丰台区2020-2021学年度第一学期期末练习九年级数学参考答案

更新时间:2023-04-30 10:32:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

1

丰台区2020—2021学年第一学期期末练习

初三数学评分标准及参考答案

一、选择题(本题共24分,每小题3分)

二、填空题(本题共24分,每小题3分)

9. y =x 2-2 10. 1∶9

11. 0.881 12. 4b =±

13. △BDA ,△BCE

14. 8 15. 在同圆或等圆中,同弧或等弧所对的圆周角相等 16. 1;3.23

三、解答题(本题共52分,17-21题每小题5分,22题6分,23-25题每小题7分)

17. 解:

(1) ∵2243(2)1y x x x =-+=--, ∴该二次函数图象顶点坐标为(2,-1). ··············································· 2分 (2) 如图:

··············································· 4分 (3) -1≤y <3. ··························· 5分 18. (1)证明: ∵AD AB AE AC ?=?,∴AD AE

AC AB

=

. 又∵∠A =∠A ,

∴△ADE ∽△ACB . ······················ 2分 (2)解:

∵△ADE ∽△ACB ,

∴∠ADE =∠ACB . ······················· 3分 ∵∠ADE =75°,∴∠ACB =75°. 又∵∠B =55°,

∴∠A =180°-∠ACB -∠B =50°. ···· 5分

19. 解:

1)如图:

················································2分

(2)如图:

················································5分

2

20. 解:

(1)∵点D 是矩形OABC 的对角线交点, ∴点D 是矩形OABC 的对角线AC 的中点, 又∵A (4,0),C (0,2),

∴点D 的坐标为(2,1). ················ 1分 ∵反比例函数k

y x

=的图象经过点D , ∴12

k

=

,解得:k =2. ··················· 2分 (2)由题意可得:点M 的纵坐标为2,点N 的横坐标为4.

∵点M 在反比例函数2

y x

=

的图象上, ∴点M 的坐标为(1,2), ··············· 3分 ∴14x ≤≤. ······························· 5分 21. (1)证明:连接OD .

∵OE =OD ,∴∵OED =∵ODE , ∵DE ∥OA ,

∴∵OED =∵AOC ,∵ODE =∵AOD , ∴∵AOC =∵AOD . 在∵AOD 和∵AOC 中,

AO AO

AOD AOC OD OC =??

∠=∠??=?

∵ △AOD ∵△AOC , ··················· 1分 ∵ ∵ADO =∵ACO . ∵AC 与⊙O 相切于点C ,

∵ ∵ADO =∵ACO =90°, ················ 2分 又∵OD 是⊙O 的半径,

∵AB 是⊙O 的切线. ····················· 3分 (2)解:∵CE =6,∵OE =OD =OC =3. 在Rt △ODB 中,BD =4,OD =3, ∵222BD OD BO +=,

∵BO =5,

∵BC =BO +OC =8. ·························4分 ∵⊙O 与AB 和AC 都相切,∵AD =AC . 在Rt △ACB 中,222AC BC AB +=, 即:2228(4)AC AC +=+,

解得:AC =6. ······························5分 22. 解:

(1)3,0.75; ····························4分

(2)1

6. ·····································6分

23. 解:

(1)∵抛物线y =ax 2+bx 过点(4,0), ∴0164a b =+,

∴4b a =-. ··································2分 (2)∵点A (0,a )绕原点O 顺时针旋转90°得到点B ,

∴点B 的坐标为(a ,0), ················3分 ∵点B 向右平移2个单位长度得到点C , ∴点C 的坐标为(a +2,0). ··············4分

(3)(i )当a >0时,

抛物线y =ax 2-4ax 开口向上,与x 轴交于两点(0,0),(4,0).

若线段AC 与抛物线有公共点(如图1),只需满足:

2

4a a >??

+?

≥,解得:2a ≥. ··············5分

图1

3

(ii )当a <0时,

抛物线y =ax 2-4ax 开口向下,与x 轴交于两点(0,0),(4,0).

若线段AC 与抛物线有公共点(如图2),只需满足:

20a a

+?

≤,解得:2a -≤. ············ 6分

2

综上所述,a 的取值范围为2a ≥或2a -≤. ··············································· 7分

24.

(1)证明:

∵CF ⊥AE ,∴EFC ∠=90°, ∵四边形ABCD 是正方形, ∴ABC ∠=90°, ∴ABE ∠=90°, ∴EFC ∠=ABE ∠, 又∵AEB CEF ∠=∠,

∴FAB BCF ∠=∠. ························ 2分 (2)①如图:

··············································· 3分

② AF +BM = CF . ························4分 证明:在CF 上截取点N ,使得CN =AF ,连接BN .

∵四边形ABCD 是正方形, ∴AB =CB .

在∵AFB 和∵CNB 中,

AF CN

FAB NCB AB CB =??

∠=∠??=?

∵ △AFB ∵∵CNB , ·····················5分

∵ ∵ABF =∵CBN ,FB =NB , ∵∵FBN =∵ABC =90°, ∵△FBN 是等腰直角三角形, ∵∵BFN =45°.

∵点B 关于直线AE 的对称点是点M , ∵FM =FB ,

∵CF ⊥AE ,∵BFN =45°, ∵∵BFE =45°, ∵∵BFM =90°, ∵∵BFM =∵FBN , ∵FM //NB .

∵FM =FB ,FB =NB , ∵FM =NB ,

∵四边形FMBN 为平行四边形, ·······6分 ∵BM =NF ,

∵AF +BM = CF . ···························7分 (其它方法酌情给分)

25. 解:

(1)点C和点E; ······················2分(2)线段AB的所有2倍等距点形成的图

形为以点O为圆心,以1

为半径的

圆围成的区域(包括边界),如图所示:

···············································4分

该区域的面积为:

22

1

S=π?-π?=π. ···············································5分(3)21

b

--

≤≤或12

b

≤≤. ········7分

4

本文来源:https://www.bwwdw.com/article/y3ye.html

Top