.,Kudritzki,R.P.2006,A&A,445,1099Przybilla,N.,Nieva,M.F.,Heber,U.,Butler,K.2008,ApJ,684,L103Roy,J.-R.,&Kunth,D.1995,A&A,294,432Smith,K.C.1996,Ap&SS,237,77
So a,U.J.2004,ASPConf.Ser.,309,393
So a,U.J.,&Meyer,D.M.2001,ApJ,554,L221(SM01)Snow,T.P.,&Witt,A.N.1995,Science,270,1455Snow,T.P.,&Witt,A.N.1996,ApJ,468,L65
REFERENCES
正在阅读:
A cosmic abundance standard chemical homogeneity of the solar neighbourhood & the ISM dust-07-26
c语言俄罗斯方块实验报告10-05
聘书范文02-08
物流园区补贴及优惠政策04-22
茶楼转让协议03-21
2013 5S管理起源于日本07-17
陈定春苏教必修一002《师说》答案12-25
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- neighbourhood
- homogeneity
- abundance
- amp
- standard
- chemical
- cosmic
- solar
- dust
- ISM
- 国际商务社交礼仪
- 2015年公需科目《计算机网络信息安全与管理》考试试卷
- 扎实推进文化强国之路在线测试题(100分)
- 人教2013版七年级语文上册总复习资料2013
- 大理古城旅游攻略
- 心理咨询教材(初稿)
- 2013-2014学年度第一学期期中考试八年级物理试题
- 十年高考试题分类解析-物理-专题10-带电粒子在电场中的运动
- 汽轮机课程设计-汽轮机通流部分热力设计
- 科学 微课 苏教版三下五风向和风力教学设计
- 通用名称的商标权问题研究
- 可跳飞自转旋翼飞行器推/升力系统参数优化
- 基于密度泛函微扰理论的砷化镓电光张量研究
- 八年级思想品德第二阶段(1--6课)测试题
- 高三班主任下学期工作目标(优选版)
- 消防监督检查管理
- 市场营销考试的重点
- 黑龙江教师招聘-黑龙江教师招聘考试小学语文说课稿:《快乐的节日》
- 2010湖北省会计人员继续教育包过题库
- 一建项目管理模拟试卷(2013年)