2005b The primate amygdala neuronal representations of the viscosity, fat texture, grittine
更新时间:2023-06-09 06:36:01 阅读量: 实用文档 文档下载
Abstract—The primate amygdala is implicated in the control of behavioral responses to foods and in stimulus-reinforcement learning, but only its taste representation of oral stimuli has been investigated previously. Of 1416 macaque amygdala neurons record
Neuroscience132(2005)33–48
THEPRIMATEAMYGDALA:NEURONALREPRESENTATIONSOFTHEVISCOSITY,FATTEXTURE,TEMPERATURE,GRITTINESSANDTASTEOFFOODS
M.KADOHISA,J.V.VERHAGENANDE.T.ROLLS*
UniversityofOxford,DepartmentofExperimentalPsychology,SouthParksRoad,OxfordOX13UD,UK
Abstract—Theprimateamygdalaisimplicatedinthecontrolofbehavioralresponsestofoodsandinstimulus-reinforcementlearning,butonlyitstasterepresentationoforalstimulihasbeeninvestigatedpreviously.Of1416macaqueamygdalaneu-ronsrecorded,44(3.1%)respondedtooralstimuli.Ofthe44orallyresponsiveneurons,17(39%)representtheviscosityoforalstimuli,testedusingcarboxymethyl-celluloseintherange1–10,000cP.Twoneurons(5%)respondedtofatinthemouthbyencodingitstexture(shownbytheresponsesoftheseneu-ronstoarangeoffats,andalsotonon-fatoilssuchassiliconeoil((Si(CH3)2O)n)andmineraloil(purehydrocarbon),butnoorsmallresponsestothecelluloseviscosityseriesortothefattyacidslinoleicacidandlauricacid).Ofthe44neurons,three(7%)respondedtogrittytexture(producedbymicrospheressus-pendedincellulose).Eighteenneurons(41%)respondedtothetemperatureofliquidinthemouth.Someamygdalaneuronsrespondedtocapsaicin,andsometofattyacids(butnottofatsinthemouth).Someamygdalaneuronsrespondtotaste,tex-tureandtemperatureunimodally,butotherscombinetheseinputs.Theseresultsprovidefundamentalevidenceabouttheinformationchannelsusedtorepresentthetextureand avoroffoodinapartofthebrainimportantinappetitiveresponsestofoodandinlearningassociationstoreinforcingoralstimuli,andarerelevanttounderstandingthephysiologicalandpathophys-iologicalprocessesrelatedtofoodintake,foodselection,andtheeffectsofvarietyoffoodtextureincombinationwithtasteandotherinputsonfoodintake.©2005PublishedbyElsevierLtdonbehalfofIBRO.
Keywords:appetitivelearning,Pavlovianconditioning,obesity,foodintake,reward.
Theamygdalaisimplicatedinemotionandmotivationbylesion,singleneuronrecording,andneuroimaginginvestiga-tions(Sangheraetal.,1979;Nishijoetal.,1988a;Davis,1994;Francisetal.,1999;Rolls,1999;Schoenbaumetal.,1999;LeDoux,2000;Rolls,2000).Partofthefunctionoftheamygdalainmotivationandemotionappearstobeinasso-ciatingpreviouslyneutral(e.g.auditoryorvisual)stimulitoprimary(unlearned)reinforcerssuchastasteandsomato-sensoryincludingpainfulstimuli(Davis,1994;Rolls,1999,2000;LeDoux,2000),andinprimates,forexample,rewarddevaluationlearningdependsontheamygdala(Murrayetal.,
*Correspondingauthor.Tel: 44-1865-271348;fax: 44-1865-310447.E-mailaddress:edmund.rolls@psy.ox.ac.uk(E.T.Rolls).
Abbreviations:BJ,blackcurrantjuice;CMC,carboxymethylcellulose;CO,coconutoil;GR,grittytexturestimulus;LaA,lauricacid;LiA,linoleicacid;MO,mineraloil;SaO,saf oweroil;SC,singlecream;SiO,siliconeoil;VO,vegetableoil.
0306-4522/05$30.00 0.00©2005PublishedbyElsevierLtdonbehalfofIBRO.doi:10.1016/j.neuroscience.2004.12.005
1996).Thisassociativefunction(RollsandTreves,1998)impliesarepresentationofprimaryreinforcerssuchasthetasteoffood,andindeedtasteneuronshavebeendescribedintheamygdala(Sangheraetal.,1979;Nishijoetal.,1988a,b;Scottetal.,1993;YanandScott,1996)andtasteresponsivenessinthehumanamygdala(O’Dohertyetal.,2001).Almostnothingisknown,however,aboutwhetheraspectsoffoodotherthantasteandsmellarerepresentedintheamygdala.Thetextureoffoodisimportantinitspalatabil-ityandacceptability(Bourne,2002,considere.g.dampce-realorpotatochips),andtemperaturemayalsobeimportant(Zellneretal.,1988).Wedescribehereforthe rsttimetheresponsesofprimateamygdalaneuronstooraltextureandtemperaturestimuli,andshowthattheyarecombinedinsomeneuronswithresponsivenesstothetasteoffood.Theinvestigationwasperformedinmacaquesinordertomakeitasrelevanttounderstandingtheoperationofthissysteminhumansaspossible,andinthecontextthatthetastesystemisdifferentlyconnectedinrodentsandprimates,withtastepathwaysinprimatestotheamygdalaonlyaftercorticalprocessing(Norgren,1984;Rollsetal.,2003).Understand-ingthefactorsthatdeterminethepalatabilityoffoodiscur-rentlyofgreatinterest,giventheroleofpalatabilityinthecontroloffoodintake,andtherapidlyincreasingincidenceofobesitywhichisaccompaniedbyserioushealthrisks(Berthoud,2003;SteinbergerandDaniels,2003).Thefactorsinvestigatedincludedthetextureoffoodasre ectedbyvis-cosity(testedparametricallywithaviscosityseriesmadewithcellulose);oralfat;oralfattyacidswhichmightsignalthepresenceoffatinthemouthifsalivarylipasewaspresent(Gilbertson,1998);oraltextureasmanipulatedbyinertmi-crospheres;oraltemperature;taste;andtheeffectsofcap-saicin,anoralirritantpresentinanumberoffoods.
EXPERIMENTALPROCEDURES
Subjects
Therecordingsweremadeinthreehemispheresoftworhesusmacaques(Macacamulatta;onefemaleweighing2.6–3.3kgandonemaleweighing6.1–6.7kg).Toensurethatthemacaqueswerewillingtoingestthetestfoodsand uidsduringtherecordingsessions,theywereonmildfood(150gofnutritionallybalancedmashplusfruits,boiledchickeneggs,nuts,seedsandpopcorn)and uid(1h/dayadlibitumwater)deprivation,inthatbothwereprovidedafterthedailyrecordingsession.Themonkeysshowedsteadyincreasesinbodyweight.Allprocedures,includingprepar-ativeandsubsequentones,werecarriedoutinaccordancewiththeNationalInstitutesforHealthGuidefortheCareandUseofLaboratoryAnimals,andwerelicensedundertheUKAnimals(Scienti cProcedures)Act,1986,andweredesignedtominimize
33
Abstract—The primate amygdala is implicated in the control of behavioral responses to foods and in stimulus-reinforcement learning, but only its taste representation of oral stimuli has been investigated previously. Of 1416 macaque amygdala neurons record
34M.Kadohisaetal./Neuroscience132(2005)33–48
thenumberofanimalsusedandmaximizetheirwelfarebyadopt-ing,forexample,grouphousing,andenvironmentalenrichments.
Recordings
Recordingsweremadewithepoxylite-coatedhighimpedance(2–10M at1kHz;FredericHaer&Co.,St.Bowdoinham,ME,USA)tungstenmicroelectrodesfromsingleneuronsintheamyg-dala,whichincludedareasinwhichtasteresponseshaveprevi-ouslybeendescribed(Sangheraetal.,1979;Nishijoetal.,1988a,b;Scottetal.,1993),usingneurophysiologicalmethodsasdescribedpreviously(Scottetal.,1986a,b;Rollsetal.,1990,1999,2003;Verhagenetal.,2003).Thesignal-to-noiseratiowastypically3:1orhigherasillustratedinFig.4.ThedatawerecollectedusingaDatawaveDiscoveryInc.(Tucson,AZ,USA)systemwhichdigitizedthesignal(12bit,16kHz)for8safterstimulusonset.Thespikesweresortedoff-lineusingtheclustercuttingmethodprovidedwiththeDatawavesystem,andthisprocedurewasstraightforwardasthedatawerecollectedwithsingleneuronmicroelectrodeswhichtypicallyrecordedfromonlyoneneuronatatime.Topreventvisualassociativeinputfromevokingneuralactivity,wepreventedthemonkeysfromseeingthestimuliandexperimenterbyaview-obstructingscreen.
Localizationofrecordings
X-radiographywasusedtodeterminethepositionofthemicro-electrodeaftereachrecordingtrackrelativetopermanentrefer-enceelectrodesandtotheanteriorsphenoidalprocess,followedbymicrolesionsonselectedtracksandreconstructionfromhisto-logicalsectionsofthebrainusingthemethodsdescribedbyFeigenbaumandRolls(1991).
Stimuli
Theneuronsoftheamygdalaweretestedfortheirresponsivenesstothesetoftaste,viscosity,gritty,oilystimuli,andcapsaicin,atroomtemperature(23°C),andalsothesetoftemperaturestimuliasshowninTable1.DetailsoftherationaleforthechoiceofthestimuliaregivenbyRollsetal.(2003)andVerhagenetal.(2003).Distilledwaterat23°Cwasonememberofthetemperatureseries(T23),andwithitsviscosityof1cPwasalsoonemember(V1)oftheviscosityseries.Foranadditionalcomparison,theneuronalresponsesweretestedto20%blackcurrantjuice(BJ;RibenaSmithKlineBeecham),becausewithitscomplextasteandolfac-torycomponentsandhighpalatabilityitisaneffectivestimuluswhensearchingforandanalyzingtheresponsesofcorticalneu-rons(Rollsetal.,1990).Theviscosityserieswasmadewithcarboxymethylcellulose(CMC;Sigma;highviscosity,Mw700,000,dialysed,codeC5013),avirtuallyodor-andtastelessthickeningagentusedwidelyinthefoodindustry(seeRollsetal.,2003).Thegrittystimulusconsistedofhard(Mohsscale5)hollowmicrospheres(FillitegradePG,with87%havingadiameterwiththerange100–300 m;TrelleborgFillite,Runcorn,UK)madeupinmethylcellulosetohaveameasuredviscosityof1000cP(100gofFillitePGwasaddedto4.7gofCMCin500mlofwater).Totestforandanalyzetheeffectsoforalfatonneuronalactivity,asetofoilsandfat-relatedstimuliwasincluded.Thetriglyceride-basedoilsconsistedofvegetableoil(VO;viscosity55cPat23°C),saf oweroil(SaO),andcoconutoil(CO).Singlecream(SC;18%fat,viscosity:12cP;Coopbrand,pasteurized)wasusedasanexemplarofanaturalhighfatcontentfoodofthetypeforwhichwewishedtoexaminetheneuralrepresentationandsensingmech-anisms.Fouroftheorallyresponsiveneuronsweretestedwithmineraloil(MO),ahydrocarbonmixturewithaviscosityof25cP.Alltheneuronswithfat-relatedresponsesdescribedinthisandourearlierstudy(Rollsetal.,1999)respondedwelltoSC.AsGilbertson(1998)hadreporteddifferentialeffectsinisolatedtastecellstolinoleicandlauricacid(LaA)invitro,suggestingthatthe
gustatorymodalitymightbeinvolvedinorallysensingfat,weincluded(Verhagenetal.,2003)inthestimulussetfreelinoleic(LiA;100 M)andLaA(100 M)sodiumsalts(Sigma),aswellasoilsrichinconjugatedLiA(SaO,68–83%,50cP;Aldrich),andLaA(CO,45–50%,40cP;Sigma;Weiss,1983;Willsetal.,1998).AllfattyoilswerekeptinthedarkunderN2at4°Ctoavoidoxidation.
Toinvestigatewhethertheneuronsresponsivetofat-basedoilswereinsomewayrespondingtothesomatosensorysensationselicitedbythefat,stimuliwithasimilarmouthfeelbutnon-fatchem-icalcompositionwereused.Thesestimuliincludedparaf n/MO(purehydrocarbon,viscosity25cPat23°C,Sigma),andsiliconeoil(SiO;Si(CH3)2O)n,10,100or280,and1000cP(Brook eldviscometercalibration uidexcept280cP;Aldrich).
Thetemperatureserieswasprovidedbywaterat10°C(chosenasthecoldstimulus;commercialcolddrinksareservedat6°C),at42°C(warm/hotbutnotnoxious),37°C(bodytemper-ature),and23°C(roomtemperature).
Thecapsaicinwasmadeupasa10 Msolution(containing0.3%ethanol).Thisisapproximately15timesthehumanrecog-nitionthresholdof0.66 M(Szolcsanyi,1990).
Themonkeys’preferenceforthestimuliwasmeasuredob-jectivelybyanacceptabilityrating,where 2indicatesthatthemacaquereachedforthestimulusandplaceditinthemouth, 1indicatesthatthemacaqueactivelyopenedthemouthtoreceiveandswallowthestimulus,0indicatesneutralityinwhichthestim-uluswasacceptedonlypassivelybymouthopening, 1indicatesthatthemacaqueclosedthemouthtotrytorejectthestimulus;and 2indicatesthatthemacaqueusedthehandtopushawaythestimulusfromthemouth(Rollsetal.,1977,1989).Thisratingscalehasbeenextensivelyvalidatedbycomparisonwithneuronalactivityinthelateralhypothalamusandorbitofrontalcortexinstudiesofsensory-speci csatiety,inthesensethattherewasacloserelationfoundbetweentheacceptabilityratingandtheneu-ronalresponseintheseregions,asshowninpreviouslypublisheddata(Rollsetal.,1986,1989;CritchleyandRolls,1996).Theratingswererepeatedatotaloffour(orforonemacaque5)timesbytwoindependentinvestigators,withahighcorrelationbetweentheratingsgivenbythetwoinvestigators(r 0.85,n 25,P 10 7).
Stimulusdelivery
Thegeneralmethodforstimulusdeliveryandaccuratestimulusonsetmarking(Rollsetal.,1990)wasmodi edbyintroducingrepeaterpipettes(Verhagenetal.,2003).Forchronicrecordinginmonkeys,amanualmethodforstimulusdeliveryisusedbecauseitallowsforrepeatedstimulationofalargereceptivesurfacedespitedifferentmouthandtonguepositionsadoptedbythemon-keys(Scottetal.,1986a,b).Thestimulusapplicationvolumewas200 10 l,becausethisissuf cienttoproducelargegustatoryneuronalresponseswhichareconsistentfromtrialtotrial,andyetwhichdonotresultinlargevolumesof uidbeingingestedwhichmight,byproducingsatiety,in uencetheneuronalresponses(Rollsetal.,1989,1990).
Themonkey’smouthwasrinsedwith200 lT23/V1(water)duringtheinter-trialinterval(whichlastedatleast30s,oruntilneuronalactivityreturnedtobaselinelevels)betweentastestim-uli.Duetothetenaciousnatureoftheoralcoatingresultingfromthedeliveryofcreamorofoil,andalsoforgrittyandcapsaicin,four200 l-rinseswithT23/V1weregiven,whileallowingthesubjectstoswallowaftereachrinse.ForV1000andV10,000,weusedtwosuchrinses.AllthestimulishowninTable1weredeliveredinpermutedsequences,withthecomputerspecifyingthenextstimulustobeusedbytheexperimenter.Thespontane-ous ringrateoftheneuronwasmeasuredfromtrialsinwhichnostimulusdeliveryoccurred.
Abstract—The primate amygdala is implicated in the control of behavioral responses to foods and in stimulus-reinforcement learning, but only its taste representation of oral stimuli has been investigated previously. Of 1416 macaque amygdala neurons record
M.Kadohisaetal./Neuroscience132(2005)33–48
Table1.StimuliStimulus
Abbrev
Concentration
MW
Temp(°C)
180
2323
1875836387
2323232310233742232323232323232323232323232323
Visco(cP)
1111111111101001000100001000
10100Or2801000
55405012111
Chemicalgroup
Acceptabilitybkmean S.E.M.1.8 0.1*1.8 0.1* 0.7 0.7 1.6 0.1*0.40 0.480.10 0.330.60 0.370.06 0.13*1.50 0.201.46 0.230.05 0.52 0.76 0.28* 0.83 0.33* 1.56 0.26* 1.34 0.18*
—0.032 0.63
—
0.93 0.17 1.00 0.31 1.14 0.11*1.02 0.65* 0.13 0.680.00 0.17 1.10 0.11
35
Acceptabilitybomean S.E.M.1.3 0.31.0 0.0 0.6 0.3 0.8 0.1 0.13 0.830.63 0.431.25 0.291.00 0.001.00 0.001.25 0.291.00 0.001.00 0.001.00 0.001.00 0.001.25 0.29 1.13 0.34 1.13 0.341.00 0.00 1.38 0.42 0.13 0.830.63 0.43 1.69 0.36 0.50 1.000.25 0.870.25 0.87
Glucose
BlackcurrantjuiceMonosodiumglutamateNaClHCl
QuinineHClWaterWaterWaterWaterCMCCMCCMCCMCGrittySiliconeoilSiliconeoilSiliconeoilVegetableoilCoconutoilSaf oweroilSinglecreamLauricacidLinoleicacidCapsaicin
GBJMNHQT10T23/V1T37T42V10V100V1000V10000GrSiO10SiO100orSiO280SiO1000VOCOSaOSCLaALiACap
1M20%0.1M0.1M0.01M0.001M
MonosaccharidealdohexoseMixtureAminoacidsaltInorganicsaltInorganicacidAlkaloid
0.2g 1lV14.0g 1lV111.0g 1lV124.0g 1lV1100gFillite
9.4gCMC 1lV1100%100%100%100%100%100%100%100 M100 M10 M
700,000700,000700,000700,000700,000
222280377
PolysaccharidePolysaccharidePolysaccharidePolysaccharideSiO2
polysaccharideSilicon-oxygenpolymerSilicon-oxygenpolymerSilicon-oxygenpolymerFatFatFat
Emulsionffaffa
Vanillylamide
*P 0.05acceptabilityratingbkvsbo;n 4–5.NA,notapplicable.
Dataanalysis
AfterclustercuttingofthespikeswithDatawavesoftware,thenum-bersofspikesofthesingleneuronin80timebinseach100mslongstartingattheonsetofthestimuluswereobtainedusingSPSS.Statisticalanalysiswasperformedonthenumbersofspikesinthe rst1speriodafterstimulusonset,whichwassuf cientlylongtoinclude ringtoevenviscousliquids,andsuf cientlyshortsothatlowviscositytastestimuliwerestillactivatingtheneurons,asshowninFig.2ofRollsetal.(2003)andinFig.4.AnANOVAwasperformed(withSPSS)todeterminewhethertheneuronhadsigni cantlydif-ferentresponsestothesetofstimuli.IfthemainANOVAwassigni cant,fourfurtherANOVAswereperformedtotestfordiffer-encesinneuronalresponsesbetweenthesetoftastestimuli(G,N,H,Q,MandT23/V1),betweenthemembersoftheviscosityseriesV1–V10,000,thesetoffatstimuli(MO,SiO10,100or280,1000,VO,CO,SaO),andthesetoftemperaturestimuli(T10–T42).Systat10wasusedforthegenerationofPearsonproduct-momentcorrelationcoef cientscalculatedbetweenthestimuliusingtheresponsesofalltheneuronsanalyzed,andgraphicalpresentationofstimulussimi-larityusingmultidimensionalscaling(lossfunction:Kruskal;regres-sion:mono).
Atastecellwasde nedbyasigni canteffectintheANOVAperformedacrossthestimulussubset(V1,G,N,M,H,Q)onthenumberofspikesduringthe rstsecondafterstim-ulusonset.Similarly,theviscositycellcriterionwasbasedonasigni canteffectintheANOVAbetweenthesetofstimuliV1–V10,000.Fatcellswerede nedbyasigni cantlylargeraverage ringratetotheoils(viscosity25–100cP)thantothe
averageratestoV10andV100;andbyinadditionasigni cantlargeraverage ringratetotheoilsthanthespontaneous ringrate.Thecriterionforbeingsensitivetotemperaturewasbasedonasigni canteffectintheANOVAbetweenthesetofstimuliT10–T42.Thecritical levelwassetatP 0.05.Further,thetestsforcapsaicin,LaA,andLiAsensitivitywereatwo-tailedt-testcomparingtheresponsesoftheneurontocapsaicin,LaA,andLiAandtowater.Thetestforgrittytexturesensitivitywasatwo-tailedt-testcomparingtheresponsesoftheneurontothegrittytexturestimulus(Gr;whichhasaviscosityof1000cP)andtothe1000cPstimulusfromtheviscosityseriesmadewithCMC.
AFisher(1932)probabilitycombination(orgeneralizedsig-ni canceorexactprobability)testwasperformedtocheckthatthestatisticallysigni cantresultsintheorallyresponsivecellscouldnotre ectjustchancestatisticalresults.(Bychance,ifforexampleonestatisticaltestwasperformedon100cells,then veofthetestsmightbeexpectedtobesigni cantatP 0.05.)TheFishercombinationtestcalculatestheexactprobabilityofobtainingasetofsigni cancevaluesbychanceinindependenttests.Thepro-cedurecalculates 2Αlnpi,whichhasa 2distributionwith2ndegreesoffreedom,andthesumisoverthenprobabilityvaluespiobtainedinseparatetests.ThismeasureiswellestablishedandasymptoticallyBahaduroptimal(LittellandFolks,1971;Zaykinetal.,2002).
Toquantifythetuningoftheneuronstothestimuli,thebreadthoftuningmetricHofSmithandTravers(1979)wascalculatedas
H k
ipilogpi
Abstract—The primate amygdala is implicated in the control of behavioral responses to foods and in stimulus-reinforcement learning, but only its taste representation of oral stimuli has been investigated previously. Of 1416 macaque amygdala neurons record
36M.Kadohisaetal./Neuroscience132(2005)33–48
Fig.1.(A)Responsesofanamygdalaneuron(bo205)withdifferentialresponsestoviscosity,temperatureandtaste.Themean( S.E.M.) ringrateresponsestoeachstimuluscalculatedina1speriodoverfourtosixtrialsareshownhereandelsewhereunlessotherwiseindicated.Thespontaneous(Spon) ringrateisshown.Thetastestimuliwere1Mglucose(G),0.1MNaCl(N),0.1MMSG(M),0.01MHCl(H)and0.001MQuinine–HCl(Q);thetemperaturestimuliwereT10,T23,T37andT42wherethenumberindicatesthetemperaturein°C;theviscositystimuliwereV1,V10,V100,V1000andV10,000wherethenumeralindicatestheviscosityincPat23°C);fattexturestimuliwereSiO10,SiO100,SiO1000(SiOwiththeviscosityindicated),VO,COandSaO.BJisfruitjuice;Capis10 Mcapsaicin;LaAis0.1mMLaA;LiAis0.1mMLiA;seeTable1.(B)Theresponsesofanamygdalaneuron(bo219c2)respondingtotemperature.ConventionsasinFig.1A.
wherek scalingconstant(setsothatH 1.0whentheneuronrespondsequallywelltoallstimuliinthesetofsizen),pi theresponsetostimulusiexpressedasaproportionofthetotalre-sponsetoallthenstimuliintheset.Thecoef cientrangesfrom0.0,representingtotalspeci citytooneofthestimuli,to1.0,whichindicatesanequalresponsetoallofthestimuli.Thesparsenessoftherepresentationawasalsomeasurequantitativelybyextendingthebinarynotionoftheproportionofneuronsthatare ring,as
a (
Screeningcells
Whilesearchingforneurons,wecontinuouslyappliedsamplesfromourstimulusset:G,N,Q,BJ,SC,VO,SO,V100,V1/T23,T10,T42.Wealsotestedforvisualresponsiveness(tothesightoffood,asaline-associatedsquareplaque,theapproachofatastestimulustowardthemouth,objects,faces,headmovement,andlip-smacking)andauditoryresponsiveness(a500Hztone,coo-calls,gruntsandvocalization)asstimuliofthesetypesdoactivatesomeamygdalaneurons(Sangheraetal.,1979).Whenneuronswereinsensitivetothesestimuli,weclassi edthemasnon-responsive.Onlycellsrespondingconsistentlytoatleastonestimulusofthearraywererecorded,allstimulibeingappliedfourtosixtimesinpermutedsequences.
i 1,N
ri N)2
i 1,N(ri2 N)
whereriisthe ringrateoftheithneuroninthesetofNneurons(RollsandTovee,1995;RollsandTreves,1998;RollsandDeco,2002).Thesparsenessiswithintherange0–1,andassumesthevalue0.5forafullydistributedrepresentationwithbinaryencod-ing;and1/Nforalocalorgrandmothercellrepresentationwithbinaryencoding.Thesemeasuresofthe nenessofthetuningofneuronsareimportantinunderstandingtheneuronalencodingofinformation(RollsandTreves,1998;RollsandDeco,2002).
RESULTS
Thedatadescribedinthispaperwereobtainedinthreehemispheresoftwomonkeys.Outof1416screenedneu-ronsintheamygdala,44neurons(3.1%)responded
in
Abstract—The primate amygdala is implicated in the control of behavioral responses to foods and in stimulus-reinforcement learning, but only its taste representation of oral stimuli has been investigated previously. Of 1416 macaque amygdala neurons record
M.Kadohisaetal./Neuroscience132(2005)33–4837
Fig.2.Theresponsefunctionsofalltheviscosity-sensitiveneuronsto1,10,100,1000and10,000cPCMC.ThemeanandtheS.E.M.areshown.Thespontaneous ringrateforeachneuronisshownbythehorizontalline.
Abstract—The primate amygdala is implicated in the control of behavioral responses to foods and in stimulus-reinforcement learning, but only its taste representation of oral stimuli has been investigated previously. Of 1416 macaque amygdala neurons record
38M.Kadohisaetal./Neuroscience132(2005)33–48
Table2.NumbersofamygdalaneuronswithdifferenttypesofinputaUnimodalBimodalMultimodalOthers
Taste(G)
13G T3G T V7Temperature(T)6G V4G T F0Viscosity(V)3G F0G V F0Fat(F)
1
T V2G T V F
T F0V F
1Total231074%
5223
169
a
Note:thepercentageindicatedisofthe44orallyresponsiveneurons.
relationtooralviscosity,grittytexture,fat,taste,tempera-ture,capsaicin,LaA,and/orLiAincludedinthe25oralstimulussets.Theremainderoftheneuronswasunre-sponsivetotheoralstimuliused,exceptforfourneuronsthatincreasedtheir ringratesabovethespontaneouslevelnon-speci callytoallthestimuliapplied.(Incontrasttothe40differentialorallyresponsiveneuronsdescribedindetailhere,theyhadnosigni cantdifferentialactivityinaone-wayANOVAthattestedfordifferencesbetweenthewholesetoforalstimuli.)Ofthe40neuronswithselectiveresponsestothestimulusarray,theresponsesweretyp-icallyverysigni cant,asshownbytheone-wayANOVAacrossthe25stimuli(in35/40casesatP 0.001,in28/40casesatP 0.0001,andin25/40casesatP 10 6,andin12/40casesatP 10 10;seeExperimentalProcedures).Tocon rmthatthesigni cantresponsesofthispopulationof40neuronscouldnothavearisenbychance,weper-formedaFisher(1932;seeExperimentalProcedures)probabilitycombinationtestacrossthepopulationof1416neurons,andfounda 2valueof3664(df 2832),whichcorrespondstoazvalueof10.36,P 10 16.Thus,theresponsesofthe40neuronstotaste,viscosity,etc(acrossall25stimuli)wereveryunlikelytobeduetochance.Visual,auditory,and/orolfactoryresponseswereclearin7.4%ofthetotalsample.Neuronalresponsesrelatedtomouthmovementscomprised0.2%ofthetotalsample.Theseneuronsrespondedphasicallywheneverthemon-keymovedthemouth,andcouldbemadeto rewhenacontrolsyringecontainingnoliquidtouchedthemouthandproducedmouthmovements.Theseneuronscouldhavebeensomatosensoryormotor.Theremainderoftheneu-rons(89%)wasunresponsivetothestimuliused.Amygdalaneuronswithresponsesrelatedtotheviscosityoforalstimuli
Fig.1Ashowsaneuron(bo205)whichistunedtoviscosity,withgradedresponsestothe1–10,000cPstimulifromtheCMCviscosityseries(ANOVAwithintheviscositystimuli,(F(4,16) 7.95,P 0.0012).TheneuronalsorespondedwhentheviscositywasproducedbystimuliintheSiOseries.(Posthoctestsshowedthattheresponseswereforagivenviscositynotsigni cantlydifferenttotheCMCandthesili-cone,thoughthecorrespondenceof ringratesisnotascloseasinsomeotherbrainareas,asconsideredintheDiscussion.)Thisviscosity-sensitiveneuronalsohadtaste(F(5,22) 6.98,P 0.0007)inputs,andthedifferenceof
ringratestodifferenttemperatureswasnotsigni cant(F(3,12) 2.83,P 0.08).Thisneuronwasunusualinre-spondingtoLaA.
Thewayinwhicheachofthe17viscosity-sensitiveneuronsrespondedtothedifferentmembersoftheviscos-ityseriesisshowninFig.2,inwhichtheabscissaistheviscosityofthestimulusonalogscaleforthe veviscositystimuliintherange1–10,000cP.Forthepurposeofor-deringtheneuronsinFig.2,theneuronsweregroupedintosixsetsbasedonclusteranalysisusingtheneuronalresponsestoV1–V10,000.The rstsetofneuronsinthediagram(A–F)tendedtohaveincreasing ringratesasafunctionofviscosity.Theothersetsofneurons(G–I,J–L,MandN,OandP)weretunedwithintheviscosityseries,withincreasinganddecreasingpartsoftheirresponsefunctions.
Whilethreeoftheviscosity-sensitive(i.e.tuned)neuronsrespondedtotheSiOandtheotheroilsinwaysthatwouldbepredictediftheywererespondingtotheviscosityoftheoils,themajority(10)oftheviscosity-sensitiveneuronsrespondedtotheCMCviscosityseriesmorethantheyrespondedtotheequivalentviscositywhenprovidedbyanoil,andsome(3)didnotrespondtotheoilatall(seeTable2).AnexampleofthelatterisshowninFig.3(bo217).Theneuronwasbroadlytunedtoviscosity(V10–V1000),butits ringwhenanyoil(silicone,VO,CO,SaO;andSCwhichisanoilinwateremulsion)wasinthemouthwasatthespontaneous ringratelevel.(The ringtomostoftheaqueousstimuliwasasmallamountabovethespontaneous ringrate.)Thustheneuroncandiscriminatebetweenfattextureandviscosity(t-test,P 10 6usingalloils,andCMCV10–V1000),andthisismadeclearinFig.3B.Thisneuronalsohadrespon-sivenesstotaste(F(5,22) 3.72,P 0.014)andtemperature(F(3,13) 10.47,P 0.001),asshowninFig.3A.
Thetypicaltimecourseoftheresponsesofaviscosity-sensitiveneuronisshownintheperistimulusrastergramsandtimehistogramsinFig.4.Theneuronhadalargerresponseto10,000thanto1cPCMC.Fat-responsiveneurons
Fig.4Ashowsaneuron(bk361)whichrespondedonlytothesetofoils(withtheseresponsesbeingsigni cantlydifferentfrombothspontaneousandfromallmembersoftheviscosityseriesV10–V1000;P 0.00005).Therewasnosigni cantresponsetoanyofthemembersoftheCMCviscosityseries,nortoanyofthetastestimuli,nortoanyofthetemperaturestimuli.(TheneurondidnotrespondtoSC,whichalthoughitcontainsfat,alsocontainssweetandothertastantswhichmayhavepreventedtheneuronre-spondingtothefatinthecream.)Interestingly,theneurondidnotrespondtothefattyacidsLaAandLiA,indicatingthattheresponsestofatwerebasedonitstexture,andnotonanyfattyacidsthatmightpossiblybeproducediffatislipolyzedatallinthemouthbyanysalivarylipasethatmightbepresent.Furtherevidencethattheneuronalre-sponsewasnotbasedonfattyacidsisthattheneuronrespondedtotheSiOs(whichcontainnofatorfattyacids,buthaveasimilartexturetothefattyoilssuchasVO,COandSaO).Fig.4Billustratestheneuronalresponsesin
Abstract—The primate amygdala is implicated in the control of behavioral responses to foods and in stimulus-reinforcement learning, but only its taste representation of oral stimuli has been investigated previously. Of 1416 macaque amygdala neurons record
M.Kadohisaetal./Neuroscience132(2005)33–4839
Fig.3.(A)Theresponsesofanamygdalaneuron(bo217)withdifferentialresponsestotaste,temperatureandviscosity.Theneurondidnotrespondtofattexture.ConventionsasinFig.1.G,N,M,HandQarethetastestimuli.T10–T42arethetemperaturestimuli.V1–V10,000aretheCMCviscosityserieswiththeviscosityincP.ThefattexturestimuliwereSiO10,SiO100,SiO1000(SiOwiththeviscosityindicated),VO,COandSaO.BJisfruitjuice;Capis10 Mcapsaicin;LaAis0.1mMLaA;LiAis0.1mMLiA;seeTable1.(B)The ringrate( S.E.M.)todifferentviscositiesofCMCshownasagraph.Thehorizontallineshowsthespontaneousactivity( S.E.M.).Therewasnoresponsetothefattyoils.AbbreviationsasinFig.1.
moredetail,byshowingperistimulustime ringratehisto-gramsandrastergramsforsomeofthestimuli,togetherwithaninsettoshowthespikebeingrecorded,whichwas,aswasusual,verywellisolated.
AsshowninTable2,twooftheneurons(bk361andbk364)werefatsensitive,inthattheirresponseswerelargetotheoilsandoccurredinawaythatwouldnotbepredictedfromanysmallerresponsetheymighthavetotheCMCviscosityseries(seeexampleinFig.4A).BothoftheseneuronsalsorespondedtotheSiO,andneitherofthemrespondedtofattyacids.Inaddition,noneofnineotherneuronswitharesponsetooneorbothofthefattyacidswasclassi edasfatsensitive.Temperature-responsiveneurons
Fig.1Bshowsaneuron(bo219c2)withdifferentialresponsestodifferenttemperatures(F(3,16) 9.179,P 0.001).TheneuronrespondedprimarilytoT10fromthetemperatureseries(andhadnosigni cantlydifferentresponseswithinthetasteseries,withintheviscosityseries,orwithinthefatsoroils).
Thepro lesoftheresponsivenesstothedifferenttem-peraturestimuliofthethermosensitiveneuronsareshowninFig.5.TheorderoftheneuronsinFig.5justforthepurposesofillustrationisbasedonsixclustersidenti edbyclusteranalysis.Inthe rstset(A–G),theneuronalresponsesshowagenerallyupwardtrendwithincreasingtemperature(T10–42);inthesecondset(H–L),theneu-ronshadthebestresponsestoT10;inthethirdset(M–P),theneuronsshowedmoreactivitytothelowthantothehightemperatures.Theotherneurons(QandRinFig.5)wereseparateclusters.
Ofthe18temperature-sensitiveneurons,sixrespondedonlytotemperature(seeTable2).Thusthetemperature
of
Abstract—The primate amygdala is implicated in the control of behavioral responses to foods and in stimulus-reinforcement learning, but only its taste representation of oral stimuli has been investigated previously. Of 1416 macaque amygdala neurons record
40M.Kadohisaetal./Neuroscience132(2005)33–48
Fig.4.(A)Responsesofanamygdalaneuron(bk361)respondingtofat.ConventionsasinFig.1.G,N,M,HandQarethetastestimuli.T10–T42arethetemperaturestimuli.V1–V10,000aretheCMCviscosityserieswiththeviscosityincP.ThefattexturestimuliwereSiO10,SiO100,SiO1000(SiOwiththeviscosityindicated),VO,COandSaO.BJisfruitjuice;Capis10 Mcapsaicin;LaAis0.1mMLaA;LiAis0.1mMLiA;seeTable1.(B)Post-stimulus-timehistogramandrastergramofthesameneuron(bk361)toshowthenatureoftheneuronalresponsesontypicaltrialstoeachstimulus.Spont,spontaneous ringrate.Therecordingoneachtrialstartedattime0,whenthestimuluswasdelivered.ThepoststimulustimehistogramswereGaussiansmoothedwithaS.D.ofonetimebin,each100mswide.Theinsetshowsspikesfromtheneuronbeingrecordedtoshowthetypicallyverygoodisolationofthespikes,andthereisnooverlapwiththenoise.
Abstract—The primate amygdala is implicated in the control of behavioral responses to foods and in stimulus-reinforcement learning, but only its taste representation of oral stimuli has been investigated previously. Of 1416 macaque amygdala neurons record
M.Kadohisaetal./Neuroscience132(2005)33–4841
Fig.5.Theresponsefunctionsofallthethermosensitiveneuronstodifferenttemperaturein°C(T10,T23,T37andT42).ThemeanandtheS.E.M.areshown.Thespontaneous ringrateforeachneuronisshownbythehorizontalline.
whatisinthemouthisrepresentedindependentlyoftaste,viscosity,andfattytextureintheprimateamygdala.Inaddi-tion,10neuronsrespondedtobothtasteandtemperature,showingthattheprimateamygdalarepresents
combinations
Abstract—The primate amygdala is implicated in the control of behavioral responses to foods and in stimulus-reinforcement learning, but only its taste representation of oral stimuli has been investigated previously. Of 1416 macaque amygdala neurons record
42M.Kadohisaetal./Neuroscience132(2005)33–48
Fig.6.Astimulusspace(multidimensionalscaling)ofthestimulussimilaritybasedontheacross-neuronresponsepro lesofthe44orallyresponsiveamygdalaneurons.Thetastestimuliwere1Mglucose(G),0.1MNaCl(N),0.1MMSG(M),0.01MHCl(H)and0.001MQuinine–HCl(Q);thetemperaturestimuliwereT10,T23,T37andT42wherethenumberindicatesthetemperaturein°C;theviscositystimuliwereV1,V10,V100,V1000andV10,000wherethenumeralindicatestheviscosityincP);fattexturestimuliwereSiO10,SiO100,SiO1000(SiOwiththeviscosityindicated),VO,COandSaO.BJisfruitjuice;Capis10 Mcapsaicin;LaAis0.1mMLaA;LiAis0.1mMLiA.Thesolidlinejoinsthemembersoftheviscosityseries.Differentlinestylesjointhemembersofthetaste,temperatureandoilstimuli.Thetwo-dimensionalsolutionaccountedfor91%ofthevariance(n 44).
ofthesetwomodalities,potentiallyprovidingthebasisfordifferentbehavioralresponsestoparticularcombinationsofthetasteandtemperatureofthefoodor uidinthemouth.AsshowninTable2,someneuronsintheprimateamygdalarespondtooraltemperatureandtoviscosity,andinadditionotherneuronsrespondtotemperaturecombinedwithseveralothertypesoforalsensorystimulusincludingtasteandviscosity.
Populationanalyses
Therepresentationofthesimilarityofthestimulibythepop-ulationofneuronswasapproachedwithmultidimensionalscalinganalysis,basedonthe rst1sofpost-stimulusactiv-ity,andwasperformedontheresponsesofthesame44neurons(Fig.6).Thesegregationsbetweenmodalitiesareclearlyshowninthemultidimensionalspace.Thedifferentmodalitieshavebeenjoinedbylinestohelpclarifytherep-resentationinthismultidimensionalspace.First,theviscosityseriesisverywellseparatedinthespace(primarilyalongthexaxis).The vetastestimuliarewellseparatedfromeachother,butcontainedintheirownpartofthespaceseparatefromalltheotherstimuli.Thetemperatureseriesareagainclearlylaidoutinthespace(primarilyalongtheyaxis).Theoilsarelocatedcloselytogetherandclearlyseparatefromtheviscosityseriesparametricrepresentation.Itisofconsider-ableinterestthattheoilstimuliarenotseparatedoutinthespaceaccordingtotheirviscosity,asthisprovidesfurtherevidencethattheviscosityofstimuliisencodedparametri-callyintheamygdala;andthatfattytextureiscodedasafattytextureindependentlyofitsviscosity.Inacheckthatthemultidimensionalspacerepresentedthedistancesbetweenthestimulireasonablyandinawaythatcouldbeinterpreted,wefoundthatremovingdifferentrandomlypermutedsetsof veneuronsfromthecalculationsusedforthemultidimen-sionalspacedidnotin uencewhatisshowninFig.6.
Ofthe44neuronsinthesample,23(52%)neuronswereunimodal(13unimodaltaste,sixunimodaltempera-ture,threeunimodalviscosityandoneunimodalfatneu-rons),10(23%)neuronswerebimodal,andseven(16%)neuronsweremultimodalwithresponsestotaste,temper-atureandviscosity(seeTable2;thefourneuronsshownas‘other’hadsigni cantlydifferentresponsestotheset
of
Abstract—The primate amygdala is implicated in the control of behavioral responses to foods and in stimulus-reinforcement learning, but only its taste representation of oral stimuli has been investigated previously. Of 1416 macaque amygdala neurons record
M.Kadohisaetal./Neuroscience132(2005)33–4843
oralstimulibasedontheANOVAperformedacrossthewholesetoforalstimuli,butwerenotfurtherclassi edonthebasisoffurtherANOVAsastemperaturesensitiveetc).The ndingsprovideclearevidenceforconvergenceoftasteandsomatosensory(thermosensitive,texture-sensitiveand/orfatsensitive)inputsontosomeneuronsintheamygdala(seeFigs.1Aand3),andalsothateachtypeofinputisrepresentedindependentlyoftheothers(seeFigs.4and1B).Further,someneuronshadresponsive-nesstoLaA,LiAandCapwhencomparedwiththeirsol-ventwater(T23/V1):fourneuronstoLaA,sevenneuronstoLiA(withtwooftheseneuronsrespondingtobothLaAandLiA);andfourneuronstoCap.Noneofthefattyacidsensitiveneuronswereclassi edasfatresponsive.Inaddition,threeneuronsrespondedtotheGr(whencom-paredwiththeequallyviscousbutnotgrittyV1000).
Thebreadth-of-tuningmetric(SmithandTravers,1979)calculatedacrossthetastestimuliH,Q,NandGwas0.85 0.03(mean S.E.M.)forthe(13)neuronswithonlytasteinputs(i.e.withoutsomatosensory-thermosensitive,texture-sensitiveand/orfatsensitive-input),andfor(14)neu-ronswithbothtasteandsomatosensoryinputswas0.93 0.02(P 0.07).Thecorrespondingsparsenesseswere0.77 0.04and0.87 0.04(P 0.092).Inaddition,themeansparsenessoftherepresentationof16stimuli(G,BJ,N,M,H,Q,T23/V1,T10,T37,T42,V10,V100,V1000,SCandVO)ofthe44amygdalaneuronswas0.79 0.18(mean S.D.).Thiscomparestothemeansparsenessof52orbitofrontalcortexneuronstothesamesetofstimuli(Verhagenetal.,2003)of0.67 0.23(mean S.D.;P 0.006),whichindicatestheamygdalaneuronsweretunedmorebroadlytothesetofstimuli.
Localizationofrecordings
ThereconstructedpositionsoftheneuronsanalyzedinthisstudyareshowninFig.7.Thetoprowshowsthelocationsoftheneuronsrespondingtooralstimuli.Mostoftheseneuronswerelocatedinthebasal/basalaccessoryamygdaloidnu-cleus,centralamygdaloidnucleusandlateralamygdaloidnucleus.Althoughitwasnotanaimofthisstudytoinvesti-gateamygdalaneuronswithotherresponses,wedid ndanumberofneuronswithvisualresponses(93;categorizedassuchbythecriteriaofSangheraetal.,1979;Leonardetal.,1985),withauditoryresponses(11),witholfactoryresponses(2),orwithactivityassociatedwithmouthmovements(4),asshowninthemiddlerowofFig.7,primarilyforcomparisonwiththelocationsoftheorallyresponsiveneurons.Someoftheseneuronswithotherthanoralresponsesrespondedtostimuliinseveralmodalities,asshowninFig.7.Eightofthe44neuronswithoralresponsesanalyzedhereandshowninTable2hadvisual(6)orauditory(2)responses.Thebottomrowshowsthesitesofalltherecordedneurons,toindicatethepartsoftheamygdalathatweresampled.
DISCUSSION
Theresultsinthispaperdescribethediscoveriesofneu-ronsintheprimateamygdalawithactivityrelatedtotheviscosity,thefattexture,andthetemperatureoffoodinthe
mouth.Theresultsalsodescribethediscoveryofamyg-dalaneuronstunedtocapsaicin,oralgrittiness,andtofattyacids.Theseresultsalsoshowthattheprimateamygdalacontainsseparaterepresentationsofthepropertiesoforalstimuli,butalsohasotherneuronsthatcombinethemwitheachother,andalsowithtaste.These ndingsprovidethe rstdetailedevidenceontherepresentationintheprimateamygdalaofnon-tasteoralstimuli,andarerelevanttounderstandingwhatisrepresentedinthehumanamyg-dala.Suchstimuli,sometimescombinedwithtaste,pro-videimportant(mainlyprimaryorunlearned)reinforcers(rewardsandpunishments)forfoodintake,andinthiswayareinvolvedinthecontrolofappetiteandthecontroloffoodintake.Thesestimulialsoprovidetheprimaryrein-forcerformuchstimulus-reinforcerassociationlearningwithappetitivestimuli,inwhichtheamygdalaisimplicated(EverittandRobbins,1992;LeDoux,1995,2000;GallagherandChiba,1996;RobbinsandEveritt,1996;Rolls,1999,2000;Schoenbaumetal.,1999;BaxterandMurray,2000;DavisandWhalen,2001;Everittetal.,2003;PetrovichandGallagher,2003).Thisstimulus-reinforcerassociativelearningallowspreviouslyneutralvisual,olfac-tory,andauditorystimulitobecomeassociatedwiththesensorypropertiesoffoodsinthemouth.Bythisassocia-tivelearning,suchpreviouslyneutralstimulicangaincon-trolofbehavior.Forexample,intheratthecentralnucleioftheamygdalaencodeorexpressPavlovianstimulus-response(CS-UR)associations(includingconditionedsuppression,conditionedorienting,conditionedautonomicandendocrineresponses,andPavlovian-instrumentaltransfer);andmodulate,perhapsbyarousal,theassocia-bilityofrepresentationsstoredelsewhereinthebrain(GallagherandHolland,1994;HollandandGallagher,1999).Incontrast,thebasolateralamygdalaencodesorretrievestheaffectivevalueofthepredictedUS,andcanusethistoin uenceaction–outcomelearningviapath-waystobrainregionssuchasthenucleusaccumbensandprefrontalcortexincludingtheorbitofrontalcortex(Cardinaletal.,2002).Forbothtypesoflearningintheamygdala,thenatureoftheprimaryreinforcerisimportant,forthisde neswhatthelearningisabout,andinthecaseofappetitiveoralreinforcers,thetypesofneurondescribedinthispaperarefundamental.
Therepresentationofviscositydescribedhereen-codesthedegreeofviscosityofwhatisinthemouth,inthateachneuronhasgraded ringtothedifferentviscos-itiesused(CMCintherange1–10,000cP),andinthatdifferentneuronshavedifferentresponsefunctions,asshowninFig.2.FurtherevidenceforthisisprovidedbythemultidimensionalspaceshowninFig.6,inwhichthedif-ferentviscositystimuliareparametricallyrepresentedandwellseparatedfromeachotherinthestimulusspace.Thehard,round,microspheresweemployed(100–300 m)evokeanoralgrittytexture,andthiswasaneffectivestimuluswhensuspendedincelluloseforthreeneurons(whencomparedwithequallyviscouscellulose).
Fatinthemouthwasrepresentedintwowaysbytheamygdalaneuronsdescribedhere.Onewaywasbytheamygdalaneuronsthatrespondtofatandnottothecellulose
Abstract—The primate amygdala is implicated in the control of behavioral responses to foods and in stimulus-reinforcement learning, but only its taste representation of oral stimuli has been investigated previously. Of 1416 macaque amygdala neurons record
44M.Kadohisaetal./Neuroscience132(2005)33–48
Fig.7.Thereconstructedpositionsinthebrainoftheneuronsinthisstudy.Top:thesymbolwithwhichthelocationofeachneuronisindicatedshowswhethertheneuronwastunedtog taste,v viscosity,t temperature,f fatortocombinationsofthese.Middle:thesymbolwithwhichthelocationofeachneuronisindicatedshowswhethertheneuronwastunedtovis visual,aud auditory,olf olfactoryortocombinationsofthese,ortomouthmovement.Bottom:thesitesoftheneuronsthatwerenotdifferentiallyresponsivetothestimuliusedinthisinvestigation,toshowtheareaofamygdala
Abstract—The primate amygdala is implicated in the control of behavioral responses to foods and in stimulus-reinforcement learning, but only its taste representation of oral stimuli has been investigated previously. Of 1416 macaque amygdala neurons record
M.Kadohisaetal./Neuroscience132(2005)33–4845
Fig.8.Afrequencyhistogramshowingthecorrelationsbetweenthe ringofeachofthe44orallyresponsiveneuronsandtheacceptabilityratings.Anormaldistributionhasbeen tted.Themeancorrelationwas0.09andtheS.D.was0.22.
viscosityseries(Fig.4).Theseneuronsencodefatbyitstexture(andnotbyanyodororfreefattyacidcue),inthatthesameneuronsrespondtoSiO,toMO,andnottofattyacids(Gilbertson,1998;Verhagenetal.,2003).Thesecondwayinwhichfatisdistinguishedfromnon-fattexturesintheamyg-dalaisbytheneuronsthatrespondtoviscosityandnottotheoils(seeexampleshowninFig.3).Indeed,itwasofinterestthatmostoftheneuronstunedtothecelluloseviscosityseries(13/17)tendedtohavesmallerresponsestothesameviscositywhenproducedbyfat,providingafurtherwayinwhichthepopulationofamygdalaneuronsdescribedhereseparatestherepresentationsoforalviscosityandfat.Inaddition,thefewneuronsthatrespondedtofattyacidsdidnotrespondtotheoilstimuli.Wenotethattheresponsesoftheseneuronstotheoils(Siseries)orthetexture(carboxymethylcellulose)stimulicannotbeaccountedforbytastere-sponses,asshownbythefactsthat7/18amygdalaneuronsthatrespondedtothesetexturestimulihadnoresponsestothetastestimuliG,N,H,QandM;thatneuronsthatdidrespondtotasteandtexturestimulihaddifferentresponsive-nesstoeachothertothetasteandtexturestimuli(seeexamplesinFigs.1and3);andthathumanpsychophysicalratingona100mmvisualanalogratingscaleoftheintensityofthetasteofthetexturestimuliwas12.5 3.6(S.D.),andofthewaterwas11.6 3.5,whereasthatforthetastestimuliwas61.0 10.0.(Consistentwiththis,carboxymethylcellu-loseisusedbyindustryasatastelessandodorlessthicken-ingagent.)Further,theresponsesoftheseamygdalatextureneuronscannotbeaccountedforbyresponsivenesstoodor,inthatthehumanpsychophysicalratingonthe100mmvisual
analogratingscaleoftheintensityoftheodoroftheCMCtextureandoil(SiOseries)stimuliwas8.6 2.7(mean S.D.),andofthewaterwas7.8 2.6.
Therepresentationoftemperatureprovidedbytheseprimateamygdalaneuronswasgraded,asshownbytheresponsesoftheneuronsillustratedinFig.1BandFig.5,andbythemultidimensionalspaceshowninFig.6inwhichthewarmtemperaturesT42,T37areparametricallysepa-ratedfromtheotherstimuliincludingT23/T10.Fourofthe44amygdalaorallyresponsiveneuronstestedinthisstudyhadresponsestocapsaicinthatweredifferentfromwater.Theneuronsdidnotrespondto42°Cwater,andthismayberelatedtothefactthatthesensationofcapsaicinismediatedbythevanilloidreceptorsubtype1,whichre-spondstotemperaturesabove43°C(Caterinaetal.,1999).
Theresponsesoftheviscosity,fattexture,andtem-peratureresponsiveneuronswerenotrelatedtoanymouthmovementsasshownbythefollowing.First,Fig.4showsrastergramsandperistimulusresponsehistogramsforaneuronthatrespondedtoalltheoils,andnophasicresponsivenesswasfoundtothesestimulithatmighthavebeenrelatedtoanymouthmovement.Moreover,theneu-rondidnotrespondtoanyoftheCMCseries,towhichmouthmovementswerealsomade.Further,theseamyg-dalaneuronsintheirresponsivenesstotexturedstimuliwereverysimilartotheresponsesofneuronsintheor-bitofrontalcortexandinsulartastecortexthatrespondtoviscosityandfattexture,whichalso,asillustratedinthefollowingpapers,donothavephasicresponsivenessre-latedtomouthmovements(Rollsetal.,2003;Verhagenetal.,2003,2004).Moreover,thetuningfunctionsofdif-ferentamygdalaneuronstothesetofviscosity,oil,andtemperaturestimuliwereverydifferenttoeachother,sothatnosinglefactorsuchasmouthmovementscouldeasilyaccountfortheresponses.Further,neuronalre-sponsesrelatedtomouthmovementswerefoundandcomprised0.2%ofthetotalsample.Theseneuronsre-spondedphasicallywheneverthemonkeymovedthemouth,andcouldbemadeto rewhenacontrolsyringecontainingnoliquidtouchedthemouthandproducedmouthmovements.Theseneuronsintheirphasic,mouth-movementrelated,responseswereverydifferentfromthoseofthetaste,texture,oilandtemperaturesensitiveneurons.
Someoftheamygdalaneuronsdescribedhereprovideseparaterepresentationsofviscosity,fattexture,temper-ature,taste,capsaicin,grittiness,andfattyacids,andotherneuronscombinedinputsfromdifferentsubsetsofthesepropertiesofsensorystimuli(seeTable2).Thecombina-tion-respondingneuronsprovideonepossiblebasisfordifferentbehavioraland/orendocrineresponsestopartic-ularcombinationsofthesensorypropertiesofstimulisuch
inwhichneuronsweresampled.1–2Pshowsthatthecoronalsectionwastaken1–2mmposteriortothesphenoidprocessusedasalandmark,whichisatapproximatelytheA-Pleveloftheopticchiasm.ThearchitectonicboundariesasdescribedbyAmaraletal.(1992)areindicated.AB,accessorybasalamygdaloidnucleus;acp,anteriorcommissureposteriorpart;B,basalamygdaloidnucleus;Ce,centralamygdaloidnucleus;Cl,claustrum;L,lateralamygdaloidnucleus;rh,rhinal ssure;sts,superiortemporal
sulcus.
Abstract—The primate amygdala is implicated in the control of behavioral responses to foods and in stimulus-reinforcement learning, but only its taste representation of oral stimuli has been investigated previously. Of 1416 macaque amygdala neurons record
46M.Kadohisaetal./Neuroscience132(2005)33–48
asfoodinthemouth.Otherbrainareasthatalsoprovidepossiblebasesforparticularbehavioralresponsestodif-ferentcombinationsoforalstimuliincludetheorbitofrontalcortex(Rollsetal.,2003).Thesebehaviorsincludesensory-speci csatiety,inwhichthepleasantnessofafoodeateninamealdecreasesrelativetootherfoodsnoteateninthemeal(Rollsetal.,1981;Rolls,1997,1999,2004;Kringelbachetal.,2003).Withrespecttothepleas-antnessofthesensorypropertiesoffood,thereisnowverystrongevidencethatorbitofrontalcortexneuronsarere-latedtosensory-speci csatiety(Rollsetal.,1989;CritchleyandRolls,1996;Kringelbachetal.,2003),whereasthereislessevidenceforstrongmodulationbyhungerorhedonicsoftasteresponsivenessintheamygdala(Nishijoetal.,1988a,b;YanandScott,1996;RollsandScott,2003).Thefactthatsomeamygdalaneuronsrespondtobothtasteandtemperatureshowsthatthetemperatureofwhatisinthemouthisnotencodedonlyseparatelyfromtheothersensorypropertiesofthefood,butalsoincombinationwithothersensorypropertiesoffood.Thusthistemperaturerepresentationmaynotonlyallowhotorcoldsubstancestoberejected(oraccepted),butalsoenablefoodsthathaveparticularcombinationsoftemperature,tasteandtexturetobereactedtodifferently.
WenotethatalthoughhumanfMRIresultsareconsis-tentwiththosedescribedhereinshowingforexamplethattheorbitofrontalcortex,whichhasmajorreciprocalcon-nectionswiththeamygdala(Amaraletal.,1992),isstronglyactivatedbytexturedwholefoodstimulisuchastomatojuiceandchocolate(Kringelbachetal.,2003),andhasarepresentationoforalviscosity(deAraujoandRolls,2004).However,thedetailsoftherepresentationasde-scribedhere,withbothunimodalneurons,andbimodalneuronsshowingconvergence,togetherwiththedetailsoftheindividualneuronaltuningtoviscosityandtemperaturestimuli,andtheseparatenessoftherepresentationfromgrittyandcapsaicin,couldnotbeshownbyfMRIstudies.Inaddition,fMRIstudiesprovidelittleevidenceontheproportionofneuronsinastructurethatrespondindiffer-entways.Oneratherinterestingresultofwhatwasfoundintheprimateamygdalaisthatprovidedthatcareistaken,aswedid,toexcludemovement-relatedneuronsfromthesample,thenthenumberofneuronsspeci callytunedtooralsensorystimuliintheamygdalaappearsquitemodest,3.1%.Eventhoughtheproportionisnotlarge,thepopu-lationofneuronsdescribedheredidprovideverydetailedrepresentationsofwhatisinthemouth,andindeed,ifscaledupaccordingtothenumberofneuronsintheex-tensivepartoftheamygdalasampled(seeFig.7),wouldamounttothousandsofneurons,whichissuf cienttoprovideagreatdealofinformationaboutwhichstimulusispresentinthemouth(RollsandTreves,1998;RollsandDeco,2002).Indeed,informationofthistype,thepropor-tionofneurons,andhoweachoneresponds,isofcourseessentialtounderstandinghowthebrainoperates,andtheimportanceoftheseneuronstooverallbehaviorisattestedtobytheevidencethattheamygdalaisinvolvedinasso-ciativelearningforwhichoneimportanttypeofuncondi-tionedstimulusisfoodinthemouth(Aggleton,2000).Thefactthattheproportionofamygdalaneuronsdevotedtooralstimuliisnothighisconsistentwiththefactthatotherinputs,includingvisual(Sangheraetal.,1979;Leonardetal.,1985;Rolls,2000),arerepresentedintheprimateamygdala,andiftheoverallrepresentationistobemain-tainedsparse,whichhasmanyadvantagesforneuralcomputation(OlshausenandField,1996;RollsandDeco,2002),thentheproportiondevotedtoanyonemodalitycannotbehigh.Moreover,thepreciseidenti cationde-scribedhereoftheproportionsofneuronsactivatedbyoralstimuliintheamygdalaisofinterestinrelationtofunctionalmagneticresonanceneuroimaging,inwhichactivationstothetasteofglucoseorsaltcanbedemonstratedinthehumanamygdala.Thisisanindicationthatevenquitelowproportionsofneuronsthatareactivatedmaybesuf cienttoproduceaverysigni cantfMRIsignal,atleastina3Tscanner(O’Dohertyetal.,2001).
Inthispapertherewardvalueofthetexturedstimulihasnotbeenmanipulated,byforexamplefeedingthemonkeytosatietytodecreasetherewardvalueofthestimulus,andthenre-measuringtheneuronalresponse.Ithaspreviouslybeenshownthatsatietyproducesarathermodest(onaverage58%)reductionintheresponsesofmacaqueamygdalaneu-ronstotaste(YanandScott,1996),incomparisontotheessentiallycompletereductionofresponsivenessfoundinorbitofrontalcortextasteneurons(Rollsetal.,1989).Further,therepresentationintheamygdalaoftheseoralstimulidoesnotappeartobeonanysimplehedonicbasis,inthatnodirectioninthemultidimensionalspaceinFig.6re ectsthemeasuredpreferenceofthemonkeysforthestimuli.More-over,foreachmonkey,therewasnocorrelationbetweentheacceptabilityratingsofeachstimulusbythemonkeysandtheaverageneuronalresponsestoeachstimulus(BK:F(1,21) 0.33,P 0.570;BO:F(1,23) 1.85,P 0.187).Wealsocalculatedacorrelationbetweentheacceptabilityratingsofthemonkeyandtheresponsesofeachneuronthathadasigni cantresponsetotheoralstimuli.ThevaluesofthecorrelationsareshowninFig.8,togetherwitha ttednormaldistribution.For39ofthe44neuronstherewasnosigni cantcorrelationbetweentheneuronalresponseandtheprefer-enceratingacrossthe25stimuli.For veneurons,therewasasigni cantcorrelationatP 0.05,andfortheseneuronsthecorrelationvalueswere0.40(P 0.05),0.42(P 0.05),0.46(P 0.05),0.57(P 0.003)and0.58(P 0.002).Acrossall44neurons,themeancorrelationwas0.08withastandarddeviationof0.22(asshowninFig.8).(Thisanalysistakesintoaccountthattheacceptabilitymeasureforeachstimuluswasdifferentforsomeofthestimuli,asshowninTable1.)Afurtheranalysisshowedthatthelargestdifferenceswerethatthecarboxymethylcellulose(V10,000)stimuluswaslessac-ceptableinbk,theSCwaslessacceptableinbo;andthegrittystimuluswaslowerinbk.Nevertheless,the ringratesofamygdalaneuronstothesethreeparticularstimulishowednodifferencebetweenthemonkeys,P 0.43,0.55and0.80,respectivelybetweenboandbkacrossalltheiramygdalaneurons;t-test.Moreover,evenwhenthe ringratestothesethreestimuliwerescaledineachmonkeyrelativetothe ringratestotheacceptableglucoseandunpleasantsaline,thescaledvaluesforthethreestimuliwerenotsigni cantlydif-
Abstract—The primate amygdala is implicated in the control of behavioral responses to foods and in stimulus-reinforcement learning, but only its taste representation of oral stimuli has been investigated previously. Of 1416 macaque amygdala neurons record
M.Kadohisaetal./Neuroscience132(2005)33–4847
ferentforthetwomonkeys(P 0.33forallthreecompari-sons)andwerenotrelatedtothemonkeys’preferences(P 0.12)forthesethreestimuli.Thusweconcludebythesedistincttypesofanalysis,thatthedifferencesinthe ringratesoftheseneuronstothesetofstimuliinmostcasesdidnotre ectjusttheacceptabilitytothemonkeyofthestimuli,butre ectattributesofthestimulisuchastheirtexture,taste,andtemperature.Onlytwoneuronshadreasonablysigni -cantcorrelationsoftheir ringrateswiththeacceptabilityratings(giventhat44correlationsweretested,andamorestringentcriterionthanP 0.05shouldbeapplied),andevenforthesetwoneuronsthecorrelationswereonlymoderate,0.57and0.58.
Incomparisontotheorbitofrontalcortexneuronsthatrespondtothesamesetofstimuli(Rollsetal.,2003;Verhagenetal.,2003;Kadohisaetal.,2004),theamyg-dalaneuronshadless netuningacrossthesetof16stimuliusedinbothareas,asindicatedbythesparsenessmeasurespresentedhere.Interestingly,theamygdalaneuronswithoralresponsivenesshadveryclearlysepa-ratedresponsestotheviscosityseriesandthetempera-tureseriesinthemultidimensionalspace,witharelativelycompactpartofthespacedevotedtotaste(seeFig.6).Incontrast,themultidimensionalspacefor53orbitofrontalcortexneuronstestedwiththesamesetofstimuli(apartfromminordifferencesintheoilystimulussubset)inthesametwomonkeysshowedarelativelygreaterareade-votedtotaste,andrelativelymorecompressedrepresen-tationsofviscosityandtemperature(Rollsetal.,2003;Verhagenetal.,2003;Kadohisaetal.,2004).Thismaybeconsistentwiththemajorgustatoryinputstotheorbitofron-talcortexfromtheprimarytastecortexintheinsular/opercularregions(Baylisetal.,1994),andwiththemajorsomatosensoryinputstotheamygdalafromsomatosen-soryparts(Friedmanetal.,1986)andalsofromtasteparts(Verhagenetal.,2004)oftheinsula.Afurtherinterestingdifferenceisthatintermsofbestresponsestodifferenttastes,57%oftheorbitofrontalcortextasteneuronshadtheirbestresponsestoglucose,whereas21%oftheamygdalaneuronshadtheirbestresponsetoglucose( 2 12.5,df 5,P 0.03).(MoreamygdalaneuronshadtheirbestresponsestoH(18%)andM(14%).)
Inconclusion,weshowforthe rsttimethatamygdalaneuronscanbespeci callytunedto vetypesoforalsomatosensorystimulus:viscosity,grittiness,fattexture,capsaicin,andtemperature.Inadditiontoseparaterepre-sentationsprovidedbysomeneurons,otherneuronsre-spondtocombinationsofviscosityand/ortasteand/orgrittyand/orcapsaicinand/orfatinputs,therebyprovidingarichrepresentationofthesensorypropertiesoffoodinthemouth,inwhichparticularcombinationsoftheabovepropertiescanberepresentedseparatelyfromthecompo-nents.Thisallowsforsubjectiveandbehavioralresponsesthatcanbebasedonparticularcombinationsoftheseinputs,providingforgreatsensorycapabilityinchoosingandlearningaboutparticularcomplexfoods,andinex-tendingthe avorspace.
Acknowledgments—ThisresearchwassupportedbyMedicalRe-searchCouncilgrantPG9826105toE.T.Rolls.SamanthaLinetookpartinsomeoftherecordingsaspartofagraduateresearchproject.
REFERENCES
AggletonJP,ed(2000)Theamygdala.Oxford:OxfordUniversityPress.AmaralDG,PriceJL,PitkanenA,CarmichaelST(1992)Anatomical
organizationoftheprimateamygdaloidcomplex.In:Theamygdala(AggletonJP,ed),pp1–66.NewYork:Wiley-Liss.
BaxterMG,MurrayEA(2000)Reinterpretingthebehaviouraleffectsof
amygdalalesionsinnon-humanprimates.In:Theamygdala:afunc-tionalanalysis(AggletonJP,ed),pp545–568.Oxford:OxfordUni-versityPress.
BaylisLL,RollsET,BaylisGC(1994)Afferentconnectionsofthe
orbitofrontalcortextasteareaoftheprimate.Neuroscience64:801–812.
BerthoudHR(2003)Neuralsystemcontrollingfoodintakeandenergy
balanceinthemodernworld.CurrOpinClinNutrMetabCare6:615–620.
BourneMC(2002)Foodtextureandviscosity:conceptandmeasure-ment.London:AcademicPress.
CardinalN,ParkinsonJA,HallJ,EverittBJ(2002)Emotionand
motivation:theroleoftheamygdala,ventralstriatum,andprefron-talcortex.NeurosciBiobehavRev26:321–352.
CaterinaMJ,RosenTA,TominagaM,BrakeAJ,JuliusD(1999)A
capsaicin-receptorhomologuewithahighthresholdfornoxiousheat.Nature398:436–441.
CritchleyHD,RollsET(1996)Hungerandsatietymodifythere-sponsesofolfactoryandvisualneuronsintheprimateorbitofrontalcortex.JNeurophysiol75:1673–1686.
DavisM(1994)Theroleoftheamygdalainemotionallearning.IntRev
Neurobiol36:225–266.
DavisM,WhalenPJ(2001)Theamygdala:vigilanceandemotion.Mol
Psychiatry6:13–34.
deAraujoIET,RollsET(2004)Therepresentationinthehumanbrain
offoodtextureandoralfat.JNeurosci24:3086–3093.
EverittB,CardinalRN,ParkinsonJA,RobbinsTW(2003)Impactof
amygdala-dependentmechanismsofemotionallearning.AnnNYAcadSci985:233–250.
EverittB,RobbinsTW(1992)Amygdala-ventralstriatalinteractions
andreward-relatedprocesses.In:Theamygdala(AggletonJP,ed),pp401–430.Chichester:Wiley.
FeigenbaumJD,RollsET(1991)Allocentricandegocentricspatial
informationprocessinginthehippocampalformationofthebehav-ingprimate.Psychobiology19:21–40.
FisherRA(1932)Statisticalmethodsforresearchworkers.London:
OliverandBoyd.
FrancisS,RollsET,BowtellR,McGloneF,O’DohertyJ,BrowningA,
ClareS,SmithE(1999)Therepresentationofthepleasanttouchinthebrainanditsrelationshipwithtasteandolfactoryareas.Neuroreport10:453–459.
FriedmanDP,MurrayEA,O’NeillJB,MishkinM(1986)Corticalcon-nectionsofthesomatosensory eldsofthelateralsulcusofmacaques:evidenceforacorticolimbicpathwayfortouch.JCompNeurol252:323–347.
GallagherM,ChibaAA(1996)Theamygdalaandemotion.CurrOpin
Neurobiol6:221–227.
GallagherM,HollandPC(1994)Theamygdalacomplex:multipleroles
inassociativelearningandattention.ProcNatlAcadSciUSA91:11771–11776.
GilbertsonTA(1998)Gustatorymechanismsforthedetectionoffat.
CurrOpinNeurobiol8:447–452.
HollandPC,GallagherM(1999)Amygdalacircuitryinattentionaland
representationalprocesses.TrendsCognSci3:65–73.
KadohisaM,RollsET,VerhagenJV(2004)Orbitofrontalcortexneu-ronalrepresentationoftemperatureandcapsaicininthemouth.Neuroscience127:207–221.
Abstract—The primate amygdala is implicated in the control of behavioral responses to foods and in stimulus-reinforcement learning, but only its taste representation of oral stimuli has been investigated previously. Of 1416 macaque amygdala neurons record
48M.Kadohisaetal./Neuroscience132(2005)33–48
RollsET,ScottTR(2003)Centraltasteanatomyandneurophysiology.
In:Handbookofolfactionandgustation(DotyRL,ed),pp679–705.NewYork:Dekker.
RollsET,SienkiewiczZJ,YaxleyS(1989)Hungermodulatesthe
responsestogustatorystimuliofsingleneuronsinthecaudolateralorbitofrontalcortexofthemacaquemonkey.EurJNeurosci1:53–60.
RollsET,ToveeMJ(1995)Sparsenessoftheneuronalrepresentation
ofstimuliintheprimatetemporalvisualcortex.JNeurophysiol73:713–726.
RollsET,TrevesA(1998)Neuralnetworksandbrainfunction.Oxford:
OxfordUniversityPress.
RollsET,VerhagenJV,KadohisaM(2003)Representationsofthe
textureoffoodintheprimateorbitofrontalcortex:neuronsrespond-ingtoviscosity,grittinessandcapsaicin.JNeurophysiol90:3711–3724.
RollsET,YaxleyS,SienkiewiczZJ(1990)Gustatoryresponsesof
singleneuronsinthecaudolateralorbitofrontalcortexofthema-caquemonkey.JNeurophysiol64:1055–1066.
SangheraMK,RollsET,Roper-HallA(1979)Visualresponsesof
neuronsinthedorsolateralamygdalaofthealertmonkey.ExpNeurol63:610–626.
SchoenbaumG,ChibaAA,GallagherM(1999)Neuralencodingin
orbitofrontalcortexandbasolateralamygdaladuringolfactorydis-criminationlearning.JNeurosci19:1976–1884.
ScottTR,KaradiZ,OomuraY,NishinoH,Plata-SalamanCR,LenardL,
GizaBK,AoS(1993)Gustatoryneuralcodingintheamygdalaofthealertmonkey.JNeurophysiol69:1810–1820.
ScottTR,YaxleyS,SienkiewiczZJ,RollsET(1986a)Gustatory
responsesinthefrontalopercularcortexofthealertcynomolgusmonkey.JNeurophysiol56:876–890.
ScottTR,YaxleyS,SienkiewiczZJ,RollsET(1986b)Tasteresponses
inthenucleustractussolitariusofthebehavingmonkey.JNeuro-physiol55:182–200.
SmithDV,TraversJB(1979)Ametricforthebreadthoftuningof
gustatoryneurons.ChemSenses4:215–219.
SteinbergerJ,DanielsSR(2003)Obesity,insulinresistance,diabetes,
andcardiovascularriskinchildren.Circulation107:1448–1453.SzolcsanyiJ(1990)Capsaicin,irritation,anddesensitisation:neurophysio-logicalbasisandfutureperspective.ChemSenses2:141–168.
VerhagenJV,KadohisaM,RollsET(2004)Theprimateinsular/
operculartastecortex:neuronalrepresentationsoftheviscosity,fattexture,grittinessandtasteoffoodsinthemouth.JNeuro-physiol92:1685–1699.
VerhagenJV,RollsET,KadohisaM(2003)Neuronsintheprimate
orbitofrontalcortexrespondtofattextureindependentlyofviscos-ity.JNeurophysiol90:1514–1525.
WeissTJ(1983)Foodoilsandtheiruses.Chichester:HorwoodLtd.WillsWM,LenckiRW,MarangoniAG(1998)Lipidmodi cationstrat-egiesintheproductionofnutritionallyfunctionalfatsandoils.CritRevFoodSciNutr38:639–674.
YanJ,ScottTR(1996)Theeffectofsatietyonresponsesofgustatory
neuronsintheamygdalaofalertcynomolgusmacaques.BrainRes740:193–200.
ZaykinDV,ZhivotovskyLA,WestfallPH,WeirBS(2002)Truncatedproduct
methodforcombiningP-values.GenetEpidemiol22:170–185.
ZellnerDA,StewartWF,RozinP,BrownJM(1988)Effectoftemper-atureandexpectationsonlikingforbeverages.PhysiolBehav44:61–68.
KringelbachML,O’DohertyJ,RollsET,AndrewsC(2003)Activationof
thehumanorbitofrontalcortextoaliquidfoodstimulusiscorrelatedwithitssubjectivepleasantness.CerebCortex13:1064–1071.
LeDouxJE(1995)Emotion:cluesfromthebrain.AnnuRevPsychol
46:209–235.
LeDouxJE(2000)Emotioncircuitsinthebrain.AnnuRevNeurosci
23:155–184.
LeonardCM,RollsET,WilsonFAW,BaylisGC(1985)Neuronsinthe
amygdalaofthemonkeywithresponsesselectiveforfaces.BehavBrainRes15:159–176.
LittellRC,FolksJL(1971)AsymptoticoptimalityofFisher’smethodof
combiningindependenttests.JAmStatAssoc66:802–806.
MurrayEA,GaffanEA,FlintRW(1996)Anteriorrhinalcortexand
amygdala:dissociationoftheircontributionstomemoryandfoodpreferenceinrhesusmonkeys.BehavNeurosci110:30–42.
NishijoH,OnoT,NishinoH(1988a)Singleneuronresponsesin
amygdalaofalertmonkeyduringcomplexsensorystimulationwithaffectivesigni cance.JNeurosci8:3570–3583.
NishijoH,OnoT,NishinoH(1988b)Topographicdistributionofmo-dality-speci camygdalarneuronsinalertmonkey.JNeurosci8:3556–3569.
NorgrenR(1984)Centralneuralmechanismsoftaste.In:Handbookof
physiology:thenervoussystem:III.Sensoryprocesses1(Darien-SmithI,ed),pp1087–1128.Washington,D.C.:AmericanPhysiolog-icalSociety.
O’DohertyJ,RollsET,FrancisS,BowtellR,McGloneF(2001)The
representationofpleasantandaversivetasteinthehumanbrain.JNeurophysiol85:1315–1321.
OlshausenBA,FieldDJ(1996)Emergenceofsimple-cellreceptive
eldpropertiesbylearningasparsecodefornaturalimages.Nature381:607–609.
PetrovichGD,GallagherM(2003)Amygdalasubsystemsandcontrolof
feedingbehaviourbylearnedcues.AnnNYAcadSci985:251–262.RobbinsTW,EverittB(1996)Neurobehaviouralmechanismsofre-wardandmotivation.CurrOpinNeurobiol6:228–236.
RollsET(1997)Tasteandolfactoryprocessinginthebrainandits
relationtothecontrolofeating.CritRevNeurobiol11:263–287.RollsET(1999)Thebrainandemotion.Oxford:OxfordUniversity
Press.
RollsET(2000)Neurophysiologyandfunctionsoftheprimateamyg-dala,andtheneuralbasisofemotion.In:Theamygdala:afunc-tionalanalysis(AggletonJP,ed),pp447–478.Oxford:OxfordUniversityPress.
RollsET(2004)Thefunctionsoftheorbitofrontalcortex.BrainCogn
55:11–29.
RollsET,CritchleyHD,BrowningAS,HernadiA,LenardL(1999)
Responsestothesensorypropertiesoffatofneuronsintheprimateorbitofrontalcortex.JNeurosci19:1532–1540.
RollsET,DecoG(2002)Computationalneuroscienceofvision.
Oxford:OxfordUniversityPress.
RollsET,JudgeSJ,SangheraM(1977)Activityofneuronesinthe
inferotemporalcortexofthealertmonkey.BrainRes130:229–238.RollsET,MurziE,YaxleyS,ThorpeSJ,SimpsonSJ(1986)Sensory-speci csatiety:food-speci creductioninresponsivenessofven-tralforebrainneuronsafterfeedinginthemonkey.BrainRes368:79–86.
RollsBJ,RollsET,RoweEA,SweeneyK(1981)Sensoryspeci c
satietyinman.PhysiolBehav27:137–142.
(Accepted5December2004)
正在阅读:
2005b The primate amygdala neuronal representations of the viscosity, fat texture, grittine06-09
安徽省“皖南八校”2017届高三第二次联考理数试题Word版含答案 doc02-03
有理数乘法运算练习题09-19
药品市场营销学05-21
bdswwwg江西 - 新华电脑学院 - -最齐全的认证考试中心10-08
交通安全工程大作业09-13
企业信息管理小抄09-12
水文勘测工种技能竞赛理论考试复习提纲01-11
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- representations
- viscosity
- amygdala
- neuronal
- grittine
- primate
- texture
- 2005b
- fat
- 双门楼宾馆6、7号楼及附属用房改造装饰工程施工组织设计
- 华中科技大学出版社六年级下册信息技术教案
- 解读云计算、SaaS和PaaS的含义及特点
- 新人教版数学七年级上册期末总复习 (修复的)
- 高三数学备考策略有哪些
- 民主生活会发言材料
- 上海市奉贤区数学六年级下册数学期末复习卷(四)
- 农村小学课堂教学有效性初探
- 初中英语教学案例与反思
- 速冻食品及肉类制品的速冻技术_刘学浩
- 优化评价机制对促进高中健美操教学的实践研究
- ch6 微生物在自然界物质转化和分解中的作用
- 安德路甲36楼门窗施工方案
- 八年级下unit4 Section B
- Implementation of Multi-Linear Gain Prior to Image Compression System...(IJIGSP-V7-N3-8)
- 2014-2019年中国太阳能电动车行业分析与发展前景预测报告
- Nonlinear Least Squares Optimisation of Unit Quaternion Functions for Pose Estimation from
- 医用供氧系统突发事件应急预案
- AD9833程序,信号发生器,正弦波,方波,三角波输出程序
- 航海王启航乔巴属性技能怎么样 乔巴属性技能详细解析