南财计量经济学课后习题答案_郭存芝_杜延军_李春吉

更新时间:2024-05-26 17:59:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

第一章

1.计量经济学是一门什么样的学科?

答:计量经济学的英文单词是Econometrics,本意是“经济计量”,研究经济问题的计量方法,因此有时也译为“经济计量学”。将Econometrics译为“计量经济学”是为了强调它是现代经济学的一门分支学科,不仅要研究经济问题的计量方法,还要研究经济问题发展变化的数量规律。 可以认为,计量经济学是以经济理论为指导,以经济数据为依据,以数学、统计方法为手段,通过建立、估计、检验经济模型,揭示客观经济活动中存在的随机因果关系的一门应用经济学的分支学科。

2.计量经济学与经济理论、数学、统计学的联系和区别是什么?

答:计量经济学是经济理论、数学、统计学的结合,是经济学、数学、统计学的交叉学科(或边缘学科)。计量经济学与经济学、数学、统计学的联系主要是计量经济学对这些学科的应用。计量经济学对经济学的应用主要体现在以下几个方面:第一,计量经济学模型的选择和确定,包括对变量和经济模型的选择,需要经济学理论提供依据和思路;第二,计量经济分析中对经济模型的修改和调整,如改变函数形式、增减变量等,需要有经济理论的指导和把握;第三,计量经济分析结果的解读和应用也需要经济理论提供基础、背景和思路。计量经济学对统计学的应用,至少有两个重要方面:一是计量经济分析所采用的数据的收集与处理、参数的估计等,需要使用统计学的方法和技术来完成;一是参数估计值、模型的预测结果的可靠性,需要使用统计方法加以分析、判断。计量经济学对数学的应用也是多方面的,首先,对非线性函数进行线性转化的方法和技巧,是数学在计量经济学中的应用;其次,任何的参数估计归根结底都是数学运算,较复杂的参数估计方法,或者较复杂的模型的参数估计,更需要相当的数学知识和数学运算能力,另外,在计量经济理论和方法的研究方面,需要用到许多的数学知识和原理。

计量经济学与经济学、数学、统计学的区别也很明显,经济学、数学、统计学中的任何一门学科,都不能替代计量经济学,这三门学科简单地合起来,也不能替代计量经济学。计量经济学与经济学的主要区别在于:经济学一般根据逻辑推理得出结论,说明经济现象和过程的本质与规律,大多是定性的表述。虽然理论经济学有时也会涉及经济现象和过程的数量关系,如产出随投入要素的增减而增减,但不提供这类数量关系的具体度量,不说明随投入要素的增减产出增减多少。计量经济学则要对经济理论所确定的数量关系作出具体估计,也就是对经济理论进行经验的证明。计量经济学与统计学最根本的区别在于:第一,计量经济学是以问题为导向,以经济模型为核心的,统计学则是以数据为核心,常常也是以数据为导向的。虽然现代统计学并不排斥经济理论和模型,有时也会利用它们,但不一定以特定的经济理论或模型为基础和出发点,常常可以通过对经济数据的统计直接得出结论,侧重于数据的采集、筛选和处理;第二,计量经济学对经济理论的实证作用较强。计量经济学从经济理论和经济模型出发,进行分析的过程,实际上是对经济理论证实或证伪的过程。这使得它对经济理论的验证作用很强,比统计学强的多;第三,计量经济学对经济问题有更重要的指导作用。计量经济学通常不仅要对数据进行处理和分析,获得经济问题的一些数字特征,而且要借助于经济理论和数学工具,对经济问题作出更深刻的解剖和解读。经过计量经济分析实证检验的经济理论和模型,能对分析、研究和预测更广泛的经济问题起到重要作用。计量经济学与数学的区别不言而喻,因为数学只是计量经济分析及其理论研究的工具,与实证分析经济问题的计量经济学的区别显而易见。

3.经典计量经济学与非经典计量经济学是如何划分的?

1

答:经典计量经济学与非经典计量经济学的划分可从计量经济学的发展时期及其理论方法上的特征来把握。经典计量经济学一般指上世纪70年代以前发展起来的计量经济学,在理论方法上具有以下五个方面的共同特征:第一,在模型类型上,采用随机模型;第二,在模型导向上,以经济理论为导向;第三,在模型结构上,采用线性或可化为线性的模型,反映变量之间的因果关系;第四,在数据类型上,采用时间序列数据或截面数据;第五,在估计方法上,采用最小二乘法或最大似然法。非经典计量经济学一般指上世纪70年代以后发展起来的计量经济学,也称现代计量经济学,与经典计量经济学理论方法上的五个方面的特征相对应,非经典计量经济学包括模型类型非经典计量经济学问题、模型导向非经典计量经济学问题、模型结构非经典计量经济学问题、数据类型非经典计量经济学问题、估计方法非经典计量经济学问题五个方面的内容。

4.计量经济研究中如何进行理论模型的设定?

答:理论模型的设定,是对经济问题的数学描述或模拟,涉及变量的设定、模型函数形式的设定、参数取值范围的设定三个方面。

理论模型设定中变量的设定,主要是解释变量的设定,因为被解释变量是作为研究对象的变量,可由研究问题本身直接确定。解释变量的设定需要通过以下几个方面把握:第一,解释变量应是根据经济理论或实践经验确定的被解释变量的主要影响因素,遗漏了主要影响因素或将次要影响因素甚至不相关因素引入模型,都可能导致研究结果的偏误;第二,若有多个解释变量,需注意避免解释变量之间的相关性。解释变量之间若存在一定的相关关系,可直接影响参数估计量的性质,降低研究结果的可靠性;第三,在设定解释变量的同时,应注意保证与解释变量对应的观察数据的可得性,没有样本观察数据的支持,就得不到模型的参数估计值,进一步的研究也将无法展开。

模型函数形式的设定,首先,可以直接采用数理经济学已有的函数形式,另外,也可以根据样本观察数据反映出来的变量之间的关系设定,对于其他事先无法确定模型函数形式的情况,可采用各种可能的函数形式进行模拟,选择模拟结果最好的函数形式。需要指出的是,这里设定的模型函数形式只是模型函数形式的初步设定,在模型参数估计和检验的过程中,大多还会对模型的函数形式进行逐步调整,以得到较为合理的模型函数形式。

参数取值范围的设定主要根据经济理论或实践经验给出,参数取值范围的设定可用来检验模型参数估计结果的合理性。

5.计量经济学模型中的待估参数有哪些?

答:计量经济学模型的参数包括模型的结构参数和随机误差项的分布参数两大类。模型的结构乘数是包含在模型方程中的反映模型结构特征的参数,每一个结构参数以一个字母(多为希腊字母)表示,例如生产函数模型中的参数A、?、?、?,消费函数中的参数?、?,都是模型的结构参数。随机误差项的分布参数主要是随机误差项的均值和方差。

6.计量经济学模型的检验包括哪几个方面?为什么要进行模型的检验?

答:因为经济现象和过程本身是十分复杂的,理论模型的整个建立过程,从模型设定到参数估计,都可能存在一定的偏误。在模型设定过程中,可能由于所依据的经济理论对研究对象的解释不充分,或者由于自身对研究对象的认识的欠缺,导致变量选择的偏差或模型函数形式设定的错误;在模型参数估计过程中,可能由于样本数据的统计错误、代表性差,或者由于其他信息的不可靠,导致参数估计值与真实值存在较大差距。此外,无论是单方程计量经济学模型,还是联立方程计

2

量经济学模型,都是建立在一定的假设前提下的,如果模型的建立违背了计量经济学的基本假设,也会导致错误的结果。对模型的检验通常包括经济意义经验、统计推断检验、计量经济检验、模型预测检验四个方面。

7.如何利用计量经济学模型进行政策评价?

答:政策评价是将经济目标作为被解释变量,将经济政策作为解释变量,利用计量经济学模型对各种可供选择的经济政策方案的实施后果进行模拟测算,从中选择较好的政策方案。

计量经济学模型用于政策评价,主要有三种方法:

1)工具——目标法。给定经济目标,即给定被解释变量的取值,通过对模型求解,确定解释变量的取值,即确定具体的经济政策方案。

2)政策模拟。将各种不同的政策方案代入模型,计算各自的目标值,通过对目标值的比较决定经济政策方案的取舍。

3)最优控制方法。将计量经济学模型与最优化方法结合起来,选择使目标达到最优的政策或政策组合。

8.计量经济学模型中的被解释变量和解释变量、内生变量和外生变量是如何划分的?

答:在单方程计量经济学模型中,按照因果差异,将变量分为被解释变量(explained variable)与解释变量(explanatory variable)。被解释变量是模型的分析研究对象,是具有某种概率分布的随机变量,也称为“因变量”或“应变量”(dependent variable)、“回归子”(regressand)等。解释变量是分析研究对象的主要影响因素,是确定性的变量,也称为“自变量”(independent variable)、“回归元”(regressor)等。

在联立方程计量经济学模型中,按是否由模型系统决定,将变量分为内生变量(endogenous variables)和外生变量(exogenous variables)两大类。内生变量是由模型系统决定同时可能也对模型系统产生影响的变量,是具有某种概率分布的随机变量,外生变量是不由模型系统决定但对模型系统产生影响的变量,是确定性的变量。

9.计量经济学模型中包含的变量之间的关系主要有哪些?

答:计量经济学模型中变量之间的关系主要是解释变量与被解释变量之间的因果关系,包括单向因果关系、相互影响关系、相互影响关系。

1)单向因果关系

经济变量之间的单向因果关系是单方程计量经济学模型研究的对象,指经济变量之间存在单向的内在联系,一个(一组)经济变量的水平直接影响或决定另一个经济变量的水平。

2)相互影响关系 经济变量之间的相互影响关系是联立方程计量经济学模型研究的对象,指变量之间存在双向的因果关系,即一变量的变化既引起另一变量的变化,反过来也受另一变量变化的影响。

3)相互影响关系

恒等关系是一种特殊的变量关系,实际上通常就是一些变量的定义,例如,储蓄等于可支配收入减去消费。恒等关系是变量之间的确定关系,不需要针对它们进行分析。

10.什么是行为方程、技术方程、制度方程、定义方程、平衡方程?各举一例说明。

答:方程是关于变量之间关系的表达式,计量经济学模型中的方程分为随机方程、恒等方程两大类。随机方程主要包括行为方程、技术方程、制度方程等,恒等方程主要包括定义方程、平衡方

3

程等。

行为方程是反映居民、企业、政府经济行为的随机方程。如描述居民消费与收入等的关系的消费函数方程,反映居民的消费行为,是一个行为方程;

技术方程是反映客观经济技术关系的随机方程。如描述产出与投入要素之间关系的生产函数方程,反映一定生产技术条件下投入要素与产出之间的技术关系,是一个技术方程;

制度方程是反映政府政策、规定的随机方程。如描述税收与课税对象数额、税率之间关系的税收函数方程,反映政府的税收规定,是一个制度方程;

定义方程是反映经济学或经济统计学对经济变量的定义的恒等方程。以宏观经济学对国内生产总值的定义为例,按生产法,国内生产总值等于第一产业、第二产业、第三产业的增加值之和;

平衡方程是反映经济变量之间的某种平衡关系的恒等方程。如描述某种产品的供给等于需求的方程,反映该种产品的市场供需均衡,是一个平衡方程。

11.什么是单方程模型、联立方程模型、时间序列模型?三者之间的关系如何?

答:单方程模型(single-equation model)是只含有一个方程的计量经济学模型;联立方程模型(simultaneous-equation model)是由多个方程组成的计量经济学模型;时间序列模型(time series model)是反映经济变量与时间变量之间关系的计量经济学模型。单方程模型、联立方程模型、时间序列模型分别适用于不同的情况和问题,分析方法也有区别。但这三种模型之间也有联系,联立方程模型是由多个单方程模型有机组合而成,单方程模型在联立方程模型中有很多应用,时间序列模型也是一种单方程模型。

12.计量经济学中常用的数据类型有哪些?各举一例说明。

答:根据生成过程和结构方面的差异,计量经济学中应用的数据可分为时间序列数据(time series data)、截面数据(cross sectional data)、面板数据(panal data)和虚拟变量数据(dummy variables data)。

时间序列数据是同一观察对象在不同时间点上的取值的统计序列,可理解为随时间变化而生成的数据。根据统计或观察的时间间隔的不同,时间序列数据有“年度数据”、“季节数据”、“月份数据”之分。比如说年度CPI、季节CPI、月份CPI。

截面数据是许多不同的观察对象在同一时间点上的取值的统计数据集合,可理解为对一个随机变量重复抽样获得的数据。例如,以某100个居民家庭为样本,研究居民家庭的消费与收入之间的关系,这100个家庭的完整的收入和消费数据就是一个截面数据。

面板数据是结合了时间序列数据和截面数据特征的数据,是多个观察对象在不同时间点上的取值的统计数据集合。例如,以某100个居民家庭为样本,研究从1990—2005年居民家庭的消费与收入之间的关系,这16年来的100个家庭的完整的收入和消费数据就是一个面板数据。 虚拟变量数据是人为设定的虚拟变量的取值。例如人的性别分为女性和男性,可以用0和1来表示。

13.什么是数据的完整性、准确性、可比性、一致性?

答:1)完整性,指模型中所有变量在每个样本点上都必须有观察数据,所有变量的样本观察数据都一样多。

2)准确性,指样本数据必须准确反映经济变量的状态或水平。数据的准确性与样本数据的采集直接相关,通常是研究者所不能控制的。

3)可比性,指数据的统计口径必须相同,不同样本点上的数据要有可比性。

4

4)一致性,指母体与样本即变量与数据必须一致。

14.计量经济学作为一门独立的经济学科正式诞生的标志是什么?

答:计量经济学作为一门独立的学科,一般认为正式诞生于二十世纪三十年代初,其标志是:1930年挪威经济学家弗里希(R.Frisch)、荷兰经济学家丁伯根(J.Tinbergen)、美国经济学家费歇尔(I.Fisher)等在美国俄亥俄州克里夫兰组织成立世界计量经济学会(Econometric Society);1933年世界计量经济学会会刊《计量经济学》(Econometrica)创刊。

15.试论计量经济学在经济学科中的地位。

答:理论与方法的迅速发展和在经济活动实践中的广泛应用,使计量经济学在经济学科中占有了十分突出的地位。一般认为,1969年诺贝尔经济学奖的设立,标志着经济学已成为一门科学。在经济学走向科学化的过程中,计量经济学起了特殊作用,因而1969年的首届诺贝尔经济学奖授予了创立计量经济学的弗里希和丁伯根。据统计,在历届诺贝尔经济学奖获得者中,有2/3以上是计量经济学家,有10位直接因为对计量经济学发展的贡献而获奖;有近20位担任过世界计量经济学会会长;有30余位在获奖成果中应用了计量经济学。为此,第二届诺贝尔经济学奖得主美国著名经济学家萨缪尔森评价说:“第二次世界大战后的经济学是计量经济学时代”;第十二届诺贝尔经济学奖得主美国著名经济学家克莱因评价说:“计量经济学已经在经济学科中居于最重要的位置”。

第二章 一元线性回归模型

1.什么是相关分析?什么是回归分析?相关分析与回归分析的关系如何?

答:相关分析(correlation analysis)是研究变量之间的相关关系的形式和程度的一种统计分析方法,主要通过绘制变量之间关系的散点图和计算变量之间的相关系数进行。

回归分析(regression analysis)是研究不仅存在相关关系而且存在因果关系的变量之间的依存关系的一种分析理论与方法,是计量经济学的方法论基础。

相关分析与回归分析既有联系又有区别。联系在于:相关分析与回归分析都是对存在相关关系的变量的统计相关关系的研究,都能测度线性相关程度的大小,都能判断线性相关关系是正相关还是负相关。区别在于:相关分析仅仅是从统计数据上测度变量之间的相关程度,不考虑两者之间是否存在因果关系,因而变量的地位在相关分析中是对等的;回归分析是对变量之间的因果关系的分析,变量的地位是不对等的,有被解释变量和解释变量之分。

2.随机误差项在计量经济学模型中的作用是什么?

答:计量经济学是研究经济变量之间存在的随机因果关系的理论与方法,其中对经济变量之间关系的随机性的描述通过引入随机误差项(stochastic error)的方式来实现。

一个经济变量通常不能被另一个经济变量完全精确地决定,需要引入随机误差项来反映各种误差的综合影响,主要包括:

1)变量的内在随机性的影响;

2)解释变量中被忽略的因素的影响;

3)模型关系设定误差的影响; 4)变量观察值的观察误差的影响; 5)其他随机因素的影响。

5

3.什么是总体回归函数?什么是总体回归模型?

答:给定解释变量条件下被解释变量的期望轨迹称为总体回归曲线(population regression curve),或总体回归线(population regression line)。描述总体回归曲线的函数称为总体回归函数(population regression function)。

对于只有一个解释变量X的情形,总体回归函数为

E(Y/Xi)?(fXi)表示对于解释变量X的每一个取值Xi,都有被解释变量Y的条件期望E与之对应,(Y/Xi)是X的函数。 E(Y/Xi)对于含有多个解释变量X1、X2、?、Xk的情形,总体回归函数为

E(Y/X1i,X2i,?,Xki)?(fX1i,X2i,?,Xki)表示对于解释变量X1、X2、?、Xk的每一组取值X1i、X2i、?、Xki,都有被解释变量Y的条件期望

E(Y/X1i,X2i,?,Xki)与之对应,E是X1、X2、?、Xk的函数。 (Y/X1i,X2i,?,Xki)引入了随机误差项,称为总体回归函数的随机设定形式,也是因为引入了随机误差项,成为计量经济学模型,称为总体回归模型(population regression model)。

4.什么是样本回归函数?什么是样本回归模型?

答:由于总体中包含的个体的数量往往非常多,总体回归函数的具体形式一般无法精确确定,是未知的,通常只能根据经济理论或实践经验对总体回归函数进行合理的假设,然后根据有限的样本观察数据对总体回归函数进行估计。根据样本数据对总体回归函数作出的估计称为样本回归函数(simple regression function)。

引入样本回归函数中的代表各种随机因素影响的随机变量,称为样本残差项、回归残差项或样本剩余项、回归剩余项,简称残差项或剩余项(residual),通常用ei表示。在样本回归函数中引入残差项后,得到的是随机方程,成为了计量经济学模型,称为样本回归模型。

5.线性回归模型中“线性”的含义是什么?

答:线性函数和通常意义下的线性函数不同,这里的线性函数指参数是线性的,即待估参数都只以一次方出现,解释变量可以是线性的,也可以不是线性的。

例如

2,?,n Yi??0??1lnXi??i i?1,2,?,n Yi??0??1X12i??2X2i????kXki??i i?1,32,?,n Yi??0??1X1i??()????(??i i?1,2X1i/X2i?8kXki?X2i)都是线性回归模型。

2,?,n Yi??0??12Xi??i i?1,2,?,n Yi??0?(?1??02)X1i?1X2i????kXki??i i?1,?2Yi??0??1X1i?ln?2X2i????kXki??i i?1,2,?,n

都不是线性回归模型。

6

6.为什么要对模型提出假设?一元线性回归模型的基本假设有哪些?

答:线性回归模型的参数估计方法很多,但各种估计方法都是建立在一定的假设前提之下的,只有满足假设,才能保证参数估计结果的可靠性。为此,本节首先介绍模型的基本假设。

一元线性回归模型的基本假设包括对解释变量的假设、对随机误差项的假设、对模型设定的假设几个方面,主要如下:

1)解释变量是确定性变量,不是随机变量。

2)随机误差项具有0均值、同方差,且在不同样本点之间是独立的,不存在序列相关,即

E(?i)?0 i?1,2,?,n Var(?i)??2 i?1,2,?,n

Cov(?i,?j)?0 i?j i,j?1,2,?,n

3)随机误差项与解释变量不相关。即

Cov(Xi,?i)?0 i?1,2,?,n

4)随机误差项服从正态分布,即

?i~N(0,?2) i?1,2,?,n

5)回归模型是正确设定的。

这5条假设中的前4条是线性回归模型的古典假设,也称为高斯假设,满足古典假设的线性

回归模型称为古典线性回归模型(classical linear regression model)。

7.参数的普通最小二乘估计法和最大似然估计法的基本思想各是什么?

答:普通最小二乘法(ordinary least squares,OLS)是最常用的参数估计方法,其基本思想是使样本回归函数尽可能好地拟合样本数据,反映在图上,就是要使样本散点偏离样本回归直线的距离总体上最小。在样本容量为n的情况下,就是要使n个样本点的被解释变量的估计值与实际观察值的偏差总体上最小。为避免残差的正负抵消,同时考虑计算处理上的方便,最小二乘法以

min?ei2

i?1n表示被解释变量的估计值与实际观察值的偏差总体上最小,称为最小二乘准则。 最大似然法(maximum likelihood,ML),也称为最大或然法或极大似然法。最大似然法的基本思想是使从模型中取得样本观察数据的概率最大,就是说把随机抽取得到的样本观察数据看作是重复抽取中最容易得到的样本观察数据,即概率最大,参数估计结果应该反映这一情况,使得到的模型能以最大概率产生样本数据。

8.普通最小二乘参数估计量和估计值各有哪些性质?

答:在满足基本假设情况下,一元线性回归模型的普通最小二乘参数估计量是最佳线性无偏估计量。

用普通最小二乘法估计得到的一元线性回归模型的样本回归函数具有如下性质:

????X; ???(Y 、X)1. 样本回归线过样本均值点,即点满足样本回归函数Yi01i 7

??Y; 2. 被解释变量的估计的均值等于实际值的均值,即Y3. 残差和为零,即

?ei?1ni?0;

n4. 解释变量与残差的乘积之和为零,即

?Xei?1ii?0;

n5. 被解释变量的估计与残差的乘积之和为零,即

?Y?ei?1ii?0。

9.随机误差项方差的普通最小二乘估计和最大似然估计各是什么?是否是无偏估计?

随机误差项的方差的普通最小二乘估计量为

?2??是一个无偏估计量。

随机误差项的方差的最大似然估计量为

?ei?1n2in?2

1n2???ei ?ni?12与普通最小二乘估计量不同,随机误差项的方差的最大似然估计量是一个有偏估计量。

10.什么是拟合优度?什么是拟合优度检验?拟合优度通过什么指标度量?为什么残差平方和不能作为拟合优度的度量指标?

答:拟合优度指样本回归线对样本数据拟合的精确程度,拟合优度检验就是检验样本回归线对样本数据拟合的精确程度。

样本残差平方和是一个可用来描述模型拟合效果的指标,残差平方和越大,表明拟合效果越差;残差平方和越小,表明拟合效果越好。但残差平方和是一个绝对指标,不具有横向可比性,不能作为度量拟合优度的统计量。

所以拟合优度检验的度量指标是通过残差平方和构造的决定系数来进行检验的。决定系数公式是:

R2?2ESSRSS?1? TSSTSS与残差平方和不同,决定系数R是一个相对指标,具有横向可比性,因此可以用作拟合优度检验。

11.一元线性回归模型的普通最小二乘参数估计量的分布如何?

? 、??满足线性性,可表示为被解释变量Y的线性组答:由于?0 、?1的普通最小二乘估计量?i018

? 、??也服从正态分布。 合,所以?01所以

?2i?1??N(? ,??N(? ,? ?) ? ) 0011nnn?xi2?xi2i?1?Xn2i2i?1进行标准化变换可得

????00??SE(?0)????00?Xi?1ni?1n (1) ?N(0,1)2i?2n?xi2????????111 (2) ?1?N(0,1)2?SE(?1)??xi?1n2i

其中,随机误差项?i的方差?的真实值未知,只能用其无偏估计量

2?2??2

2

?ei?1n2in?2

? 、??的方差和标准差的估计量分别称为?? 、??的?替代?后得到的?替代。用无偏估计量?0101?表示,即 ?、SE样本方差和样本标准差,样本方差和样本标准差可分别用 Var?(??)Var0??Xi?1ni?1n2in?xi2?(??)? Var?1?2?2??xi?1n

2i?替代?后,式(1)用?、(2)中的统计量服从自由度为n?2的t分布,将替代后的统计量

分别记为t0 、t1,有

22

????0t0?0???SE(?0)????00?Xi?1ni?1n?(tn-2)

2i?2?n?xi2 9

????????11t1??11?(tn-2)

2??SE(?1)???xi?1n2i

12.什么是变量显著性检验?

答:一元线性回归模型中,?1是否显著不为0,反映解释变量对被解释变量的影响是否显著,所以常针对原假设H0 :?1?0,备择假设H1 :?1?0,进行检验,称为变量显著性检验。原假设为H0 :?1?0,备择假设为H1 :?1?0时,根据原假设

??1t1??(tn-2)

??SE(?1)对于给定的显著性水平?,查自由度为n?2的t分布临界值,并计算t1的值,如果

t1?[?t?,t?]

22接受原假设H0 :?1?0,认为解释变量对被解释变量的影响不显著;反之,如果

t1?t?

2则拒绝原假设H0 :?1?0,接受备择假设H1 :?1?0,认为解释变量对被解释变量的影响显著。

13.为什么被解释变量总体均值的预测置信区间比个别值的预测置信区间窄?

答:被解释变量的总体均值E的波动,主要取决于样本数据的抽样波动。被解释变量的(Y/X0)个别值Y0的波动,除受样本数据的抽样波动的影响外,还受随机误差项?i的影响。反映在式

?(Y?(e)?)(2-50)、式(2-51)中,SE0?SE0,总体均值的预测置信区间窄于个别值的预测置信区

间。

14.由1981—2005年的样本数据估计得到反映某一经济活动的计量经济学 模型,利用模型对2050年该经济活动的情况进行预测,是否合适?为什么?

答:因为在解释变量的样本均值X处,样本观察数据的代表性往往较好,即抽样波动往往较小,被解释变量的总体均值E和个别值Y0的波动较小。反之,解释变量X的取值偏离X的(Y/X0)距离越大,样本观察数据的代表性往往越差,即抽样波动往往越大,被解释变量的总体均值和个别值Y0的波动越大。由此可见,用回归模型作预测时,解释变量的取值不宜偏离E(Y/X0)10

(3)、(4)不可以,(5)可以。 5 解答

首先通过OLS法回归得到商品进口方程如下:

^Mt?152.91?0.02GDP

t (2.32) (20.12)

R^2=0.948 SE=154.9 D.W.=0.628 2.进行序列相关检验 从残差

4003002001000-100-200-300-400788082848688909294969800RESID01e与时间t以及e和ett~~~t?1的关系图来看,随机干扰项呈现正序列相关性。

4003002001000-100-200-300-400-400-300-200-100EL0100200300E 残差图形 相邻残差关系图

回归检验法 用

e对et^~t~~t?1和

e~t?2进行回归得到如下回归方程:

~t?1~t?2e=-1.088+1.11eT统计量值表明

-0.753

e

(-0.05) (6.26) (-3.83)

e~t?1和

e~t?2在5%的显著性水平下对

e有显著影响,因此原模型存在二阶自相关。

t~进一步残差三阶自回归结果为:

e=0.64+1.17et^~~t?1-0.9

e~t?2+0.136

e~t?3

(0.029)(4.44)(-1.9) (0.33)

T统计量值表明滞后三期的残差D.W.检验

由原模型OLS回归结果知,D.W.=0.628,在5%显著性水平下,N=24,K=2(含常数项)查表得到下界

e~t?3是不显著的,因此模型不存在三阶自相关。

dl?1.27,上界du?1.27,由于D.W值小于下界,故存在一阶正自相关。

36

拉格朗日乘子检验

含二阶滞后残差项的辅助回归方程为:

e=6.59-0.0003GDP+1.094et^~~t?1t-0.786

e~t?2

(0.231) (-0.504) (6.231) (-3.692) R^2=0.6614

由上述回归得到LM=22*0.6614=14.55,该值大于显著性水平为5%,自由度为2的值5.991,由此判断原模型存在二阶序列相关性。

进一步可以做含3阶滞后残差的辅助回归,得到辅助回归方程为:

?2分布的临界

e=6.692-0.0003GDP+1.108et^~~t?1t-0.819

e~t?2+0.032

e~t?3

(0.228) (-0.497) (4.541)(-1.842) (0.087) R^2=0.6615

因此LM=21*0.6615=13.89,该值大于显著性为5%,自由度为3的表明原模型存在序列相关性,但由于

?2分布的临界值7.815,仍然

e~t?3的参数不显著,说明不存在3阶序列相关性。

3自相关处理,运用科奥迭代法估计原模型得到回归结果为:

M^t=169.32+0.020

GDP+1.108AR(1)-0.801AR(2)

t (3.81) (18.45) (6.11) (-3.61)

R^2=0.982 ,调整的R^2=0.979, D.W=1.85

其中AR(1),AR(2)前的系数为随机干扰项的1阶与2阶序列相关系数。在5%的显著性水平下,D.W>

du?1.66(22个样本),表明经广义差分后的模型不存在序列相关性。与OLS回归结果比

较,截距项有差别,但斜率系数没有差别。

37

第八章 虚拟变量模型

1. 回归模型中引入虚拟变量的作用是什么?

答: 在模型中引入虚拟变量,主要是为了寻找某(些)定性因素对解释变量的影响。加法方式与乘法方式是最主要的引入方式,前者主要适用于定性因素对截距项产生影响的情况,后者主要适用于定性因素对斜率项产生影响的情况。除此外,还可以加法与乘法组合的方式引入虚拟变量,这时可测度定性因素对截距项与斜率项同时产生影响的情况。

2. 虚拟变量有哪几种基本的引入方式? 它们各适用于什么情况?

答: 在模型中引入虚拟变量的主要方式有加法方式与乘法方式,前者主要适用于定性因素对截距项产生影响的情况,后者主要适用于定性因素对斜率项产生影响的情况。除此外,还可以加法与乘法组合的方式引入虚拟变量,这时可测度定性因素对截距项与斜率项同时产生影响的情况。

3.什么是虚拟变量陷阱?

答:根据虚拟变量的设置原则,一般情况下,如果定性变量有m个类别,则需在模型中引入m-1个变量。如果引入了m个变量,就会导致模型解释变量出现完全的共线性问题,从而导致模型无法估计。这种由于引入虚拟变量个数与类别个数相等导致的模型无法估计的问题,称为“虚拟变量陷阱”。 4.在一项对北京某大学学生月消费支出的研究中,认为学生的消费支出除受其家庭的每月收入水平外,还受在学校中是否得到奖学金,来自农村还是城市,是经济发达地区还是欠发达地区,以及性别等因素的影响。试设定适当的模型,并导出如下情形下学生消费支出的平均水平: (1) 来自欠发达农村地区的女生,未得到奖学金; (2) 来自欠发达城市地区的男生,得到奖学金;

(3) 来自发达地区的农村女生,得到奖学金;

(4) 来自发达地区的城市男生,未得到奖学金。

解答: 记学生月消费支出为Y,其家庭月收入水平为X,则在不考虑其他因素的影响时,有如下基本回归模型:

Yi=β0+β1Xi+μi 其他定性因素可用如下虚拟变量表示: 1 有奖学金 1 来自城市

D1= D2= 0 无奖学金 0 来自农村 1 来自发达地区 1 男性

D3= D4= 0 来自欠发达地区 0 女性

则引入各虚拟变量后的回归模型如下:

Yi=β0+β1Xi+

?1D1i+

?2D2i+

?3D3i+

?4D4i+μi

由此回归模型,可得如下各种情形下学生的平均消费支出:

(1) 来自欠发达农村地区的女生,未得到奖学金时的月消费支出: E(Yi|= Xi, D1i=D2i=D3i=D4i=0)=β0+β1Xi

(2) 来自欠发达城市地区的男生,得到奖学金时的月消费支出:

38

E(Yi|= Xi, D1i=D4i=1,D2i=D3i=0)=(β0+

?+?14)+β1Xi

(3) 来自发达地区的农村女生,得到奖学金时的月消费支出:

E(Yi|= Xi, D1i=D3i=1,D2i=D4i=0)=(β0+

?+?13)+β1Xi

(4) 来自发达地区的城市男生,未得到奖学金时的月消费支出:

E(Yi|= Xi,D2i=D3i=D4i=1, D1i=0)= (β0+

?+?+?234)+β1Xi

5. 研究进口消费品的数量Y与国民收入X的模型关系时,由数据散点图显示1979年前后Y对X的回归关系明显不同,进口消费函数发生了结构性变化:基本消费部分下降了,而边际消费倾向变大了。

(1) 试向模型中加入适当的变量反映经济体制变迁的影响。 (2) 写出模型的设定形式。

答:(1) 在经济发展发生转折时期,可以通过引入虚拟变量方法来表示这种变化。设虚拟变量为:

1 1979年以前 D1979= 0 1979年以后 (2) 模型设定为:

Yt=β0+β1Xt+β2D1979+β3D1979 Xt +μt

6.根据美国1961年第一季度至1977年第二季度的季度数据,我们得到了如下的咖啡需求函数的回归方程:

?t=1.2789-0.1647lnPt+0.5115lnIt+0.1483lnP?t-0.0089T-0.0961D1t-0.1570D2t-0.0097D3t lnQ (-2.14) (1.23) (0.55) (-3.36) (-3.74) (-6.03) (-0.37) R2=0.80

其中:Q—人均咖啡消费量;P—咖啡的价格(以1967年价格为不变价格);I—人均收入;P?—茶叶的价格(以1967年价格为不变价格);T—时间趋势变量(1961年第一季度为1,??,1977年第二季度为66);

1 第一季度 1 第二季度 1 第三季度

D1t= D2t= D3t= 0 其他 0 其他 0 其他

= = = 试回答下列问题:

(1) 模型中P、I和P?系数的经济含义是什么?

(2) 咖啡的价格需求是否很有弹性? (3) 咖啡和茶是互补品还是替代品? (4) 如何解释时间变量T的系数? (5) 如何解释模型中虚拟变量的作用?

(6) 哪一个虚拟变量在统计上是显著的(0.05)? (7) 咖啡的需求是否存在季节效应?

解答:(1) 从回归模型来看,P的系数-0.1647表示当咖啡的价格增加1%时,咖啡的需求量减少0.1647%,是咖啡需求的价格弹性系数;I的系数0.5115表示的是咖啡需求量对收入的弹性,即当收入增加1%时,咖啡需求量将增加0.5115%;P?的系数0.1483表示的是咖啡需求量对茶叶

39

的交叉价格弹性系数,即当茶叶的价格增加1%时,咖啡需求量将增加0.1483%。

(2) 咖啡需求的价格弹性为0.1647小于l,属于缺乏弹性。 (3) 由于交叉价格弹性为正,表明两者是替代品。

(4) 时间T的系数-0.0089, 表示咖啡的需求量在逐年递减。 (5) 虚拟变量的引入反映了季节因素对咖啡需求量的影响。

(6) 在5%的显著性水平下,t统计量的临界值为t0.025(70-8)=1.99,D1与D2系数的t统计量绝对值大于临界值,在统计上是显著的。

(7) 咖啡需求量存在季节效应,第一阶段和第二季度的销售量要少于其他季度。

7.一个由容量为209的样本估计的解释CEO薪水的方程为:

?ary)=4.59+0.2571n(sales)+0.01lroe+0.158finance+0.181cosprod-0.283utility ln(sal (15.3) (8.03) (2.75) (1.775) (2.130) (-2.895)

其中,salary表示年薪水(万元)、sales表示年收入(万元)、roe表示公司股票收益(万元);finance、consprod和utility均为虚拟变量,分别表示金融业、消费品工业和公用事业,对比产业为交通运

输业。

(1) 解释三个虚拟变量参数的经济含义;

(2) 保持sales和roe不变,计算公用事业和交通运输业之间估计薪水的近似百分比差 异。这个差异在1%的显著水平上是统计显著的吗?

(3) 消费品工业和金融业之间估计薪水的近似百分比差异是多少? 写出一个使你能直接检验这个差异在统计上是否显著的方程。

解答:(1) finance的参数的经济含义为:当销售收入与公司股票收益保持不变时,金融业的CEO要比交通运输业的CEO多获薪水15.8个百分点。其他两个可类似解释。

(2) 公用事业和交通运输业之间估计薪水的近似百分比差异就是以百分数解释utility的参数,即为28.3%。由于参数的t统计值为-2.895,它大于1%显著性水平下自由度为203的t分布的临界值1.96,因此这种差异是统计上显著的。

(3) 由于消费品工业和金融业相对于交通运输业的薪水百分比差异分别为15.8%与18.1%,因此它们间的差异为18.1%-15.8%=2.3%。一个能直接检验这一差异是否显著的方程为

ln(salary)= β0+β11n(salse)+β2 roe +β3+

?1consprod+

?2utilty+

?3trans+μ

表示了消费品工业与

其中,trans为交通运输业虚拟变量。这里对比基准为金融业,因此金融业薪水的百分数差异,其t统计值可用来进行显著性检验。

?140

本文来源:https://www.bwwdw.com/article/ycp7.html

Top