精英家教一对一高考物理备课资料@陈果专题八高中物理磁场备课

更新时间:2023-03-08 04:35:25 阅读量: 高中教育 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

精英家教 授课老师:陈果

专题八 磁场、电磁感应

夯实基础

一、磁场

1、磁场:磁场是存在于磁体、运动电荷周围的一种物质.它的基本特性是:对处于其中的磁体、电流、运动电荷有力的作用.

2、磁现象的电本质:所有的磁现象都可归结为运动电荷之间通过磁场而发生的相互作用. 二、磁感线

为了描述磁场的强弱与方向,人们想象在磁场中画出的一组有方向的曲线. 1.疏密表示磁场的强弱.

2.每一点切线方向表示该点磁场的方向,也就是磁感应强度的方向.

3.是闭合的曲线,在磁体外部由N极至S极,在磁体的内部由S极至N极.磁线不相切不相交。 4.匀强磁场的磁感线平行且距离相等.没有画出磁感线的地方不一定没有磁场.

5.安培定则:姆指指向电流方向,四指指向磁场的方向.注意这里的磁感线是一个个同心圆,每点磁场方向是在该点切线方向·

*熟记常用的几种磁场的磁感线:

三、磁感应强度

1.磁场的最基本的性质是对放入其中的电流或磁极有力的作用,电流垂直于磁场时受磁场力最大,电流与磁场方向平行时,磁场力为零。

2.在磁场中垂直于磁场方向的通电导线受到的磁场力F跟电流强度I和导线长度l的乘积Il的比值,叫做通电导线所在处的磁感应强度. ①表示磁场强弱的物理量.是矢量.

②大小:B=F/Il(电流方向与磁感线垂直时的公式).

③方向:左手定则:是磁感线的切线方向;是小磁针N极受力方向;是小磁针静止时N极的指向.不是导线受力方向;不是正电荷受力方向;也不是电流方向. ④单位:牛/安米,也叫特斯拉,国际单位制单位符号T.

⑤点定B定:就是说磁场中某一点定了,则该处磁感应强度的大小与方向都是定值. ⑥匀强磁场的磁感应强度处处相等.

⑦磁场的叠加:空间某点如果同时存在两个以上电流或磁体激发的磁场,则该点的磁感应强度是各电流或磁体在该点激发的磁场的磁感应强度的矢量和,满足矢量运算法则.

【例1如图所示,正四棱柱abed一a\'b\'c\'d\'的中心轴线00\'处有一无限长的载流直导线,对该电流的磁场,下列说法中正确的是(AC)

A.同一条侧棱上各点的磁感应强度都相等 B.四条侧棱上的磁感应强度都相同

C.在直线ab上,从a到b,磁感应强度是先增大后减小 D.棱柱内任一点的磁感应强度比棱柱侧面上所有点都大

1 第 1 页

精英家教 授课老师:陈果

解析:因通电直导线的磁场分布规律是B∝1/r,故A,C正确,D错误.四条侧棱上的磁感应强度大小相等,但不同侧棱上的点的磁感应强度方向不同,故B错误.

【例2】如图所示,两根导线a、b中电流强度相同.方向如图所示,则离两导线等距离的P点,磁场方向如何?

解析:由P点分别向a、b作连线Pa、Pb.然后过P点分别做Pa、Pb垂线,根据安培定则知这两条垂线用PM、PN就是两导线中电流在P点产生磁感应强度的方向,两导线中的电流在P处产生的磁感应强度大小相同,然后按照矢量的合成法则就可知道合磁感应强度的方向竖直向上,如图所示,这也就是该处磁场的方向. 答案:竖直向上

【例3】六根导线互相绝缘,所通电流都是I,排成如图10一5所示的形状,区域A、B、C、D均为相等的正方形,则平均磁感应强度最大的区域是哪些区域?该区域的磁场方向如何?

解析:由于电流相同,方格对称,从每方格中心处的磁场来定性比较即可,如I1在任方格中产生的磁感应强度均为B,方向由安培定则可知是向里,在A、D方格内产生的磁感应强度均为B/,方向仍向里,把各自导线产生的磁感应强度及方向均画在四个方格中,可以看出在B、D区域内方向向里的磁场与方向向外的磁场等同,叠加后磁场削弱.

答案:在A、C区域平均磁感应强度最大,在A区磁场方向向里.C区磁场方向向外.

【例4】一小段通电直导线长1cm,电流强度为5A,把它放入磁场中某点时所受磁场力大小为0.1N,则该点的磁感强度为( )

A.B=2T; B.B≥2T; C、B≤2T ;D.以上三种情况均有可能

解析:由B=F/IL可知F/IL=2(T)当小段直导线垂直于磁场B时,受力最大,因而此时可能导线与B不垂直, 即Bsinθ=2T,因而B≥2T。

说明:B的定义式B=F/IL中要求B与IL垂直,若不垂直且两者间夹角为θ,则IL在与B垂直方向分上的分量即ILsinθ,因而B=F/ILsinθ,所以F/IL=Bsinθ.则B≥F/IL。 四、磁通量与磁通密度

1.磁通量Φ:穿过某一面积磁力线条数,是标量.

2.磁通密度B:垂直磁场方向穿过单位面积磁力线条数,即磁感应强度,是矢量. 3.二者关系:B=Φ/S(当B与面垂直时),Φ=BScosθ,Scosθ为面积垂直于B方向上的投影,θ是B与S法线的夹角.

【例6】如图所示,A为通电线圈,电流方向如图所示,B、C为与A在同一平面内的两同心圆,φB、φC分别为通过两圆面的磁通量的大小,下述判断中正确的是( ) A.穿过两圆面的磁通方向是垂直纸面向外 B.穿过两圆面的磁通方向是垂直纸面向里 C.φB>φC D.φB<φC

解析:由安培定则判断,凡是垂直纸面向外的磁感线都集中在是线圈内,因磁感线是闭合曲线,则必有相应条数的磁感线垂直纸面向里,这些磁总线分布在线圈是外,所以B、C两圆面都有垂直纸面向里和向外的磁感线穿过,垂直纸面向外磁感线条数相同,垂直纸面向里的磁感线条数不同,B圆面较少,c圆面较多,但都比垂直向外的少,所以 B、C磁通方向应垂直纸面向外,φB>φC,所以A、C正确.

分析磁通时要注意磁感线是闭合曲线的特点和正反两方向磁总线条数的多少,不能认为面积大的磁通就大. 答案:AC

重点题型

1.磁通量的计算

【例7】如图所示,匀强磁场的磁感强度B=2.0T,指向x轴的正方向,且ab=40cm,bc=30cm,ae=50cm,求通过面积Sl(abcd)、S2(befc)和S3(aefd)的磁通量φ1、φ2、φ3分别是多少? 解析:根据φ=BS垂,且式中S垂就是各面积在垂直于B的yx平面上投影的大小,所以各面积的磁通量分别为

φ1=BS1=2.0×40×30×104=0.24 Wb;φ2=0

2 第 2 页

精英家教 授课老师:陈果

φ3=φ1=BS1=2.0×40×30×104=0.24 Wb

答案:φ1= 0. 24 Wb, φ2=0, φ3= 0.24 Wb

【例8】如图4所示,一水平放置的矩形闭合线圈abcd在细长磁铁N极附近下落,保持bc边在纸外,ad边在纸内,由图中的位置Ⅰ经过位置Ⅱ到位置Ⅲ,且位置Ⅰ和Ⅲ都很靠近位置Ⅱ,在这个过程中,线圈中的磁通量

A.是增加的; B.是减少的

C.先增加,后减少; D.先减少,后增加

解析:要知道线圈在下落过程中磁通量的变化情况,就必须知道条形磁铁在磁极附近磁感线的分布情况.条形磁铁在 N极附近的分布情况如图所示,由图可知线圈中磁通量是先减少,后增加.D选项正确.

点评:要知道一个面上磁通量,在面积不变的条件下,也必须知道磁场的磁感线的分布情况.因此,牢记条形磁铁、蹄形磁铁、通电直导线、通电螺线管和通电圆环等磁场中磁感线的分布情况在电磁学中是很必要的.

【例9】如图所示边长为100cm的正方形闭合线圈置于磁场中,线圈AB、CD两边中点连线OO/的左右两侧分别存在方向相同、磁感强度大小各为B1=0.6T,B2=0.4T的匀强磁场。若从上往下看,线圈逆时针转过370时,穿过线圈的磁通量改变了多少? 解析:在原图示位置,由于磁感线与线圈平面垂直,因此

Φ1=B1×S/2+B2×S/2=(0.6×1/2+0.4×1/2)Wb=0.5Wb

/0

当线圈绕OO轴逆时针转过37后,(见图中虚线位置):

00

Φ2=B1×Sn/2+B2×Sn/2=B1×Scos37/2+B2×Scos37/2=0.4Wb 磁通量变化量ΔΦ=Φ2-Φ1=(0.4-0.5)Wb=-0.1Wb

0

所以线圈转过37后。穿过线圈的磁通量减少了0.1Wb.

磁场对电流的作用 夯实基础

一、安培力

1.安培力:通电导线在磁场中受到的作用力叫做安培力. 说明:磁场对通电导线中定向移动的电荷有力的作用,磁场对这些定向移动电荷作用力的宏观表现即为安培力.

2.安培力的计算公式:F=BILsinθ(θ是I与B的夹角);通电导线与磁场方向垂直时,即θ=900,此时安培力有最大值;通电导线与磁场方向平行时,即θ=00,此时安培力有最小值,F=0N;00<B<900时,安培力F介于0和最大值之间. 3.安培力公式的适用条件:

①公式F=BIL一般适用于匀强磁场中I⊥B的情况,对于非匀强磁场只是近似适用(如对电流元),但对某些特殊情况仍适用. 如图所示,电流I1//I2,如I1在I2处磁场的磁感应强度为B,则I1对I2的安培力F=BI2L,

I1 I2

方向向左,同理I2对I1,安培力向右,即同向电流相吸,异向电流相斥. ②根据力的相互作用原理,如果是磁体对通电导体有力的作用,则通电导体对磁体有反作用力.两根通电导线间的磁场力也遵循牛顿第三定律. 二、左手定则

1.用左手定则判定安培力方向的方法:伸开左手,使拇指跟其余的四指垂直且与手掌都在同一平面内,让磁感线垂直穿过手心,并使四指指向电流方向,这时手掌所在平面跟磁感线和导线所在平面垂直,大拇指所指的方向就是通电导线所受安培力的方向.

2.安培力F的方向既与磁场方向垂直,又与通电导线垂直,即F跟BI所在的面垂直.但B与I的方向不一

3 第 3 页

精英家教 授课老师:陈果

定垂直.

3.安培力F、磁感应强度B、电流1三者的关系 ①已知I,B的方向,可惟一确定F的方向;

②已知F、B的方向,且导线的位置确定时,可惟一确定I的方向; ③已知F,1的方向时,磁感应强度B的方向不能惟一确定.

4.由于B,I,F的方向关系常是在三维的立体空间,所以求解本部分问题时,应具有较好的空间想象力,要善于把立体图画变成易于分析的平面图,即画成俯视图,剖视图,侧视图等.

【例1】如图所示,一条形磁铁放在水平桌面上在其左上方固定一根与磁铁垂直的长直导线,当导线通以如图所示方向电流时( )

A.磁铁对桌面的压力减小,且受到向左的摩擦力作用 B.磁铁对桌面的压力减小,且受到向右的摩擦力作用 C.磁铁对桌面的压力增大,且受到向左的摩擦力作用 D.磁铁对桌面的压力增大,且受到向右的摩擦力作用 解析:导线所在处磁场的方向沿磁感线的切线方向斜向下,对其沿水平竖直方向分解,如图10—15所示.对导线:

Bx产生的效果是磁场力方向竖直向上. By产生的效果是磁场力方向水平向左.

根据牛顿第三定律:导线对磁铁的力有竖直向下的作用力,因而磁铁对桌面压力增大;导线对磁铁的力有水平向右的作用力.因而磁铁有向右的运动趋势,这样磁铁与桌面间便产生了摩擦力,桌面对磁铁的摩擦力沿水平方向向左. 答案:C

【例2】.如图在条形磁铁N极处悬挂一个线圈,当线圈中通有逆时针方向的电流时,线圈将向哪个方向偏转?

分析:用“同向电流互相吸引,反向电流互相排斥”最简单:螺线管的电流在正面是向下的,与线圈中的电流方向相反,互相排斥,而左边的线圈匝数多所以线圈向右偏转。

【例3】电视机显象管的偏转线圈示意图如右,即时电流方向如图所示。该时刻由里向外射i 出的电子流将向哪个方向偏转?

解:画出偏转线圈内侧的电流,是左半线圈靠电子流的一侧为向里,右半线圈靠电子流的一侧为向外。电子流的等效电流方向是向里的,根据“同向电流互相吸引,反向电流互相排斥”,可判定电子流向左偏转。

重点题型

1。安培力的性质和规律;

①公式F=BIL中L为导线的有效长度,即导线两端点所连直线的长度,相应的电流方向沿L由始端流向末端.如图所示,甲中:l/?2l,乙中:L/=d(直径)=2R(半圆环且半径为R) ②安培力的作用点为磁场中通电导体的几何中心;

③安培力做功:做功的结果将电能转化成其它形式的能.

【例4】如图所示,在光滑的水平桌面上,有两根弯成直角相同金属棒,它们的一端均可绕固定转轴O自由转动,另一端 b互相接触,组成一个正方形线框,正方形边长为 L,匀强磁场的方向垂直桌面向下,磁感强度为 B.当线框中通以图示方向的电流时,两金属棒b点的相互作用力为f此时线框中的电流为多少?

解析:由于对称性可知金属棒在O点的相互作用力也为f,所以Oa边和ab边所受安培力的合力为2f,方向向右,根据左手定则可知Oa边和ab边所受安培力F1、F2分别与这两边垂直,由力的合成法则可求出 F1= F2=2fcos450=2f=BIL,I=2f/BL 点评:本题也利用了对称性说明 O点的作用力为f,当对左侧的金属棒作受力分析时,受到的两个互相垂直的安培力F1、F2(这两个安培力大小相等为 F)的合力是

4 第 4 页

精英家教 授课老师:陈果

水平向右的,大小为2F,与O、b两点受到的作用力2f相平衡。

【例5】质量为m的通电细杆ab置于倾角为θ的平行导轨上,导轨宽度为d,杆ab与导轨间的摩擦因数为μ.有电流时aB恰好在导轨上静止,如图所示,如图10—19所示是沿ba方向观察时的四个平面图,标出了四种不同的匀强磁场方向,其中杆与导轨间摩擦力可能为零的是( )

解析:杆的受力情况为:

答案:AB

磁场对运动电荷的作用 夯实基础

一、洛仑兹力

磁场对运动电荷的作用力

1.洛伦兹力的公式: f=qvB sinθ,θ是V、B之间的夹角. 2.当带电粒子的运动方向与磁场方向互相平行时,F=0 3.当带电粒子的运动方向与磁场方向互相垂直时,f=qvB

4.只有运动电荷在磁场中才有可能受到洛伦兹力作用,静止电荷在磁场中受到的磁场对电荷的作用力一定为0.

二、洛伦兹力的方向

1.洛伦兹力F的方向既垂直于磁场B的方向,又垂直于运动电荷的速度v的方向,即F总是垂直于B和v所在的平面.

2.使用左手定则判定洛伦兹力方向时,伸出左手,让姆指跟四指垂直,且处于同一平面内,让磁感线穿过手心,四指指向正电荷运动方向(当是负电荷时,四指指向与电荷运动方向相反)则姆指所指方向就是该电荷所受洛伦兹力的方向. 三、洛伦兹力与安培力的关系

1.洛伦兹力是单个运动电荷在磁场中受到的力,而安培力是导体中所有定向称动的自由电荷受到的洛伦兹力的宏观表现.

2.洛伦兹力一定不做功,它不改变运动电荷的速度大小;但安培力却可以做功. 四、带电粒子在匀强磁场中的运动

1.不计重力的带电粒子在匀强磁场中的运动可分三种情况:一是匀速直线运动;二是匀速圆周运动;三是螺旋运动.

5 第 5 页

精英家教 授课老师:陈果

2.不计重力的带电粒子在匀强磁场中做匀速圆周运动的轨迹半径r=mv/qB;其运动周期T=2πm/qB(与速度大小无关).

3.不计重力的带电粒子垂直进入匀强电场和垂直进入匀强磁场时都做曲线运动,但有区别:带电粒子垂直进入匀强电场,在电场中做匀变速曲线运动(类平抛运动);垂直进入匀强磁场,则做变加速曲线运动(匀速圆周运动).

【例1】一带电粒子以初速度V0垂直于匀强电场E 沿两板中线射入,不计重力,由C点射出时的速度为V,若在两板间加以垂直纸面向里的匀强磁场,粒子仍以V0入射,恰从C关于中线的对称点D射出,如图所示,则

粒子从D点射出的速度为多少?

·D 解析:粒子第一次飞出极板时,电场力做正功,由动能定理可得电场力做功为W1=m

V0 22

(V-v0)/2……①,当两板间加以垂直纸面向里的匀强磁场后,粒子第二次飞出·C 极板时,洛仑兹力对运动电荷不做功,但是粒子从与C点关于中线的对称点射出,洛 仑兹力大于电场力,由于对称性,粒子克服电场力做功,等于第一次电场力所做的功,由动能定理可得W2=m(V0-VD)/2……②,W1=W2。由 ①②③式得VD=2V02?V2

2

2

点评:凡是涉及到带电粒子的动能发生了变化,均与洛仑兹力无关,因为洛仑兹力对运动电荷永远不做功。

重点题型

1、带电粒子在磁场中运动的圆心、半径及时间的确定 (1)用几何知识确定圆心并求半径.

因为F方向指向圆心,根据F一定垂直v,画出粒子运动轨迹中任意两点(大多是射入点和出射点)的F或半径方向,其延长线的交点即为圆心,再用几何知识求其半径与弦长的关系. (2)确定轨迹所对应的圆心角,求运动时间.

先利用圆心角与弦切角的关系,或者是四边形内角和等于3600(或2π)计算出圆心角θ的大小,再由公式t=θT/3600(或θT/2π)可求出运动时间. (3)注意圆周运动中有关对称的规律.

如从同一边界射入的粒子,从同一边界射出时,速度与边界的夹角相等;在圆形磁场区域内,沿径向射入的粒子,必沿径向射出.

【例5】如图所示,一束电子(电量为e)以速度v垂直射入磁感应强度为B,宽度为d的匀强磁场中,穿过磁场时速度方向与电子原来入射方向的夹角是300,则电子的质量是 ,穿过磁场的时间是 。 解析:电子在磁场中运动,只受洛伦兹力作用,故其轨迹是圆弧一部分,又因为f⊥v,故圆心在电子穿入和穿出磁场时受到洛伦兹力指向交点上,如图中的O点,由几何知

00

识知,AB间圆心角θ=30,OB为半径.所以r=d/sin30=2d.

又由r=

mv得m=2dBe/v. Be0

又因为AB圆心角是30,所以穿过时间 t=

112?m?dT=×=. 1212Be3v【例6】如图所示,一束电子以大小不同的速率沿图示方向飞入横截面是一正方形的匀强磁场,下列判断

正确的是( )

A、电子在磁场中运动时间越长,其轨迹线越长

B.电子在磁场中运动时间越长。其轨迹线所对应的圆心角越大 C.在磁场中运动时间相同的电子,其轨迹线一定重合 D.电子的速率不同,它们在磁场中运动时间一定不相同

解析:在图中画出了不同速率的电子在磁场中的轨迹,由前面的知识点可知轨迹的

半径R=mv/qB,说明了半径的大小与电子的速率成正比.但由于电子在磁场中运动时间的长短仅与轨迹所对应的圆心角大小有关,故可判断图中五条轨迹线所对应的运动时间关系有t5=t4=t3>t2>t1显然,本题选项中只有B正确.

6 第 6 页

精英家教 授课老师:陈果

点评:本题所考查的是带电粒子在矩形(包括正方形)磁场中运动的轨迹与相应的运动时间的关系问题.不同速率的电子在磁场中的偏转角大小(也就是在磁场中运动时间的长短),由知识点中的周期表达式看来与半径是没有关系的,但由于磁场区域的边界条件的限制,由图说明了半径不同,带电粒子离开磁场时速度方向变化可能不同,也可能相同.由周期关系式必须明确的一点是:带电粒子在磁场中运动的时间长短决定于轨迹所对应的圆心角.

【例7】如图所示,半径R=10cm的圆形区域边界跟y轴相切于坐标系原点O。磁感强度B=0.332 T,方向垂直于纸面向里,在O处有一放射源 S,可沿纸面向各个方向射出速率均为v=3.2×106m/s的α粒

--

子.已知α粒子的质量m= 6.64×1027 kg,电量q=3.2 ×1019 C. (1)画出α粒子通过磁场空间做圆周运动的圆心的轨迹.(2)求出α粒子通过磁场空间的最大偏转角θ.(3)再以过O点并垂直纸面的直线为轴旋转磁场区域,能使穿过磁场区域且偏转角最大的α粒子射到正方向的y轴上,则圆形磁场直径

OA至少应转过多大的角度β. 解析:(l)α粒子的速度相同,在同一匀强磁场中运动的半径相同,均由洛仑兹力提

2

供向心力 f= qvB=mv/r,r=mv/Qb=20cm

所以α粒子的圆心与S(即O点)的距离均为r,其圆心的轨迹为以S为圆心、以20cm为半径的一段圆弧,如图所示.

(2)由于α粒子的轨道半径r大于磁场区域的半径R,α粒子最长的轨迹所对应的弦为2R=r=20cm时,α粒子在磁场中最大的偏转角的轨迹就是α粒子在磁场中最长的轨迹线,由于最长的轨迹线的弦长与其轨迹

0

半径相等,所以偏转角的最大值为θ=60

0

(3)由(2)中可知α粒子的最大偏转角为60;且所对的弦为OA,故α粒子在磁场轨迹的入射点O和出射点A与其轨迹圆心O1的连线和OA组成一个正三角形,也就是α粒子离开磁场时与x轴正方向的夹角γ

0

=30,如图所示.要使偏转角最大的α粒子离开磁场时能打在y轴的正方向上,则α粒子与x轴的正方向

/0/0

夹角γ>90,则OA绕过O点的水平轴至少要转过β=γ一γ=60.

点评:带电粒子在磁场中的轨迹不大于半圆时,要使带电粒子在磁场中的偏转角最大,就是要求带电粒子在磁场中的轨迹线愈长(由于半径确定),即所对应的弦愈长.在圆形磁场中,只有直径作为轨迹的弦长最长.所以要求带电粒子进入磁场时的入射点、离开磁场时的出射点的连线为圆形磁场区域的直径.这是本题的难点。若是r>R,情况就完全变了,这时带电粒子在磁场中的轨迹可能大于半圆或等于半圆,带电粒子在磁场中做匀速圆周运动的周期T=2πm/qB,这是一个与速度大小和半径无关的物理量,也就是说在磁场中运动时间长短仅与轨迹所对圆心花怒放角有关,在具体确定时还与磁场的边界有关,矩形的边界和圆形的边界是不相同的.

带电粒子在复合场中的运动

一、复合场的分类:

1、复合场:即电场与磁场有明显的界线,带电粒子分别在两个区域内做两种不同的运动,即分段运动,该类问题运动过程较为复杂,但对于每一段运动又较为清晰易辨,往往这类问题的关键在于分段运动的连接点时的速度,具有承上启下的作用.

2、叠加场:即在同一区域内同时有电场和磁场,些类问题看似简单,受力不复杂,但仔细分析其运动往往比较难以把握。

二、带电粒子在复合场电运动的基本分析

1.当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止. 2.当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动. 3.当带电粒子所受的合外力充当向心力时,粒子将做匀速圆周运动.

4.当带电粒子所受的合外力的大小、方向均是不断变化的时,粒子将做变加速运动,这类问题一般只能用能量关系处理.

三、电场力和洛伦兹力的比较

1.在电场中的电荷,不管其运动与否,均受到电场力的作用;而磁场仅仅对运动着的、且速度与磁场方向

7 第 7 页

精英家教 授课老师:陈果

不平行的电荷有洛伦兹力的作用.

2.电场力的大小F=Eq,与电荷的运动的速度无关;而洛伦兹力的大小f=Bqvsinα,与电荷运动的速度大小和方向均有关.

3.电场力的方向与电场的方向或相同、或相反;而洛伦兹力的方向始终既和磁场垂直,又和速度方向垂直. 4.电场力既可以改变电荷运动的速度大小,也可以改变电荷运动的方向,而洛伦兹力只能改变电荷运动的速度方向,不能改变速度大小

5.电场力可以对电荷做功,能改变电荷的动能;洛伦兹力不能对电荷做功,不能改变电荷的动能.

6.匀强电场中在电场力的作用下,运动电荷的偏转轨迹为抛物线;匀强磁场中在洛伦兹力的作用下,垂直于磁场方向运动的电荷的偏转轨迹为圆弧. 四、对于重力的考虑

重力考虑与否分三种情况.(1)对于微观粒子,如电子、质子、离子等一般不做特殊交待就可以不计其重力,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等不做特殊交待时就应当考虑其重力.(2)在题目中有明确交待的是否要考虑重力的,这种情况比较正规,也比较简单.(3)对未知名的带电粒子其重力是否忽略又没有明确时,可采用假设法判断,假设重力计或者不计,结合题给条件得出的结论若与题意相符则假设正确,否则假设错误. 五、复合场中的特殊物理模型 1.粒子速度选择器

如图所示,粒子经加速电场后得到一定的速度v0,进入正交的电场和磁场,受到的电场力与洛伦兹力方向相反,若使粒子沿直线从右边孔中出去,则有qv0B=qE,v0=E/B,若v= v0=E/B,粒子做直线运动,与粒子电量、电性、质量无关 若v<E/B,电场力大,粒子向电场力方向偏,电场力做正功,动能增加. 若v>E/B,洛伦兹力大,粒子向磁场力方向偏,电场力做负功,动能减少. 2.磁流体发电机

如图所示,由燃烧室O燃烧电离成的正、负离子(等离子体)以高速。喷入偏转磁场B中.在洛伦兹力作用下,正、负离子分别向上、下极板偏转、积累,从而在板间形成一个向下的电场.两板间形成一定的电势差.当qvB=qU/d时电势差稳定U=dvB,这就相当于一个可以对外供电的电源. 3.电磁流量计.

电磁流量计原理可解释为:如图所示,一圆形导管直径为d,用非磁性材料制成,其中有可以导电的液体向左流动.导电液体中的自由电荷(正负离子)在洛伦兹力作用下纵向偏转,a,b间出现电势差.当自由电荷所受电场力和洛伦兹力平衡时,a、b间的电势差就保持稳定. 由Bqv=Eq=Uq/d,可得v=U/Bd.流量Q=Sv=πUd/4B 4.质谱仪 如图所示

组成:离子源O,加速场U,速度选择器(E,B),偏转场B2,胶片. 原理:加速场中qU=?mv2 选择器中:v=E/B1

偏转场中:d=2r,qvB2=mv2/r 比荷:

q2E? mB1B2d质量m?B1B2dq 2E作用:主要用于测量粒子的质量、比荷、研究同位素. 5.回旋加速器 如图所示

组成:两个D形盒,大型电磁铁,高频振荡交变电压,两缝间可形成电压U

作用:电场用来对粒子(质子、氛核,a粒子等)加速,磁场用来使粒子回旋从而能反复加速.高能粒子是研究微观物理的重要手段.

8 第 8 页

精英家教 授课老师:陈果

要求:粒子在磁场中做圆周运动的周期等于交变电源的变化周期. 关于回旋加速器的几个问题: (1)回旋加速器中的D形盒,它的作用是静电屏蔽,使带电粒子在圆周运动过程中只处在磁场中而不受电场的干扰,以保证粒子做匀速圆周运动‘

(2)回旋加速器中所加交变电压的频率f,与带电粒子做匀速圆周运动的频率相等:f?1qB ?T2?m12q2B2R2(3)回旋加速器最后使粒子得到的能量,可由公式EK?mv?来计算,

22m在粒子电量,、质量m和磁感应强度B一定的情况下,回旋加速器的半径R越大,粒子的能量就越大.

【注意】直线加速器的主要特征.

如图所示,直线加速器是使粒子在一条直线装置上被加速.

重点题型

1、带电粒子在复合场中的运动

【例1】如图所示,在X轴上方有匀强电场,场强为E;在X轴下方有匀强磁场,磁感应强度为B,方向如图,在X轴上有一点M,离O点距离为L.现有一带电量为十q的粒子,使其从静止开始释放后能经过M点.如果把此粒子放在y轴上,其坐标应满足什么关系?(重力忽略不计)

解析:由于此带电粒子是从静止开始释放的,要能经过M点,其起始位置只能在匀强电场区域.物理过程是:静止电荷位于匀强电场区域的y轴上,受电场力作用而加速,以速度V进入

磁场,在磁场中受洛仑兹力作用作匀速圆周运动,向X轴偏转.回转半周期过X轴重新进入电场,在电场中经减速、加速后仍以原速率从距O点2R处再次超过X轴,在磁场回转半周后又从距O点4R处飞越X轴如图10一53所示(图中电场与磁场均未画出)故有L=2R,L=2×2R,L=3×2R 即 R=L/2n,(n=1、2、3??)????? ①

设粒子静止于y轴正半轴上,和原点距离为h,由能量守恒得mv2/2=qEh??② 对粒子在磁场中只受洛仑兹力作用而作匀速圆周运动有:R=mv/qB???③ 解①②③式得:h=B2qL2/8n2mE (n=l、2、3??)

【例2】如图所示,在宽l的范围内有方向如图的匀强电场,场强为E,一带电粒子以速度v垂直于电场方向、也垂直于场区边界射入电场,不计重力,射出场区时,粒子速度方向偏转了θ角,去掉电场,改换成方向垂直纸面向外的匀强磁场,此粒子若原样射入磁场,它从场区的另一侧射出时,也偏转了θ角,求此磁场的磁感强度B.

解析:粒子在电场中运行的时间t= l/v;加速度 a=qE/m;它作类平抛的运动.有 tgθ=at/v=qEl/mv2???①

粒子在磁场中作匀速圆周运动由牛顿第二定律得:qvB=mv2/r,所以r=mv/qB 又:sinθ=l/r=lqB/mv???② 由①②两式得:B=Ecosθ/v

【例3】初速为零的离子经过电势差为U的电场加速后,从离子枪T中水平射出,经过一段路程后进入水平放置的两平行金属板MN和PQ之间.离子所经空间存在一磁感强度为B的匀强磁场,如图所示.(不考虑重力作用),离子荷质比q/m(q、m分别是离子的电量与质量)在什么范围内,离子才能打在金属板上?

解析:离子在磁场中做匀速圆周运动,作出两条边界轨迹TP和TQ,分别作出离子在 T、P、Q三点所受的洛伦兹力,分别延长之后相交于O1、O2

点,如图所示,O1和O2分别是TP和TQ的圆心,设 R1和 R2分别为相应的半径. 离子经电压U加速,由动能定理得.qU=?mv2???①

由洛伦兹力充当向心力得qvB=mv2/R???② 由①②式得q/m=2U/B2R2

9 第 9 页

精英家教 授课老师:陈果

由图直角三角形O1CP和O2CQ可得 R12=d2+(R1一d/2)2,R1=5d/4??④

R22=(2d)2+(R2一d/2)2,R2=17d/4??⑤ 依题意R1≤R≤R2 ??⑥ 由③④⑤⑥可解得

32U289B2d2【例4】如图,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于轴线的四条狭缝a、b、

q32U≤. 22m25Bdc和d,外筒的半径为r0。在圆筒之外的足够大区域中有平行于轴线方向的均匀磁场,磁感强度的大小为B。

在两极间加上电压,使两圆筒之间的区域内有沿半径向外的电场。一质量为m、带电量为+q的粒子,从紧靠内筒且正对狭缝a的s点出发,初速为零。如果该粒子经过一段时间的运a 动之后恰好又回到出发点S,则两电极之间的电压U应是多少?(不计重力,S 整个装置在真空中)。

b d o 解析:如图所示,带电粒子从S出发,在两筒之间的电场力作用下加速,沿径向穿出a而进入磁场区,在洛仑兹力作用下做匀速圆周运动。粒子再回到S点c 的条件是能沿径向穿过狭缝d。只要穿过了d,粒子就会在电场力作用下先减速,再反向加速,经d重新进入磁场区。然后,粒子将以同样方式经过c、d,再经过

a a回到s点。

2

设粒子射入磁场区的速度为V,根据能量守恒,有?mv=qU S 设粒子在洛仑兹力作用下做匀速圆周运动的半径为R,由洛仑兹力公式和牛d b o 2

顿定律得 mv/R=qvB

由前面分析可知,要回到S点,粒子从a到d必经过3/4圆周。所以半径R

222

必定等于筒的外半径r0,则v=qBR/m=qBr0/m,U=mv/2q=qBr0/2m。 c 【例5】如图所示为一种获得高能粒子的装置,环形区域内存在垂直纸面向外.大

小可调节的均匀磁场,质量为m,电量+q的粒子在环中作半径为R的圆周运动,A、B为两块中心开有

小孔的极板,原来电势都为零,每当粒子飞经A板时,A板电势升高为U,B板电势仍 保持为零,粒子在两板间电场中得到加速,每当粒子离开B板时,A板电势又降为零, R A 粒子在电场一次次加速下动能不断增大,而绕行半径不变.

(l)设t=0时粒子静止在A板小孔处,在电场作用下加速,并绕行第一圈,求粒 B 子绕行n圈回到A板时获得的总动能En. (2)为使粒子始终保持在半径为R的圆轨道上运动,磁场必须周期性递增,求粒子绕行第n圈时的磁感应强度Bn.

(3)求粒子绕行n圈所需的总时间tn(设极板间距远小于R).

(4)在(2)图中画出A板电势U与时间t的关系(从t=0起画到粒子第四次离开B板时即可). (5)在粒子绕行的整个过程中,A板电势是否可始终保持为+U?为什么? 解析:(1)En=nqv (2)∵mqU=?

mv2n2mvn2nqU∴vn= =qUnBn Bn=mvn/qR

mR以vn结果代入,Bn=

mqR2nqU1=mR2nmv q(3)绕行第n圈需时

1n12?R1m1m=2πR ∴tn=2πR(1+++…+vn2qvn2qv32)

(4)如图所示,(对图的要求:越来越近的等幅脉冲)

(5)不可以,因为这样粒子在是、B之间飞行时电场对其做功+qv,使之加速,在是、B之外飞行时电场

10 第 10 页

精英家教 授课老师:陈果

又对其做功-qv使之减速,粒子绕行一周,电场对其作的总功为零,能量不会增大。 2、带电粒子在叠加场中的运动

【例6】如图所示,从正离子源发射的正离子经加速电压U加速后进入相互垂直的匀强电场E(方向竖直向上)和匀强磁场B(方向垂直于纸面向外)中,发现离子向上偏转,要使此离子沿直线穿过电场? A.增大电场强度E,减小磁感强度B B.减小加速电压U ,增大电场强度E C.适当地加大加速电压U D.适当地减小电场强度E

解析:正离子进入相互垂直的匀强电场和匀强磁场的区域中,受到的电场力F=qE,方向向上,受到的洛仑兹力f=qVB,方向向下,离子向上偏,说明了电场力大于洛仑兹力,要使离子沿直线运动,则只有使洛仑兹力磁大或电场力减小,增大洛仑兹力的途径是增大加速电场的电压U或或增大磁感强度B,减小电场力的途径是减小场强E.对照选项的内容可知C、D正确.?

点评:带电粒子进入相互垂直的匀强电场和匀强磁场区域,则它的速度V=E/B,这个区域就是速度选择器,且速度选择器对进入该区域的粒子所带电荷的符号无关,只要是具有相同的速度的带电粒子均能沿直线通过这一区域,但是有一点必须明确的是:速度选择器的进口与出口的位置不具有互换性。

11 第 11 页

精英家教 授课老师:陈果

又对其做功-qv使之减速,粒子绕行一周,电场对其作的总功为零,能量不会增大。 2、带电粒子在叠加场中的运动

【例6】如图所示,从正离子源发射的正离子经加速电压U加速后进入相互垂直的匀强电场E(方向竖直向上)和匀强磁场B(方向垂直于纸面向外)中,发现离子向上偏转,要使此离子沿直线穿过电场? A.增大电场强度E,减小磁感强度B B.减小加速电压U ,增大电场强度E C.适当地加大加速电压U D.适当地减小电场强度E

解析:正离子进入相互垂直的匀强电场和匀强磁场的区域中,受到的电场力F=qE,方向向上,受到的洛仑兹力f=qVB,方向向下,离子向上偏,说明了电场力大于洛仑兹力,要使离子沿直线运动,则只有使洛仑兹力磁大或电场力减小,增大洛仑兹力的途径是增大加速电场的电压U或或增大磁感强度B,减小电场力的途径是减小场强E.对照选项的内容可知C、D正确.?

点评:带电粒子进入相互垂直的匀强电场和匀强磁场区域,则它的速度V=E/B,这个区域就是速度选择器,且速度选择器对进入该区域的粒子所带电荷的符号无关,只要是具有相同的速度的带电粒子均能沿直线通过这一区域,但是有一点必须明确的是:速度选择器的进口与出口的位置不具有互换性。

11 第 11 页

本文来源:https://www.bwwdw.com/article/yh.html

Top