Solubility of gallic acid in liquid mixtures of (ethanol + water) from (293.15 to 318.15) K
更新时间:2023-07-19 19:23:01 阅读量:2 实用文档 文档下载
- solubility推荐度:
- 相关推荐
Solubilityofgallicacidinliquidmixturesof(ethanol+water)from(293.15to318.15)K
AdelNoubigha, ,Chokrijeribia,ArbiMgaidib,ManefAbderrabbaa
ab
LaboratoryofPhysicalChemistryofMaterials,PreparatoryInstituteforScienti candTechnicalStudiesofLaMarsa,CarthageUniversity,Bp51,2070LaMarsa,TunisiaIndustrialInorganicChemistryLaboratory,ChemistryDepartment,FacultyofScienceofTunis,TunisElManarUniversity,1060Tunis,Tunisia
articleinfoabstract
Thesolubilityofgallicacidin(water+ethanol)binarysolventswasdeterminedfrom(293.15to318.15)KatatmosphericpressureusingathermostattedreactorandUV/visspectrophotometeranalysis.Theeffectsofbinarysolventscompositionandtemperatureonthesolubilitywerediscussed.Itwasfoundthatgallicacidsolubilityin(water+ethanol)ingtheexperimentallymeasuredsolubilities,thethermodynamicpropertiesofdissolutionofthegallicacidsuchasGibbsenergy(DsolG°),molarenthalpyofdissolution(DsolH°),andmolarentropyofdissolution(DsolS°)werecalculated.
Ó2012ElsevierLtd.Allrightsreserved.
Articlehistory:
Received3March2012
Receivedinrevisedform5May2012Accepted19June2012
Availableonline29June2012Keywords:GallicacidSolubility
Mixedsolvents
TemperaturedependenceThermodynamicproperties
1.Introduction
Gallicacid(3,4,5-trihydroxybenzoicacid)anditsderivativesarephenoliccompoundscontainedinOliveMillWasteWater(OMWW)[1,2]andpresentinsomeplants,suchasgreenandblackteas[3],andoak[4].Theyareindustriallyimportantchemicalswidelyusedinorganicsynthesis,pharmaceutical,food,andinte-gratedcircuitmanufacturing.Thesephenoliccompoundsareanti-oxidant[5,6],anti-in ammatory[7],phytotoxicandtoxictobacteriaandusedincommonbiologicalwastewatertreatment[8–10].Thesolubilityofsolidcompoundsinpuresolventsandmixedsolventsplaysakeyroleinallcrystallizationprocesses[11].Moreover,solubilitydatainpuresolventsandmixedsolventscanbeconsideredashelpfulintheextractionandpuri cationpro-cessesoforganiccompoundsfromdifferentmatrices.
Insomerecentworks[12,13],solubilitiesofgallicacidinsev-eralpuresolventshavebeenmeasuredasafunctionoftempera-ture.However,inourknowledgenoexperimentalortheoreticalstudyconcerningthesolubilityofgallicacidinbinarysolventshasbeenreportedintheliterature.Asacontinuationofourearlierstudiesconcerningthephenoliccompoundssolubility[14–17],wereporthereontheeffectsofbinarysolventscompositionandtem-peratureonthesolubilityofgallicacid.Thesolubilitiesofgallicacidin(water+ethanol)mixedsolventswithethanolmolefrac-tionsof0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,and1.0,onaCorrespondingauthor.Tel.:+21698934601;fax:+21671746551.
E-mailaddresses:adel.anoubigh@ipest.rnu.tn,anoubigh@yahoo.fr(A.Noubigh).
0021-9614/$-seefrontmatterÓ2012ElsevierLtd.Allrightsreserved./10.1016/j.jct.2012.06.022
solute-freebasisweredeterminedatT=(293.15,298.15,303.15,308.15,313.15,and318.15)K.Obtaineddatawereusedtocalcu-lateappropriatedissolutionthermodynamicproperties.2.Materialsandmethods
Gallicacid(C7H6O5,MW=170.12,>98%pure)andethanolwerepurchasedfromSigma–Aldrich(Germany).Gallicacidwasusedwithoutpriortreatment,butstoredinadessicatorwithP2O5oncethebottlehasbeenopened.AbsoluteEthanolwasofanalyticalgrade(C2H6O,purity=99.8%,MW=46.07,d=0.79g/mL).Distilledwater(conductivityaround1.5lSÁcmÀ1)hasbeenused.
BinarysolventwerepreparedbymassusingaSartoriusCP225Danalyticalbalancewithanaccuracyof±0.01mg.Theuncertaintyinthemolefractionofmixedsolventswasestimatedtobewithin±0.0003.25gofbinarysolventswereintroducedintoadoublejacketedreactorthermostattedat(T±0.1)K(PolystatHuberCC2).Anexcessofthesolidgallicacidwasaddedtotheliquidphaseandthesolutionwascontinuouslystirredwithamagneticstirrer.Tochecktheequilibrium,asampleoftheliquidphasewastakenthrougha0.2lmporesyringe lterandtheconcentra-tionwasmeasuredbyUV/visiblespectrophotometry(BeckmanCoulterUV/visspectrophotometermodelDU-520)at300nm.Thewavelengthof300nmwasdeterminedtobethemostadequateforgallicacidquanti cationbecauseofthemaximumabsorbanceatthiswavelength.Whentheconcentrationofgallicacidintheli-quidphaseremainedconstant,itwasassumedthatthesystemwasatequilibrium.Severalequilibriumtimeshavebeentested(from1
76A.Noubighetal./J.Chem.Thermodynamics55(2012)75–78
to6h),anditappearsthat3hisalwayssuf cienttoreachequilib-rium.Towindependentexperimentswererealisedtodeterminethegallicacidsolubility.Thereproducibilityofthedatawaswithin0.5%.
3.Resultsanddiscussion
Thesolubilityofgallicacidwasmeasuredinpurewater,etha-noland(water+ethanol)mixtures,atdifferenttemperaturesrang-ingfrom(293.15to318.15)K.Thiscomplementarystudypermitsustoextendoursolubilitydatabasisofgallicacid[14–17].
Tovalidatethemethodofsolubilitydetermination,thesolubil-ityofgallicacidinpuresolventswasdeterminedfrom(293.15to318.15)K.Asshownin gure1,paredtopurewater,thesolu-bilityofgallicacidinpureethanolisthehighestandismoredependentontemperature.Thissolubilitytemperaturedepen-dencewas ttedtotheempiricalequationproposedbyHeidmanetal.[18]:
lnx¼AþB
GA
T=K
þClnðT=KÞ;ð1Þ
wherexGAisthemolefractionsolubilityofgallicacidinpuresol-vents,Tistheabsolutetemperature(K),andA,B,andCareempir-icalparameters.
ThevaluesofempiricalparametersA,BandCaregivenintable1togetherwiththecorrespondingroot-mean-squaredeviations(rmsd’s)"calculatedaccording#totheformula:
1=rmsd¼1Xn
À2
nxcalGA
ÀxexpGA
Á2
;ð2Þ
i¼1wherenisthenumberofexperimentalpoints,andxcalexp
GAandxGArepresentthesolubilityofgallicacidcalculatedfromequation(1)andtheexperimentalsolubilityvalue,respectively.Calculatedandexperimentalsolubilitiesinpurewater,shownin gure1,demonstrateaverygoodagreement.
Experimentalsolubilitieswereusedtocalculatethemolefrac-tionsolubilityxGAindifferent(water+ethanol)mixturesbasedonthefollowingequation:
xGA¼0:001ÂmGAÂðxWÂMWþxEÂMEÞ;ð3Þ
wheremGA,xwandxErepresentthemalalityofthegallicacid,
themolefractionofwaterandethanol,respectively,andMGA,MEandMWarethemolecularweightsofthegallicacid,ethanolandwater,respectively.
TABLE1
Parametersofequation(2)correlatedfromexperimentalmolarfractionofsolubilityofgallicacidinpuresolvents.SolventA
B/KC105rmsdWaterÀ93.9147À2.645315.32710.0125Ethanol
À16.0367
À0.6321
2.3083
0.0010
TABLE2
Experimental(xexpGA)solubilityofgallicacidindifferent(ethanol+water)mixedsolventsatvarioustemperaturesandatmosphericpressure.T/K
103.xexpGAxE=0.100
xE=0.200xE=0.300xE=0.400293.15
2.486±0.0105.893±0.01512.977±0.02122.477±0.027298.153.177±0.0097.276±0.01416.018±0.02625.581±0.029303.154.180±0.0129.487±0.01618.804±0.02430.622±0.045308.155.479±0.01612.002±0.01922.193±0.02635.142±0.048313.157.079±0.01414.719±0.02326.186±0.02940.060±0.029318.15
8.995±0.01319.294±0.02531.712±0.03146.515±0.058
xE=0.500
xE=0.600xE=0.700xE=0.800293.1530.433±0.05230.836±0.03629.001±0.03428.006±0.033298.1535.418±0.04336.750±0.04333.788±0.04432.158±0.041303.1539.815±0.03840.733±0.02937.321±0.04836.371±0.058308.1545.917±0.04247.990±0.05145.258±0.04641.938±0.033313.1552.140±0.05455.602±0.06151.986±0.05648.854±0.053318.1559.261±0.05763.033±0.06259.282±0.065
55.324±0.061
xE=0.900
xE=0.950293.1531.750±0.04137.972±0.031298.1536.855±0.02943.797±0.034303.1544.006±0.04555.489±0.075308.1550.470±0.06163.203±0.071313.1558.611±0.05774.612±0.064318.1567.394±0.074
87.011±0.077
Gallicacidsolubilitiesinabinary(water+ethanol)mixturearelistedintable2andalsoshownin gure2.We ndmaximaandminimainrangesofethanolmolefractionsrespectively.
A fth-orderpolynomialequationwasproposedtocorrelatethesolubilitydataofgallicacidinthebinarymixedsolventsasafunc-tionofxEasfollows:
lnxGA¼B0þB1xEþB2x2345
EþB3xEþB4xEþB5xE;
ð4
Þ
A.Noubighetal./J.Chem.Thermodynamics55(2012)75–78
TABLE3
Parametersofequation(4)correlatedfromexperimentalmolarfractionofsolubilityofgallicacidindifferent(ethanol+water)mixedsolvents.77
T/KB0
B1B2
293.15À6.62323.607835.3446298.15À6.40324.393128.5852303.15À6.17015.476020.5549308.15À5.87665.884913.1289313.15À5.62716.35507.3615318.15
À5.4229
7.4505
À0.3023
TABLE4
Parametersofequation(5).Parametere
fR2B0À21.0820.04930.9980B1À39.0240.14580.9800B2452.92À1.42480.9985B3À1162.33.63430.9979B41200.4À3.80470.9961B5
À445.59
1.4403
0.9944
wherexGAisthemolefractionsolubilityofgallicacidinbinarysolvents,xEistheethanolmolefractioninbinarysolvents,andB0,B1,B2,B3,B4,andB5aretheempiricalparameters.Calculatedsolu-bilityvaluesofgallicacidfromequation(4)arealsogivenin gure2.
ThevaluesofthesixparametersB0,B1,B2,B3,B4,andB5togetherwiththeroot-mean-squaredeviation(rmsd)arelistedinthetable3.Furthermore,thevaluesB0,B1,B2,B3,B4,andB5werecorrelatedasafunctionoftemperaturewiththefollowinglinearequation:
y¼eþfT;ð5Þ
whereyreferstothevaluesofB0,B1,B2,B3,B4,andB5;Tistheabsolutetemperature,andeandfaretheparameters.Theresultsarepresentedintable4withR2.Finally,aglobalexpressionforthesolubilityofgallicacidinthe(ethanol+water)mixturewasobtainedasfollows:
lnxGA¼À21:082À39:024xEþ
452:92x2EÀ
1162:3x3Eþ1200:4x4E
À
445:59x5E
þ0:0493Tþ0:1458TxEÀ
1:4248Tx2E
þ
3:6343Tx3E
À
3:8047Tx4E
þ
1:4403Tx5E:
ð6Þ
Calculatedsolubilitiesofgallicacidin(water+ethanol)mixed
solventsshowgoodagreementwithexperimentalvalues.After-wards,theseexperimentalsolubilityvaluesandthecorrelationequationcanbeusedasessentialdataandmodelsinpracticalpuri cationprocessofgallicacid.
Fromtables1and2and gures1and2,itcanbenoticedthatequations(1)and(5)canbeusedtocorrelatetheexperimentalre-sultsofthesolubilityofgallicacidinpurewater,ethanolandbin-ary(water+ethanol)mixturesatdifferenttemperatures.Basedonobtainedresults,wecanreachthefollowingconclusions:(1)thesolubilityofgallicacidin(water+ethanol)mixturesincreasesslightlywithtemperatureincreasing;(2)atthesametemperature,thesolubilityofgallicacidinpureethanolismuchlargerthaninanyother(water+ethanol)mixedsolvents;(3)theexperimentaldataindicatethatthesolubilitiesincreasefromx=0.0to0.5andslowlydecreaseuntilx=0.8.Fromx=0.8to1.0,thesolubilitycurveofgallicacidrisessharply.TheMaximainthesolubilitycurvescanbeexplainedbythecompetitiveeffectsofhydrophobicandhydrophilichydrationofethanolmolecules.The rsteffectprevailsintherangeofbinarysolventscompositionsuptothepointcorrespondingtothemaximuminthesolubility.Minimaaredueprobablytothemaximumstabilizationofthewaterstruc-turebythenonelectrolyte.
B3
B4
B5
105rmsdÀ96.862785.0099À23.47770.0030À79.723967.0460À16.73530.0083À61.409448.4309À9.39140.0030À39.353723.69730.15370.0068À24.55788.80215.47430.0089À7.1739
À8.2604
11.6963
0.0233
TABLE5
Thermodynamicpropertiesofthedissolutionofgallicacidindifferent(etha-nol+Water)mixedsolventsatvarioustemperatures:DsolG°(kJ.molÀ1).DsolH°(kJ.molÀ1).andDsolS°(J.molÀ1KÀ1).+T/K
xE=0.100
xE=0.200
DsolH°
DsolG°
DsolS°
DsolH°
DsolG°
DsolS°
293.1537.82314.61979.15232.11412.49566.924298.1539.12514.21383.55433.21912.15170.661303.1540.44713.78487.95534.34211.78974.398308.1541.79313.33392.35635.48511.40778.135313.1543.16012.86096.75736.64611.00781.872318.1544.54912.366101.15937.82510.58985.609
xE=0.300
xE=0.400
DsolH°
DsolG°DsolS°DsolH°DsolG°DsolS°
293.1525.46510.55450.86521.1609.19040.832298.1526.34110.29253.82821.8888.98043.294303.1527.23210.01556.79222.6288.75745.757308.1528.1379.72459.75523.3818.52248.219313.1529.0589.41862.71824.1468.27550.681318.1529.9939.09765.68124.9238.01653.144
xE=0.500
xE=0.600
DsolH°
DsolG°DsolS°DsolH°DsolG°DsolS°
293.1519.6648.50838.05519.8548.38639.120298.1520.3418.31240.34320.5388.18541.431303.1521.0298.10542.63121.2327.97243.741308.1521.7287.88644.92021.9387.74846.052313.1522.4397.65647.20822.6567.51248.362318.15
23.1617.41449.49623.3857.26450.672
xE=0.700
xE=0.800
DsolH°
DsolG°DsolS°DsolH°DsolG°DsolS°
293.15
20.2598.38640.50120.2928.62639.797298.1520.9568.18542.83520.9918.42142.158303.1521.6657.97245.16921.7018.20444.520308.1522.3867.74847.50322.4227.97646.881313.1523.1187.51249.83723.1567.73649.242318.15
23.8627.26452.17123.9017.48451.604
xE=0.900
xE=0.95
DsolH°
DsolG°DsolS°DsolH°DsolG°DsolS°
293.1521.4898.23945.19923.8888.23953.382298.1522.2298.00747.70024.7108.00756.022303.1522.9807.76250.20125.5467.76258.662308.1523.7457.50552.70126.3957.50561.303313.1524.5227.23555.20227.2597.23563.943318.1525.3116.95357.70228.1366.95366.583
Fromanenergeticaspect,thedissolutionofagallicacidintoaliquidisrelatedtosomethermodynamicchanges,speci callytheGibbsenergy(DsolG°),molarenthalpy(DsolHo)andmolarentropy(DsolS°)ofdissolution.Thesethermodynamic’sparameterscanbecalculatedusingtheexperimentalsolubilitydata ttedtoequation(4).Theseparametersre ectthemodi cationofthesolutionprop-ertiesduetothepresenceofthesoluteatitsin nitedilutionstateatagiventemperature[19–21].Assumingthattheactivitycoef -cientofwaterinaqueousphaseisequalto1therefore,withthehelpoftheGibbs–Helmholtzequation,thefollowingequationcanbeobtained[22]:
78A.Noubighetal./J.Chem.Thermodynamics55(2012)75–78
Do
2
dlnx
solH¼RTdT;
ð7Þ
P
wherethemolarenthalpyofdissolutionDsolHoisthedifferencebe-tweenthepartialmolarenthalpyofgallicacidinsolution,HÃ;liquid
GA
andthemolarenthalpyofgallicacidinthesolidstate,Ho;solid
GA,attemperatureT:
D¼Ho;solidsolHo;liquid
GAÀHÃGA
:ð8Þ
Theremainingparameters,DsolG°andDsolS°,canbecalculatedasfollows[20,23,24]:
DosolG¼ÀRTlnðxÞP;
ð9ÞDo
dðlnxÞ
solS¼RdðlnTÞ:
ð10Þ
P
Thevaluesofthethermodynamicfunctions,DsolH°,DsolG°,andDsolS°,ofthegallicaciddissolutionindifferentconcentrationsofethanol–watersolutionswerecalculatedusingequations(6),(8),and(9),respectively,andarereportedintable5.
Theenthalpyofdissolutionversustemperature,derivedfromexperimentalsolubilitydataforeachsolution,isdepictedin gure3.Estimatedenthalpiesofdissolutionfromsolubilitymeasure-mentsofgallicacidineachmixedsolventatdifferenttempera-turesarecomparable,withthemajordeviationcorrespondingtothelessconcentratedethanolsolution.Forallthestudiedsolu-tions,itwasfoundthattheenthalpyofdissolutionisalinearfunc-tionoftemperature,thusgivingaconstantheatcapacityofsolution.Whenthesolubilityisatamaximum,theenthalpyofdis-solutionspentfortheformationofsolventstructurecavitiesisaminimum.
Thermodynamic’sparametersvaluesprovethatthewholepro-cessisendergonic(DsolG°>0),thereforenon-spontaneous.Even
thoughDsolS°ispositive,theDsolH°issuf cientlypositivetopro-videpositiveDsolG°values.Subsequently,thedissolutionofgallicacidisespeciallyofenthalpicorigin.
4.Conclusions
Inthisworknewdatawereprovidedforthesolubilityofgallicacidin(water+ethanol)mixedsolventsattemperaturerangefrom(293.15to318.15)K).Thevaluesofthesolubilityofgallicacidinbinarymixedsolventsincreasewithrisingtemperatures.Twoequationswereusedtocorrelatetheexperimentalvaluesforthegallicacidsolubility.Oneisanonlinearequationforthepuresolventswhiletheotherisa fthpolynomialequationforthemixedsolvents.Calculatedsolubilityvaluesshowgoodagree-mentwithexperimentalvalues.Datapresentedinthisworkareessentialfortheindustrialdevelopmentofgallicacidextractionandpuri cationprocesses.
References
[1]F.Cabrera,R.Lopez,A.Martinez-Bordiu,E.DupuydeLome,J.M.Murillo,Int.
Biodeter.Biodegr.38(1996)215–225.
[2]K.Chung,C.Wei,M.Johnson,TrendsFoodSci.Technol.9(1998)168–175.[3]Y.Zuo,H.Chen,Y.Deng,Talanta57(2002)307–316.
[4]P.Mammela,H.Savolainen,L.Lindroos,J.Kangas,T.Vartiainen,J.Chromatogr.
A891(2000)75–83.
[5]H.K.Obied,M.S.Allen,D.R.Bedgood,P.D.Prenzler,K.Robards,R.Stockmann,J.
Agric.FoodChem.53(2005)823–837.
[6]F.Visioli,A.Romani,N.Mulinacci,S.Zarini,D.Conte,F.F.Vincieri,C.Galli,J.
Agric.FoodChem.47(1999)3397–3401.
[7]A.Chafer,T.Fornari,R.P.Stateva,A.Berna,J.G.Reverter,J.Chem.Eng.Data52
(2007)116–121.
[8]M.Hamdi,Envir.Technol.14(1993)495–500.
[9]E.Sergediene,K.Jönsson,H.Szymusiak,B.Tyrakowska,I.Rietjens,C.
Narimantas,FEBSLett.462(1999)392–396.
[10]N.Niho,M.Shibutani,T.Tamura,K.Toyoda,C.Uneyama,N.Takahashi,Food
Chem.Tox.39(2001)1063–1070.
[11]D.J.W.Grant,T.Higuchi,SolubilityBehaviorofOrganicCompounds,seriesed.,
TechniquesofChemistryvol.21,Wiley-Interscience,NewYork,1990.[12]L.L.Lu,X.Y.Lu,J.Chem.Eng.Data52(2007)37–39.
[13]A.Daneshfar,H.S.Ghaziaskar,N.Homayoun,J.Chem.Eng.Data53(2008)776–
778.
[14]A.Noubigh,A.Mgaidi,M.Abderrabba,E.Provost,W.Fürst,J.Sci.FoodAgric.87
(2007)783–788.
[15]A.Noubigh,M.Abderrabba,E.Provost,J.Chem.Thermodyn.39(2007)297–
303.
[16]A.Noubigh,M.Cherif,E.Provost,M.Abderrabba,J.Chem.Thermodyn.40
(2008)1612–1616.
[17]A.Noubigh,M.Cherif,E.Provost,M.Abderrabba,J.Chem.Eng.Data53(2008)
1675–1678.
[18]J.L.Heidman,C.Tsonopoulos,C.J.Brady,G.M.Wilson,AIChEJ.31(1985)376–
384.
[19]T.Sridhar,R.P.Chhabra,P.H.T.Uhlherr,O.E.Potter,Rheol.Acta17(1978)519–
524.
[20]X.Zhang,F.A.P.C.Gobas,Chemosphere31(1995)3501–3521.
[21]W.Zielenkiewicz,G.L.Perlovich,M.Wszelaka-Rylik,J.Therm.Anal.Calorim.
57(1999)225–234.
[22]C.J.Adkins,EquilibriumThermodynamics,McGrawHill,London,1968.
[23]P.Dohanyosova,V.Dohnal,D.Fenclova,Fluid.PhaseEquilib.214(2003)151–
167.
[24]M.G.Freire,P.J.Carvalho,R.L.Gardas,I.M.Marrucho,L.M.N.B.F.Santos,J.A.P.
Coutinho,J.Phys.Chem.B.112(2008)1604–1610.
JCT
12-114
正在阅读:
Solubility of gallic acid in liquid mixtures of (ethanol + water) from (293.15 to 318.15) K07-19
2015届高考物理一轮复习精品学案:055第五章 专题四 应用力学两大观点分析平抛与圆周组合问题09-15
《黄山奇松》教学设计与评析05-13
方正春元-总账V2.2操作手册11-28
关于统一安装工程评定表的通知04-23
选煤厂安全生产责任制12-06
70852井队我要安全主题活动总结06-10
我希望02-13
钓鱼入门知识(看图说话)精华彩图版12-23
- 1the details of the lead acid battery
- 2Esterification of a Fatty Acid by Reactive Distillation
- 3Tuning the solubility of polymerized ionic liquids by simple
- 4A teaching plan for Unit 3 Water
- 5高考英语作文范文 Water(水)
- 6ionic liquid immobilized catalytic system for biomimetic dihydroxylation of olefins
- 7Controlling the Localization of Liquid Droplets in Polymer Matrices by Evaporative Lithography
- 8Japan_Asks_Russia_for_Help_in_Disposing_of_Radioactive_Water
- 9Liquid-phase microextraction–gas chromatography–mass spectrometry for the determination
- 10A Interpretation of The Kite Runner from
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Solubility
- mixtures
- ethanol
- gallic
- liquid
- 293.15
- 318.15
- water
- acid
- 2015-2016学年高中数学 2.1离散型随机变量及其分布列课时作业(含解析)新人教B版选修2-3
- 天气业务现代化建设问题的分析与思考(山东授课NEW)
- 毕业论文致谢词范文四
- FANUC机床接触式对刀TS27R测头的简明安装调试说明
- 先决问题的构成要件与法律适用
- 2011会计电算化考试600题小抄版(打印)
- 安全可控信息技术推进领导小组议事规则
- 河湖生态护岸工程技术导则
- 初中英语教学设计
- Protel 99se仿真教程之入门篇 如何建立protel仿真文件
- 舞钢市闯新出租汽车租赁有限责任公司与中国人寿财产保险股份有限
- 2013西城初三一模数学答案
- 第十一章 宠物繁殖
- 最新公司组织结构图
- 测量学_高飞_试卷二及答案
- 房地产产业税收优惠政策
- 美的集团主要业务分权手册
- 新版FORM E 证书格式
- 我们的节日 端午
- 2014年贵州公务员《行测》模拟试题及答案