物理化学上册的答案,第五版,周亚平,高等教育出版社
更新时间:2023-11-03 02:46:01 阅读量: 综合文库 文档下载
- 物理化学课后答案第五版推荐度:
- 相关推荐
物理化学上册习题解(天津大学第五版)
第一章 气体pVT性质
1-1物质的体膨胀系数?V与等温压缩系数?T的定义如下:
?V?1??V?1??V? ? ?T????? ? V??T?pV??p??T试导出理想气体的?V、?T与压力、温度的关系? 解:对于理想气体,pV=nRT
?V?1??V?1??(nRT/p)?1nR1V???T?1 ? ??????V??T?pV??T?pVpVT?T??1??V?1??(nRT/p)?1nRT1V?????? ??2???p?1 ????V??p?TV??pVp?TVp1-2 气柜内有121.6kPa、27℃的氯乙烯(C2H3Cl)气体300m3,若以每小时90kg的流量输往使用车间,试问贮存的气体能用多少小时?
解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为
pV121.6?103?300n???14618.623mol RT8.314?300.15每小时90kg的流量折合p
3390?1090?10摩尔数为 v???1441.153mol?h?1 MC2H3Cl62.45n/v=(14618.623÷1441.153)=10.144小时
1-3 0℃、101.325kPa的条件常称为气体的标准状况。试求甲烷在标准状况下的密度。
解:?CH4pn101325?16?10?3??MCH4??MCH4??0.714kg?m?3 VRT8.314?273.151-4 一抽成真空的球形容器,质量为25.0000g。充以4℃水之后,总质量为125.0000g。若改用充以25℃、13.33kPa的某碳氢化合物气体,则总质量为25.0163g。试估算该气体的摩尔质量。
1
物理化学上册习题解(天津大学第五版)
解:先求容器的容积V?125.0000?25.000?100.0000cm3?100.0000cm3
?HO(l)21n=m/M=pV/RT
M?)RTm8.314?298.15?(25.0163?25.0000??30.31g?mol ?4pV13330?101-5 两个体积均为V的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。若将其中一个球加热到100℃,另一个球则维持0℃,忽略连接管中气体体积,试求该容器内空气的压力。
解:方法一:在题目所给出的条件下,气体的量不变。并且设玻璃泡的体积不随温度而变化,则始态为 n?n1,i?n2,i?2piV/(RTi) 终态(f)时 n?n1,fT1,fT2,fn??pf?VR??T1,f?T2,f?n2,f?pf?VV??R??T1,fT2,f?pfV???R??T2,f?T1,f??TT?1,f2,f?? ???2pi?T1,fT2,f??????T?T?T?i?1,f2,f??
2?101.325?373.15?273.15 ??117.00kPa273.15(373.15?273.15)1-6 0℃时氯甲烷(CH3Cl)气体的密度ρ随压力的变化如下。试作ρ/p—p图,用外推法求氯甲烷的相对分子质量。
P/kPa ρ/2.3074 1.5263 (g〃dm) 解:将数据处理如下:
P/kPa (ρ/p)/
0.02277 0.02260 0.02250 0.02242 0.02237
(g〃dm〃kPa)
2
-3
-3101.325 67.550 50.663 33.775 25.331 1.1401 0.75713 0.56660 101.325 67.550 50.663 33.775 25.331
物理化学上册习题解(天津大学第五版)
作(ρ/p)对p图
0.02290.02280.02270.02260.02250.02240.02230.02220204060p80100120ρ/p线性 (ρ/p)ρ/p 当p→0时,(ρ/p)=0.02225,则氯甲烷的相对分子质量为
M???/p?p?0RT?0.02225?8.314?273.15?50.529g?mol?1
1-7 今有20℃的乙烷-丁烷混合气体,充入一抽真空的200 cm3容器中,直至压力达101.325kPa,测得容器中混合气体的质量为0.3879g。试求该混合气体中两种组分的摩尔分数及分压力。 解:设A为乙烷,B为丁烷。
pV101325?200?10?6n???0.008315mol RT8.314?293.15m0.3897?yAMA?yBMB??46.867g?mol?1 (1) n0.008315 ?30.0694yA?58.123yBM?yA?yB?1 (2)
联立方程(1)与(2)求解得yB?0.599,yB?0.401
pA?yAp?0.401?101.325?40.63kPapB?yBp?0.599?101.325?60.69kPa
1-8 如图所示一带隔板的容器中,两侧分别有同温同压的氢气与氮气,二者均克视为理想气体。
N2 H2 3dm 1dm3 p T p 3
3物理化学上册习题解(天津大学第五版)
T (1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体混合后的压力。
(2)隔板抽去前后,H2及N2的摩尔体积是否相同?
(3)隔板抽去后,混合气体中H2及N2的分压力之比以及它们的分体积各为若干?
解:(1)抽隔板前两侧压力均为p,温度均为T。
pH2?nH2RT3dm23?pN2?nN2RT1dm3?p (1)
得:nH?3nN2
而抽去隔板后,体积为4dm3,温度为,所以压力为
p?4nN2RTnN2RTnRTRT?(nN2?3nN2)??V4dm34dm31dm3 (2)
比较式(1)、(2),可见抽去隔板后两种气体混合后的压力仍为p。 (2)抽隔板前,H2的摩尔体积为Vm,H抽去隔板后
V总?nH2Vm,H2?nN2Vm,N2?nRT/p?(3nN2?nN2)RT/p ?? nH23nN2RTp?3nN2?nN2RTp2?RT/p,N2的摩尔体积Vm,N2?RT/p
所以有 Vm,H2?RT/p,Vm,N2?RT/p
可见,隔板抽去前后,H2及N2的摩尔体积相同。 (3)yH2?3nN2nN2?3nN231?, yN2? 44pH2?yH2p?31p; pN2?yN2p?p 444
物理化学上册习题解(天津大学第五版)
所以有
pH2:pN2?31p:p?3:1 44VH2?yH2V? VN23?4?3dm3 4 1?yN2V??4?1dm341-9 氯乙烯、氯化氢及乙烯构成的混合气体中,各组分的摩尔分数分别为0.89、0.09和0.02。于恒定压力101.325kPa条件下,用水吸收掉其中的氯化氢,所得混合气体中增加了分压力为2.670 kPa的水蒸气。试求洗涤后的混合气体中C2H3Cl及C2H4的分压力。
解:洗涤后的总压为101.325kPa,所以有
pC2H3Cl?pC2H4?101.325?2.670?98.655kPa
(1)
(2)
pC2H3Cl/pC2H4?yC2H3Cl/yC2H4?nC2H3Cl/nC2H4?0.89/0.02
联立式(1)与式(2)求解得
pC2H3Cl?96.49kPa; pC2H4?2.168kPa
1-10 室温下一高压釜内有常压的空气。为进行实验时确保安全,采用同样温度的纯氮进行臵换,步骤如下向釜内通氮直到4倍于空气的压力,尔后将釜内混合气体排出直至恢复常压。这种步骤共重复三次。求釜内最后排气至年恢复常压时其中气体含氧的摩尔分数。设空气中氧、氮摩尔分数之比为1∶4。
解: 高压釜内有常压的空气的压力为p常,氧的分压为
pO2?0.2p常
每次通氮直到4倍于空气的压力,即总压为
p=4p常,
第一次臵换后釜内氧气的摩尔分数及分压为
5
物理化学上册习题解(天津大学第五版)
yO2,1?pO2p?0.2p常4p常?0.2?0.05 4pO2,1?p常?yO2,1?0.05?p常第二次臵换后釜内氧气的摩尔分数及分压为
yO2,2?pO2,1p?0.05p常4p常?0.054
pO2,2?p常?yO2,2?0.05?p常4所以第三次臵换后釜内氧气的摩尔分数
yO2,3?pO2,2p?(0.05/4)p常4p常?0.05?0.00313?0.313% 161-11 25℃时饱和了水蒸汽的乙炔气体(即该混合气体中水蒸汽分压力为同温度下水的饱和蒸气压)总压力为138.7kPa,于恒定总压下泠却到10℃,使部分水蒸气凝结成水。试求每摩尔干乙炔气在该泠却过程中凝结出水的物质的量。已知25℃及10℃时水的饱和蒸气压分别为3.17kPa和1.23kPa。
解:pB?yBp,故有pB/pA?yB/yA?nB/nA?pB/(p?pB) 所以,每摩尔干乙炔气含有水蒸气的物质的量为 进口处:??nH2O?nCH?22?nH2O?nCH?22??p???H2O???进?pC2H2??p???H2O???出?pC2H2?3.17???0.02339(mol) ?138.7?3.17?进?123???0.008947(mol) ??出138.7?123出口处:?每摩尔干乙炔气在该泠却过程中凝结出的水的物质的量为 0.02339-0.008974=0.01444(mol)
1-12 有某温度下的2dm3湿空气,其压力为101.325kPa,相对湿度为
6
物理化学上册习题解(天津大学第五版)
解:查表附录七得CO2气体的范德华常数为 a=0.3640Pa〃m6〃mol-2;b=0.4267×10-4m3〃mol-1
p? ?RTa8.314?313.150.3640?2??(Vm?b)Vm0.381?10?3?0.4267?10?4(0.381?10?3)22603.5291?2507561?7695236?2507561?5187675Pa0.33833?10-3 ?5187.7kPa
相对误差E=5187.7-5066.3/5066.3=2.4%
1-15今有0℃、40530kPa的氮气体,分别用理想气体状态方程及范德华方程计算其摩尔体积。其实验值为70.3cm3〃mol-1。
解:用理想气体状态方程计算如下:
Vm?RT/p?8.314?273.15?40530000 ?0.000056031m?mol?56.031cm?mol3?13?1
将范德华方程整理成
32Vm?(b?RT/p)Vm?(a/p)Vm?ab/p?0
(a)
查附录七,得a=1.408×10-1Pa〃m6〃mol-2,b=0.3913×10-4m3〃mol-1 这些数据代入式(a),可整理得
3{Vm/(m3?mol?1)}?0.9516?10?4{Vm/(m3?mol?1)}2?93?1?13 ?3.0?10{Vm/(m?mol)}?1.0?10?0
解此三次方程得 Vm=73.1 cm3〃mol-1
1-16 函数1/(1-x)在-1<x<1区间内可用下述幂级数表示:
1/(1-x)=1+x+x2+x3+…
先将范德华方程整理成
p?RT?1?Vm??1?b/Vm?a???V2?m
再用述幂级数展开式来求证范德华气体的第二、第三维里系数分别为
8
物理化学上册习题解(天津大学第五版)
B(T)=b-a(RT) C=(T)=b2
解:1/(1-b/ Vm)=1+ b/ Vm+(b/ Vm)2+… 将上式取前三项代入范德华方程得
RT?bb2?aRTRTb?aRTb2??p?1??2??2???23Vm?VVVVVVmmmmmm??
而维里方程(1.4.4)也可以整理成
p?RTRTBRTC?2?3 VmVmVm根据左边压力相等,右边对应项也相等,得 B(T)=b – a/(RT) C(T)=b2
*1-17 试由波义尔温度TB的定义式,试证范德华气体的TB可表示为
TB=a/(bR)
式中a、b为范德华常数。
nRTan2解:先将范德华方程整理成p??(V?nb)V2
将上式两边同乘以V得 求导数
??(pV)???nRTVan2???p????p??(V?nb)?V??T?nRTVan2pV??(V?nb)V?(V?nb)nRT?nRTVan2an2bn2RT??2 ?2?2? ?(V?nb)VV(V?nb)2?T
当p→0时[?(pV)/?p]T?0,于是有
an2bn2RT??0 22V(V?nb)(V?nb)2aT? 2bRV当p→0时V→∞,(V-nb)2≈V2,所以有 TB= a/(bR)
1-18 把25℃的氧气充入40dm3的氧气钢瓶中,压力达202.7×102kPa。试用普遍化压缩因子图求解钢瓶中氧气的质量。
9
物理化学上册习题解(天津大学第五版)
解:氧气的临界参数为 TC=154.58K pC=5043kPa 氧气的相对温度和相对压力
Tr?T/TC?298.15/154.58?1.929 pr?p/pC?202.7?102/5043?4.019
由压缩因子图查出:Z=0.95
pV202.7?102?40?10?3n??mol?344.3mol ZRT0.95?8.314?298.15钢瓶中氧气的质量
1-19 1-20
mO2?nMO2?344.3?31.999?10?3kg?11.02kg
1-21 在300k时40dm3钢瓶中贮存乙烯的压力为146.9×102kPa。欲从中提用300K、101.325kPa的乙烯气体12m3,试用压缩因子图求解钢瓶中剩余乙烯气体的压力。
解:乙烯的临界参数为 TC=282.34K pC=5039kPa 乙烯的相对温度和相对压力
Tr?T/TC?300.15/282.34?1.063 pr?p/pC?146.9?102/54039?2.915
由压缩因子图查出:Z=0.45
pV146.9?102?103?40?10?3n??mol?523.3(mol) ZRT0.45?8.314?300.15因为提出后的气体为低压,所提用气体的物质的量,可按理想气体状态方程计算如下:
n提?pV101325?12?mol?487.2molRT8.314?300.15
10
物理化学上册习题解(天津大学第五版)
剩余气体的物质的量
n1=n-n提=523.3mol-487.2mol=36.1mol 剩余气体的压力
p1?Z1n1RT36.1?8.314?300.15Z1?Pa?2252Z1kPa V40?10?3剩余气体的对比压力
pr?p1/pc?2252Z1/5039?0.44Z1
上式说明剩余气体的对比压力与压缩因子成直线关系。另一方面,Tr=1.063。要同时满足这两个条件,只有在压缩因子图上作出pr?0.44Z1的直
线,并使该直线与Tr=1.063的等温线相交,此交点相当于剩余气体的对比
状态。此交点处的压缩因子为
Z1=0.88
所以,剩余气体的压力
p1?2252Z1kPa?2252?0.88kPa?1986kPa
11
物理化学上册习题解(天津大学第五版)
第二章 热力学第一定律
2-1 1mol理想气体于恒定压力下升温1℃,试求过程中气体与环境交换的功W。
解:W??pamb(V2?V1)??pV2?pV1??nRT2?nRT1??nR?T??8.314J
2-2 1mol水蒸气(H2O,g)在100℃,101.325 kPa下全部凝结成液态水。求过程的功。
解: W??pamb(Vl?Vg)≈pambVg?p(nRT/p)?RT?8.3145?373.15?3.102kJ
2-3 在25℃及恒定压力下,电解1mol水(H2O,l),求过程的体积功。
1H2O(l)?H2(g)?O2(g)
2解:1mol水(H2O,l)完全电解为1mol H2(g)和0.50 mol O2(g),即气体混合物的总的物质的量为1.50 mol,则有
W??pamb(Vg?VH2O(l))≈?pambVg??p(nRT/p)
??nRT??1.50?8.3145?298.15??3.718 kJ 2-4 系统由相同的始态经过不同途径达到相同的末态。若途径a的Qa=2.078kJ,Wa= -4.157kJ;而途径b的Qb= -0.692kJ。求Wb。
解:因两条途径的始末态相同,故有△Ua=△Ub,则 Qa?Wa?Qb?Wb 所以有,Wb?Qa?Wa?Qb?2.078?4.157?0.692??1.387kJ
2-5 始态为25℃,200kPa的5 mol 某理想气体,经a,b两不同途径到达相同的末态。途径a先经绝热膨胀到 – 28.57℃,100kPa,步骤的功Wa= - 5.57kJ;在恒容加热到压力200 kPa的末态,步骤的热Qa= 25.42kJ。途径b为恒压加热过程。求途径b的Wb及Qb。
解:过程为:
12
物理化学上册习题解(天津大学第五版)
5mol5mol5mol250C?28.570CQa???25.42kJ,Wa???0t0C???5.57kJ,Qa??0Wa ??????????????200kPa100kPa200kPaV1V2V2
途径b
V1?nRT?298.15?(200?103)?0.062m3 1/p1?5?8.3145V2?nRT2/p2?5?8.3145?(?28.57?273.15)?(100?103)?0.102m3
Wb??pamb(V2?V1)??200?103?(0.102?0.062)??8000J??8.0kJ Wa?Wa??Wa????5.57?0??5.57kJ
??Qa???0?25.42?25.42kJ Qa?Qa因两条途径的始末态相同,故有△Ua=△Ub,则 Qa?Wa?Qb?Wb Qb?Qa?Wa?Wb?25.42?5.57?8.0?27.85kJ
2-6 4mol 某理想气体,温度升高20℃,求△H -△U的值。 解:
?H??U?? ??T?20KTT?20KnCp,mdT??T?20KTnCV,mdTT?20KTTn(Cp,m?CV,m)dT??nRdT?nR(T?20K?T)
?4?8.314?20?665.16J2-7 已知水在25℃的密度ρ=997.04 kg〃m-3。求1 mol 水(H2O,l)在25℃下:
(1)压力从100 kPa 增加到200kPa 时的△H; (2)压力从100 kPa 增加到1 MPa 时的△H。
假设水的密度不随压力改变,在此压力范围内水的摩尔热力学能近似认为与压力无关。
解:?H??U??(pV)
因假设水的密度不随压力改变,即V恒定,又因在此压力范围内水的摩尔热力学能近似认为与压力无关,故?U?0,上式变成为
13
物理化学上册习题解(天津大学第五版)
?H?V?p?V(p2?p1)?MH2OMH2O?(p2?p1)
(1)?H??18?10?3(p2?p1)??(200?100)?103?1.8J
997.04?3(2)?H?MHO(p2?p1)?18?102?997.04?(1000?100)?103?16.2J*
2-8 某理想气体CV,m?1.5R。今有该气体5 mol 在恒容下温度升高50℃,求过程的W,Q,△H 和△U。 解:恒容:W=0;
?U??T?50KTnCV,mdT?nCV,m(T?50K?T)3 ?nCV,m?50K?5??8.3145?50?3118J?3.118kJ2?H??T?50K
TnCp,mdT?nCp,m(T?50K?T)??n(CV,m?R)?50K5 ?5??8.3145?50?5196J?5.196kJ2
根据热力学第一定律,:W=0,故有Q=△U=3.118kJ
2-9 某理想气体CV,m?2.5R。今有该气体5 mol 在恒压下温度降低50℃,求过程的W,Q,△H 和△U。
解:
?U??T?50KTnCV,mdT?nCV,m(T?50K?T)5 ?nCV,m?(?50K)??5??8.3145?50??5196J??5.196kJ2?H??T?50K
TnCp,mdT?nCp,m(T?50K?T)7 ?nCp,m?(?50K)??5??8.3145?50??7275J??7.275kJ2
Q??H??7.275kJ
W??U?Q??5.196kJ?(?7.725kJ)?2.079kJ2-10 2mol 某理想气体,CP,m?7R。由始态100 kPa,50 dm3,先恒容
2加热使压力升高至200 kPa,再恒压泠却使体积缩小至25 dm3。求整个过
14
物理化学上册习题解(天津大学第五版)
程的W,Q,△H 和△U。 解:整个过程示意如下:
2mol2mol2molT1T2T3W21?0 ?W??????100kPa200kPa200kPa50dm350dm325dm3
p2V2200?103?50?10?3p1V1100?103?50?10?3T1???300.70K T2???601.4K
nR2?8.3145nR2?8.3145p3V3200?103?25?10?3T3???300.70K
nR2?8.3145W2??p2?(V3?V1)??200?103?(25?50)?10?3?5000J?5.00kJ W1?0; W2?5.00kJ; W?W1?W2?5.00kJ ? T1?T3?300.70K; ? ?U?0, ?H?0
? ?U?0, Q?-W?-5.00kJ2-11 4 mol 某理想气体,CP,m?5R。由始态100 kPa,100 dm3,先恒压加
2热使体积升增大到150 dm3,再恒容加热使压力增大到150kPa。求过程的W,Q,△H 和△U。 解:过程为
4mol4mol4molT1T2T3W1W2?0 ???????100kPa100kPa150kPa100dm3150dm3150dm3p1V1100?103?100?10?3p2V2100?103?150?10?3T1???300.70K; T2???451.02KnR4?8.3145nR4?8.3145p3V3150?103?150?10?3T3???676.53K
nR4?8.3145
W1??p1?(V3?V1)??100?103?(150?100)?10?3??5000J??5.00kJ W2?0; W1??5.00kJ; W?W1?W2??5.00kJ ?U??nCV,mdT??n(Cp,m?R)dT?n?T1T1T3T33R?(T3?T1) 2 ?4?3?8.314?(676.53?300.70)?18749J?18.75kJ
215
物理化学上册习题解(天津大学第五版)
T3?H??nCP,mdT?n?T155R?(T3?T1)?4??8.314?(676.53?300.70)?31248J?31.25kJ22
Q??U?W?18.75kJ?(?5.00kJ)?23.75kJ
2-12 已知CO2(g)的
Cp,m ={26.75+42.258×10-3(T/K)-14.25×10-6(T/K)2} J〃mol-1〃K-1 求:(1)300K至800K间CO2(g)的Cp,m;
(2)1kg常压下的CO2(g)从300K恒压加热至800K的Q。 解: (1):
?Hm??Cp,mdT
T2T1??800.15K300.15K{26.75?42.258?10?3(T/K)?14.25?10?6(T/K)2}d(T/K)J?mol?1
?22.7kJ?mol-1Cp,m??Hm/?T?(22.7?103)/500J?mol?1?K?1?45.4J?mol?1?K?1
(2):△H=n△Hm=(1×103)÷44.01×22.7 kJ =516 kJ
2-13 已知20 ℃液态乙醇(C2H5OH,l)的体膨胀系数
?V?1.12?10?3K?1,等温压缩系数?T?1.11?10?9Pa?1,密度ρ=0.7893
g〃cm-3,摩尔定压热容CP,m?114.30J?mol?1?K?1。求20℃,液态乙醇的CV,m。 解:1mol乙醇的质量M为46.0684g,则
Vm?M/?
=46.0684g〃mol-1÷(0.7893 g〃cm-3)=58.37cm3〃mol-1=58.37×10-6m3〃mol-1
由公式(2.4.14)可得:
2CV,m?Cp,m?TVm?V/?T ?114.30J?mol?1?K?1?293.15K?58.37?10?6m3?mol?1?(1.12?10?3K?1)2?1.11?10?9Pa?1?114.30J?mol?1?K?1?19.337J?mol?1?K?1?94.963J?mol?1?K?1
2-14 容积为27m3的绝热容器中有一小加热器件,器壁上有一小孔与
16
物理化学上册习题解(天津大学第五版)
100 kPa的大气相通,以维持容器内空气的压力恒定。今利用加热器件使容器内的空气由0℃加热至20℃,问需供给容器内的空气多少热量。已知空气的CV,m?20.4J?mol?1?K?1。
假设空气为理想气体,加热过程中容器内空气的温度均匀。 解:假设空气为理想气体 n?Q?Qp??H??nCp,mdT?Cp,m?T1T2pVRT
?Cp,mpVR?T2T1dlnT?(CV,mpVdTT1RTpVT2?R)lnRT1T2
?(20.40?8.314)?100000?27293.15lnJ?6589J?6.59kJ8.314273.15 2-15 容积为0.1m3的恒容密闭容器中有一绝热隔板,其两侧分别为0℃,4 mol 的Ar(g)及150℃,2mol 的Cu(s)。现将隔板撤掉,整个系统达到热平衡,求末态温度t及过程的△H。
已知:Ar(g)和Cu(s)的摩尔定压热容Cp,m分别为20.786J?mol?1?K?1及24.435J?mol?1?K?1,且假设均不随温度而变。
解:用符号A代表Ar(g),B代表Cu(s);因Cu是固体物质,Cp,m≈Cv,m;而
Ar(g):CV,m?(20.786?8.314)J?mol?1?K?1?12.472J?mol?1?K?1 过程恒容、绝热,W=0,QV=△U=0。显然有
?U??U(A)??U(B)
?n(A)CV,m(A)?T2?T1(A)??n(B)CV,m(B)?T2?T1(B)??0得
T2? ?n(A)CV,m(A)T1(A)?n(B)CV,m(B)T1(B)n(A)CV,m(A)?n(B)CV,m(B)4?12.472?273.15?2?24.435?423.15K?347.38K4?12.472?2?24.435
所以,t=347.38-273.15=74.23℃
17
物理化学上册习题解(天津大学第五版)
?H??H(A)??H(B)?H?4?20.786?(347.38?273.15)J?2?24.435?(347.38?423.15)J ?6172J?3703J?2469J?2.47kJ ?n(A)Cp,m(A)?T2?T1(A)??n(B)Cp,m(B)?T2?T1(B)?
2-16水煤气发生炉出口的水煤气温度是1100℃,其中CO(g)及H2
(g)的体积分数各为0.50。若每小时有300kg水煤气有1100℃泠却到100℃,并用所回收的热来加热水,使水温有25℃升高到75℃。试求每小时生产热水的质量。
CO(g)和H2(g)的摩尔定压热容Cp,m与温度的函数关系查本书附录,水(H2O,l)的比定压热容cp=4.184J?g?1?K?1。
解:已知
MH2?2.016, MCO?28.01, y H ?yCO?0.5 2水煤气的平均摩尔质量
M?yH2MH2?yCOMCO?0.5?(2.016?28.01)?15.013
300kg水煤气的物质的量
300?103n?mo?l19983mo l15.013由附录八查得:273K—3800K的温度范围内
Cp,m(H2)?26.88J?mol?1?K?1?4.347?10?3J?mol?1?K?2T?0.3265?10?6J?mol?1?K?3T2 Cp,m(CO)?26.537J?mol?1?K?1?7.6831?10?3J?mol?1?K?2T?1.172?10?6J?mol?1?K?3T2
设水煤气是理想气体混合物,其摩尔热容为
Cp,m(mix)??yBCp,m(B)?0.5?(26.88?26.537)J?mol?1?K?1B ?0.5?(4.347?7.6831)?10?3J?mol?1?K?2T ?0.5?(0.3265?1.172)?10?6J?mol?1?K?3T2
故有
Cp,m(mix)?26.7085J?mol?1?K?1?6.01505?10?3J?mol?1?K?2T ?0.74925?10?6J?mol?1?K?3T2373.15K得
Qp,m??Hm??1373.15KCp,m(mix)dT
18
物理化学上册习题解(天津大学第五版)
373.15KQp??1373.15K?26.7085J?mol?1?K?1 ?6.0151?10?3J?mol?1?K?2T?0.74925?10?6J?mol?1?K?3T2dT?
= 26.7085×(373.15-1373.15)J?mol?1
+1×6.0151×(373.152-1373.152)×10-3J?mol?1
2-1×0.74925×(373.153-1373.153)×10-6J?mol?1
3 = -26708.5J?mol?1-5252.08J?mol?1+633.66J?mol?1
=31327J?mol?1=31.327kJ?mol?1 19983×31.327=626007kJ
m??QpCp,kg水626007?105?kg?2992387g?2992.387kg?2.99?103kg ??t4.184?(75?25) 2-17 单原子理想气体A与双原子理想气体B的混合物共5mol,摩尔分数yB=0.4,始态温度T1=400 K,压力p1=200 kPa。今该混合气体绝热反抗恒外压p=100 kPa膨胀到平衡态。求末态温度T2及过程的W,△U,△H。 解:先求双原子理想气体B的物质的量:n(B)=yB×n=0.4×5 mol=2mol;则
单原子理想气体A的物质的量:n(A)=(5-2)mol =3mol 单原子理想气体A的CV,m?3R,双原子理想气体B的CV,m?5R
22过程绝热,Q=0,则 △U=W
n(A)CV,m(A)(T2?T1)?n(B)CV,m(B)(T2?T1)??pamb(V2?V1)
3??nRT2nRT1?35?R(T2?T1)?2?R(T2?T1)??pamb???p?22p1??amb
4.5?(T2?T1)?5?(T2?T1)??nT2?n?(pamb/p1)T1??5T2?5?0.5T1于是有 14.5T2=12T1=12×400K 得 T2=331.03K
19
物理化学上册习题解(天津大学第五版)
V2?nRT2/p2?nRT2/pabm?5?8.314?331.03?100000m?3?0.13761m?3 V1?nRTm?3?0.08314m?3 1/p1?5?8.314?400?200000?U?W??pamb(V2?V1)??100?103?(0.13761?0.08314)J??5.447kJ ?H??U??(pV)??U?(p2V2?p1V1) ?-5447J?(100?103?0.13761?200?103?0.08314)J ??5447J?2867J??8314J??8.314kJ 2-18 在一带活塞的绝热容器中有一绝热隔板,隔板的两侧分别为2mol,0℃的单原子理想气体A及5mol ,100℃的双原子理想气体B,两气体的压力均为100 kPa 。活塞外的压力维持 100kPa不变。
今将容器内的绝热隔板撤去,使两种气体混合达到平衡态。求末态温度T及过程的W,△U。
解:单原子理想气体A的Cp,m?5,双原子理想气体R2B的Cp,m?7 R2因活塞外的压力维持 100kPa不变,过程绝热恒压,Q=Qp=△H=0,于是有
n(A)Cp,m(A)(T?273.15K)?n(B)Cp,m(B)(T?373.15K)?0572?R(T?273.15K)?5?R(T?373.15K)?0225?(T?273.15K)?17.5?(T?373.15K)?0
于是有 22.5T=7895.875K 得 T=350.93K
?U?n(A)CV,m(A)(T?273.15K)?n(B)CV,m(B)(T?373.15K)3?8.31455?8.3145?(350.93?273.15)J?5??(350.93?373.15)J 22 ?1940.1J-2309.4?-369.3J?W ?2?2-19在一带活塞的绝热容器中有一固定绝热隔板,隔板活塞一侧为2mol,0℃的单原子理想气体A,压力与恒定的环境压力相等;隔板的另一侧为6mol ,100℃的双原子理想气体B,其体积恒定。
今将绝热隔板的绝热层去掉使之变成导热隔板,求系统达平衡时的T及过程的W,△U。
20
物理化学上册习题解(天津大学第五版)
1000K1000K1000K1000KQ?QV??300KCV,mdT??300K(Cp,m?R)dT??300KCp,mdT??300KRdT
根据前一步计算,?300KCp,mdT=26.15 kJ
而 ?300KRdT= {8.314×(1000 -300)} kJ = 5.82 kJ 所以,Q = (26.15 – 5.82 )kJ = 15.83 kJ
?S??1000K1000K1000KCV,mT300KdT??1000KCp,m?RT300K300KdT??1000KCp,mT300KdT??1000K300KRdT T由(1)计算可知,?1000KCp,mdT= 36.82 J〃K-1
T而 ?300K1000KR-1-1dT?{8.314?ln(1000/300)} J〃K = 10.01 J〃K T所以 △S = {36.82 - 10.01} J〃K-1 = 26.81 J〃K-1
3-9 始态为T1=300K,p1=200kPa 的某双原子气体 1 mol,经下列不同途径变化到T2=300K,p2=100 kPa的末态。求各步骤及途径的Q,△S。 (1)恒温可逆膨胀:
(2)先恒容泠却至使压力降至100kPa,再恒压加热至T2; (3)先绝热可逆膨胀到使压力降至100kPa,再恒压加热至T2;
解:(1)恒温可逆膨胀,dT =0,△U = 0,根据热力学第一定律,得
Q??W??nRTln(p2/p1)
= {- 1×8.314×300×ln(100/200)} J = 1729 J=1.729 kJ
?S??nRln(p2/p1)
= {- 1×8.314×ln(100/200)} J〃K-1 = 5.764 J〃K-1
(2)过程为
1mol双原子气体1mol双原子气体1mol双原子气体恒容恒压加热T1?300K,V1????T0,V1?????T2?300K p1?200kPap0?100kPap2?100kPa根据理想气体状态方程,得
46
物理化学上册习题解(天津大学第五版)
T0?(p0/p1)?T1= {(100/200)×300} K= 150K
第一步骤,恒容:dV=0,W1=0,根据热力学第一定律,得
Q1??U1??150K300KnCV,mdT
= {1×(5/2)×8.3145×(150-300)} J= -3118 J = -3.118 kJ
150/300)} J〃K?S1?nCV,mln(T0/T1)?{1?(5/2)?8.314?ln(-1
= -14.41 J〃K-1
第二步:
Q2??H??300K150KnCp,mdT
= {1×(7/2)×8.3145×(300-150)} J= 4365 J = 4.365 kJ
?S2?nCp,mln(T2/T0)?{1?(7/2)?8.314?ln(300/150)} J〃K
-1
= +20.17 J〃K-1
Q = Q1 + Q2 = {(-3.118)+ 4.365 } kJ = 1.247 kJ
△S = △S1 + △S2 = {(-14.41)+ 20.17 } J〃K-1 = 5.76 J〃K-1 (3)第一步骤为绝热可逆,故
T0?(p0/p1)R/Cp,m?T1?{(100/200)2/7?300}K?246.1K
0Q1,r=0,△S1 =?TQ2??H??300K246.1K1T1(?Qr/T)=0
nCp,mdT= {1×(7/2)×8.3145×(300-246.1)} J= 1568 J =
1.568 kJ
?S2?nCp,mln(T2/T0)?{1?(7/2)?8.314?ln(300/246.1)}
J·K-1 = +5.76 J·K-1
Q = Q1 + Q2 = {0+ 1.568 } kJ = 1.568 kJ
△S = △S1 + △S2 = {0+ 5.76} J·K-1 = 5.76 J·K-1
3-10 1 mol 理想气体T=300K下,从始态100 kPa 经下列各过程,求Q,△S及△S i so。
(1)可逆膨胀到末态压力为50 kPa;
47
物理化学上册习题解(天津大学第五版)
(2)反抗恒定外压50 kPa 不可逆膨胀至平衡态; (3)向真空自由膨胀至原体积的两倍。
解:(1)恒温可逆膨胀,dT =0,△U = 0,根据热力学第一定律,得
Q??W??nRTln(p2/p1)
= {- 1×8.314×300×ln(50/100)} J = 1729 J=1.729 kJ
?Ssys??nRln(p2/p1)
= {- 1×8.314×ln(50/100)} J〃K-1 = 5.764 J〃K-1
?Samb??Qsys/Tamb= (17290/300)J〃K= - 5.764 J〃K
-1
-1
故 △S i so = 0 (2) △U = 0,
Q2= -W = pamb(V2 – V1)= pamb {(nRT / pamb)-(nRT / p1) = nRT{ 1-( pamb / p1)}
= {-1×8.314×300×(1-0.5)} J = 1247 J = 1.247 kJ
?Ssys??nRln(p2/p1)
= {- 1×8.314×ln(50/100)} J〃K-1 = 5.764 J〃K-1
?Samb??Qsys/Tamb= (-1247÷300)J〃K= - 4.157 J〃K
-1
-1
△S iso= △Ssys + △Samb = {5.764 +(- 4.157)} J〃K-1 = 1.607 J〃K-1 (3)△U = 0,W = 0,Q=0
?Samb??Qsys/Tamb= 0
因熵是状态函数,故有
?Ssys?nRln(V2/V1)?nRln(2V1/V1)
= {1×8.314×ln2 } J〃K-1 = 5.764 J〃K-1
48
物理化学上册习题解(天津大学第五版)
△S iso= △Ssys + △Samb = 5.764 J〃K-1
3-11 某双原子理想气体从T1=300K,p1= 100 kPa,V1= 100 dm3 的始态,经不同过程变化到下述状态,求各过程的△S。
(1)T2 = 600K,V2= 50 dm3;(2)T2 = 600K,p2= 50 kPa; (3)p2= 150 kPa,V2= 200 dm3 ; 解:先求该双原子气体的物质的量n:
pV?100?103?100?10?3??n???mol?4.01mol ??RT?8.314?300?(1)?S?nCV,mln(T2/T1)?nRln(V2/V1) ???4.01??5R60050?-1?1ln?4.01?Rln?J?K= 34.66 J〃K 2300100?(2)?S?nCp,mln(T2/T1)?nRln(p2/p1) ???4.01??7R60050?-1?1ln?4.01?Rln?J?K= 103.99 J〃K 2300100?(3)?S?nCV,mln(p2/p1)?nCp,mln(V2/V1) ???4.01??5R1507R100?-1?1= 114.65 J〃K ln?4.01?lnJ?K?21002200?3-12 2 mol双原子理想气体从始态300K,50 dm3 ,先恒容加热至 400 K,再恒压加热至体积增大至 100m3,求整个过程的Q,W,△U,△H及△S。
解:过程为
2mol 双原子气体2mol 双原子气体2mol 双原子气体恒容加热恒压加热 T1?300K?????T0?400K?????T2??50dm3,p150dm3,p0100dm3,p0p1?2RT/V1?{2?8.3145?300/(50?10?3)}Pa?99774Pa
p0?p1T0/T1?{99774?400/300}Pa?133032Pa
T2?p0V2/(nR)1?{133032?100?10?3/(2?8.3145)}K?800.05K
W1=0; W2= -pamb(V2-V0)= {-133032×(100-50)×10-3} J= - 6651.6 J
49
物理化学上册习题解(天津大学第五版)
所以,W = W2 = - 6.652 kJ
?H?nCp,m(T2?T1)?{2??U?nCV,m(T2?T1)?{2?7R?(800.05?300)}J?29104J?29.10kJ25R?(800.05?300)}J?20788J?20.79kJ2
Q = △U – W = (27.79 + 6.65)kJ≈ 27.44 kJ
?S??SV??Sp?nCV,mlnT0T?nCp,mln2T1T0
= {2?5Rln400?2?7Rln800.05} J〃K-1 = 52.30 J〃K-1
230024003-13 4 mol 单原子理想气体从始态750 K,150 kPa,先恒容冷却使压力降至 50 kPa,再恒温可逆压缩至 100 kPa。求整个过程的Q,W,△U,△H,△S。
解:过程为
4mol 单原子气体4mol 单原子气体4mol 单原子气体恒容冷却 T1?750K?????T0???可逆压缩????T2?T0V1,p1?150kPaV1,p0?50kPaV2,100kPaT0?T1p0/p1?{50?750/150}K?250K W1?0,
W?W2?nRT0ln(p2/p0)?{4?8.3145?250ln(100/50)}J?5763J?5.763kJ 3?U2?0,?U??U1?{4?R?(250?750)}J??24944J??24.944kJ22
?H2?0,?H??H1?{4?5R?(250?750)}J??41570J??41.57kJ
Q = △U – W = (-24.944 – 5.763)kJ = - 30.707 kJ ≈ 30.71 kJ
?S??SV??ST?nCV,mlnT0p?nRln2T1p0
= {4?3Rln250?4?Rln100} J〃K-1 = - 77.86 J〃K-1
2750503-14 3 mol 双原子理想气体从始态100 kPa ,75 dm3,先恒温可逆压缩使体积缩小至 50 dm3,再恒压加热至100 dm3。求整个过程的Q,W,△U,△H,△S。 解:过程为
50
物理化学上册习题解(天津大学第五版)
解:过程绝热,Q=0,△U=W,又因导热隔板是固定的,双原子理想气体B体积始终恒定,所以双原子理想气体B不作膨胀功,仅将热量传给单原子理想气体A,使A气体得热膨胀作体积功,因此,W=WA,故有
△U=W=WA
得
n(A)CV,m(A)(T?273.15K)?n(B)CV,m(B)(T?373.15K)??pamb(VA,2?VA,1)2?35R(T?273.15K)?6?R(T?373.15K)22 ??pamb?(2RT/pamb)?(2R?273.15K/pamb?
3?(T?273.15K)?15?(T?373.15K)??2T?2?273.15K得 20×T=6963K 故 T=348.15K
V2,A?nRT2/pabm?2?8.3145?348.15?100000m?3?0.05789m?3 V1,A?nRT?273.15?100000m?3?0.04542m?3 1/pabm?2?8.3145?U?W??pamb(V2,A?V1,A)??100?103?(0.05789?0.04542)J??1247J
2-20 已知水(H2O,l)在100℃的饱和蒸气压ps=101.325 kPa,在此温度、压力下水的摩尔蒸发焓?vapHm?40.668kJ?mol?1。求在100℃,101.325 kPa 下使1kg水蒸气全部凝结成液体水时的Q,W,△U及△H。设水蒸气适用理想气体状态方程。
解:过程为 1kgH2O(g),1000C,101.325kPan?1000/18.01?55.524mol1kgH2O(l),1000C,101.325kPa
Q?Qp?n?(??vapHm)?55.524?(?40.668)kJ??2258kJ??H
1000W??pamb(Vl?Vg)?pVg?ngRT?(?8.314?373.15)J?172.35kJ
18?U?Q?W?(?2258?172.35)??2085.65kJ
2-17今有温度分别为80℃、40℃及10℃的三种不同的固体物质A、B
21
物理化学上册习题解(天津大学第五版)
及C。若在与环境绝热条件下,等质量的A和B接触,热平衡后的温度为57℃;等质量的A与C接触,热平衡后的温度为36℃。若将等质量的B、C接触,达平衡后系统的温度应为多少?
解:设A、B、C的热容各为cA、cB、cC,于是有 mcA(57-80)+m cB(57-40)=0 (1) mcA(36-80)+ mcC(36-10)=0 (2) mcB(t-40)+m cC(t-10)=0 (3) 得:cA(57-80)= - cB(57-40) (4)
cA(36-80)= - cC(36-10) (5) cB(t-40)+ cC(t-10)=0 (6) 由式(4)除以式(5),解得 cB =0.7995cC 将上式代入式(6)得
0.7995cC(t-40)+ cC(t-10)=0 (7) 方程(7)的两边同除以cC,得
0.7995×(t-40)+ (t-10)=0 (8) 解方程(8),得 t=23.33℃
结果表明,若将等质量的B、C接触,达平衡后系统的温度应为23.33℃。
2-21 求1mol N2(g)在300K恒温下从2 dm3 可逆膨胀到40 dm3时的体积功Wr。
(1)假设N2(g)为理想气体;
(2)假设N2(g)为范德华气体,其范德华常数见附录。
22
物理化学上册习题解(天津大学第五版)
解:(1)假设N2(g)为理想气体,则恒温可逆膨胀功为
(40÷2)J = - 7472J =7.472 kJ Wr??nRTln(V2/V1)= -1×8.3145×300×ln(2)查附录七,得其范德华常数为
a?140.8?10?3Pa?1?m?6?mol2;b?39.13?10?6m?3?mol?1
Wr???pdV???V1V2V2V1?V2?nb??RTan2?1?2?1???????dV?-nRTln?an??V?nbV2??V?nb??V?V??1??1??2????J??40?10-3?1?39.13?10?6 ?-1?8.314?300ln??2?10-3?1?39.13?10?6?11?? -12?140.8?10?3???J?32?10?3??40?10 ?-7452J?-7.452kJ
2-22 某双原子理想气体1mol 从始态350K,200 kPa经过如下四个不同过程达到各自的平衡态,求各过程的功W。
(1)恒温可逆膨胀到50 kPa;
(2)恒温反抗50 kPa恒外压不可逆膨胀; (3)绝热可逆膨胀到50kPA;
(4)绝热反抗50 kPa恒外压不可逆膨胀。 解:(1)恒温可逆膨胀到50 kPa:
?50?103? Wr?nRTln?p2/p1??1?8.3145?350ln??20?103???J??4034J??4.034kJ??(2)恒温反抗50 kPa恒外压不可逆膨胀:
W??pamb(V2?V1)??pamb?(nRT/pamb)?(nRT/p1)? ??2183J??2.183kJ ?-nRT?1-(pamb/p1)???1?8.3145?350?1?(50/200?J
R/Cp,mR/(7R/2)(3)绝热可逆膨胀到绝热,Q=0,
p2?50kPa: T2????p???1??50?103??T1???200?103?????350K?235.53K
23
物理化学上册习题解(天津大学第五版)
T2W??U??nCV,mdT?n?CV,m?(T2?T1)T1 ?1?5?8.3145?(235.53?350)J??2379J??2.379kJ2
(4)绝热反抗50 kPa恒外压不可逆膨胀 绝热,Q=0, W??U
?pabm(V2?V1)?nCV,m(T2?T1)?pamb?(nRT2/pamb)?(nRT1/p1)??n?(5/2)R(T2?T1)
上式两边消去nR并代入有关数据得
?T2?0.25?350K?2.5T2?2.5?350K
3.5T2=2.75×350K 故 T2=275K
W??U??nCV,mdT?n?CV,m?(T2?T1)T1T2 ?1?5?8.3145?(275?350)J??1559J??1.559kJ2
2-23 5 mol 双原子理想气体1mol 从始态300K,200 kPa,先恒温可逆膨胀到压力为50kPa,再绝热可逆压缩末态压力200 kPa。求末态温度T及整个过程的Q,W,△U及△H。 解:整个过程如下
300K300KT200kPa?恒温可逆膨胀?????50kPa?p1?绝热可逆压缩?????200kPa?p2 5mol5mol5mol?p2?T???p???1?R/Cp,m?200?103?T1???50?103?????R/(7R/2)?400K?445.80K
恒温可逆膨胀过程:
?50?103?Wr?nRTln?p2/p1??5?8.3145?300ln?J??17.29kJ ?20?103???J??17289??因是理想气体,恒温,△U恒温=△H恒温=0 绝热可逆压缩:Q=0,故
24
物理化学上册习题解(天津大学第五版)
W绝??U绝?nCV,m(T?T1)?5?5R(T?T1)2
5 ?5??8.314?(445.80?300)?J?15153J?15.15kJ2?H绝?nCp,m(T?T1)?5?7R(T?T1)2
7 ?5??8.314?(445.80?300)?J?21214J?21.21kJ2故整个过程:
W=Wr+W绝= (-17.29+15.15)kJ=2.14 kJ △U=△Ur+△U绝=(0+15.15)=15.15kJ △H=△Hr+△H绝=(0+21.21)=21.21kJ
2-24 求证在理想气体p—V图上任一点处,绝热可逆线的斜率的绝对值大于恒温可逆线的斜率的绝对值。
解:理想气体绝热可逆方程为:pV??常数=K (1)
理想气体恒温可逆方程为:pV?常数=C (2) 对方程(1)及方程(2)求导,得
(?p/?V)Q???(p/V) (3) (?p/?V)T??(p/V) (4)
因??Cp,m/CV,m>1,故在理想气体p—V图上任一点处,绝热可逆线的斜率的绝对值??(p/V)大于恒温可逆线的斜率的绝对值?(p/V)。
2-25一水平放臵的绝热圆筒中装有无磨檫的绝热理想活塞,左、右两侧分别为50dm3的单原子理想气体A和50dm3的双原子理想气体B。两气体均为0℃、100kPa。A气体内部有一体积及热容均可忽略的电热丝.现在经通电无限缓慢加热左侧气体A,推动活塞压缩右侧气体B使压力最终到达200kPa。求:(1)气体B的最终温度;(2)气体B得到的功;(3)气体A
25
物理化学上册习题解(天津大学第五版)
的最终温度;(4)气体A从电热丝得到的热。 解:(1)右侧气体B进行可逆绝热过程
?p2?T2?T1???p???1?RCp,m?200?10?273.15???100?103?3????R7R/2K?332.97K
(2) 因绝热,QB=0,
WB??U?nCV,m(T2?T1)?p1V1CV,m(T2?T1) RT1100?103?50?10?35?8.314???(332.97?273.15)?J?2738J?2.738kJ 8.314?273.152(3)气体A的末态温度:
p1V1RT2nRT2RT1p1V1T2100?103?50?332.973VB????dm?30.48.6dm3 3p2p2p2T1200?10?273.15VA=(2×50-30.48)dm3=69.52dm3
p2VAp2VAp2VAT1200?103?69.52?273.15TB????K?759.58K 3nAR(p1V1/RT1)Rp1V1100?10?50(4)气体A从电热丝得到的热:
p1V1100?103?50?10?3nA???2.2017mol?nB
RT18.314?273.15Q??U?W?nCV,m(TB?T1)?WB3 ?2.2017??8.314?(759.58?273.15)?10?3kJ?2.738kJ
2 ?13.356kJ?2.738kJ?16.094kJ2-26 在带活塞的绝热容器中有4.25 mol 的某固态物质A及5 mol某单原子理想气体B,物质A的Cp,m?24.454J?mol?1?K?1。始态温度T1=400 K,压力p1=200 。
今以气体B为系统,求经可逆膨胀到p2=100 kPa时,系统的T2及过程的Q,W,△U及△H。(注意:以p2=50kPa解题,得不到和答案一样的结果,可能是p2=100 kPa。估计是打印错误所致)
解:今以气体B为系统:
26
物理化学上册习题解(天津大学第五版)
?p2?T2???p???1?R/Cp,m?100?103?T1???200?103?????R/(5R/2)?400K?303.14K
Q??QA??{?303.14K400K4.25?24.454dT}J
??{4.25?24.454?(303.14?400)}J?10067J?10.07kJ3?U?{5.0??R(303.14?400)}J??6040J??6.04kJ25?H?{5.0??R(303.14?400)}J??10067J??10.07kJ2 W??U?Q??16.11kJ
2-28 已知100kPa 下冰的熔点为0℃,此时冰的比熔化焓
?fush?333.3J?g?1。水的均比定压热容cp?4.184J?g?1?K?1。求绝热容器内向
1kg
50℃的水中投入0.1 kg 0℃的冰后,系统末态的温度。计算时不考虑容器的热容。
解:变化过程示意如下 ( 0.1kg,0℃冰)
( 0.1kg,0℃,水)
( 1kg,t,水)
( 0.1kg,t,水)
( 1kg,50℃,水)
过程恒压绝热:Qp??H?0,即?H??H1??H2?0
100g?333.3J?g?1?K?1?100g?4.184J?g?1?K?1?(T?273.15K) ?1000?4.184J?g?1?K?1?(T?323.15K)?0 4602.4T?1433015.56K
T?311.363K, 故 t=38.21℃
2-29 已知100kPa 下冰的熔点为0℃,此时冰的比熔化焓水和冰的均比定压热容cp分别为4.184J?g?1?K?1及2.000J?g?1?K?1。?fush?333.3J?g?1。
今在绝热容器内向1kg 50℃的水中投入0.8 kg 温度-20℃的冰。求:(1)末态的温度;(2)末态水和冰的质量。
27
物理化学上册习题解(天津大学第五版)
解:过程恒压绝热:Qp??H?0,即?H??H1??H2?0
800g?2.0?J?g?1?K?1(273.15K?253.15K)?800g?333.33J?g?1?K?1?800g?4.184J?g?1?K?1?(T?273.15K) ?1000?4.184J?g?1?K?1?(T?323.15K)?0 32000?266640-914287.68-1352059.6?7531.2T T?261.27K
这个结果显然不合理,只有高温水放出的热量使部分冰熔化为水,而维持在 0℃,所以末态的温度为 0℃。
(2)设0℃冰量为 m,则0℃水量为(500 – m)g,其状态示意如下
800g,H2O(s), 253.15K1000g, H2O(l), 323.15Kp????Q?0(800?m)gH2O(l), mH2O(s), 273.15K1000g, H2O(l), 273.15K
800 g×2. J·g-1·K-1×(273.15 K –253.15K)+(800-m)g×333.3 J·g-1
+ 1000g×4.184 J·g-1·K-1×(273.15K– 323.15K)=0 333.3 m = 89440 g
m=268g =0.268 kg =冰量
水量= {1000+(800-268)}g = 1532 g =1.532 kg
2-30 蒸气锅炉中连续不断地注入20℃的水,将其加热并蒸发成180℃,饱和蒸气压为1.003Mpa的水蒸气。求每生产1kg饱和水蒸气所需的热。
已知:水(H2O,l)在100℃的摩尔相变焓?vapHm(373.15K)?40.668kJ?mol?1,水的平均摩尔定压热容为Cp,m(H2O,l)?75.32J?mol?1,水蒸气(H2O,g)的摩尔定压
热容与温度的关系见附录。
解:据题意画出下列方框图:
l)H2O(g),1kg H 2 O ( , 1kg Qp=△H 20℃,1000.3kPa 180℃,1000.3kPa 28
物理化学上册习题解(天津大学第五版)
△H1 △H2
l) H 2 O ( , 1kg 1000100℃,101.325kPa 18?40.668kJ?2259kJH),1kg 2O(g△vapHkg(373.15K)
100℃,101.325kPa
△H1 =mHO(l)Cp,m(t2?t1)?1000?75.32?(100?20)J?334.76J
218T21000453.15K?3?H2??nCp,H2O(g)dT?{(29.16?14.49?10T/KT1 18?373.15K -2.002?10-6T2/K2)dT/K}kJ?154.54kJ所以每生产1kg饱和蒸气所需的热 Qp=△H=△H1+△vapHkg(373.15K)+△H2= =(334.76+2257+154.54)kJ =2.746×103kJ
2-31 100kPa 下,冰(H2O,s)的熔点为0℃,在此条件下冰的摩尔熔化焓?fusHm?6.012kJ?mol?1。已知在-10℃~0℃范围内过泠水(H2O,l)和冰的摩尔定压热容分别为Cp,m(H2O,l)=76.28J?mol?1?K?1和Cp,m(H2O,s)=37.20J?mol?1?K?1。求在常压下及 – 10℃下过泠水结冰的摩尔凝固焓。 解:
H2O(l),?100CHm?????H2O(s),?100C
△H1,m △H3,m
H2O(l), 00C2,m????H2O(s), 00C
?H?H2,m???fusHm??6.012kJ?mol?1
29
物理化学上册习题解(天津大学第五版)
?Hm??H1,m??H2,m??H3,m ??273.15K263.15K1Cp,m(H2O,l)dT??H2,m??263.15K273.15KCp,m(H2O,s)dT ?Cp,m(H2O,l)?(273.15K?263.15K) ??H2,m?Cp,m(H2O,s)?(263.15K?273.15K) ?(76.28?10?6012?37.2?10)J?mol?1 ??5621J?mol?1??5.621kJ?mol?1
2-32 已知水(H2O,l)在100℃的摩尔蒸发焓?vapHm?40.668kJ?mol?1,水和水蒸气在25~100℃的平均摩尔定压热容分别为Cp,m(H2O,l)?75.75J?mol?1?K?1和
Cp,m(H2O,g)?33.76J?mol?1?K?1。求在
m25℃时水的摩尔蒸发焓。
H解:H2O(l), 250C?????H2O(g), 250C
△H1,m △H3,m
H2O(l), 1000C ??373.15Kvapm????H2O(g), 1000C
?H?Hm??H1,m??vapHm??H3,m298.15K1Cp,m(H2O,l)dT??H2,m??298.15K373.15KCp,m(H2O,s)dT ?Cp,m(H2O,l)?(373.15K?298.15K) ??vapHm?Cp,m(H2O,g)?(298.15K?373.15K) ?(75.75?75?40668?33.76?75)J?mol?1 ??43817J?mol?1??4.3821kJ?mol?1
2-33 25℃下,密闭恒容的容器中有10g 固体萘C10H8(s)在过量的O2
(g)中完全燃烧成CO2(g)和H2O(l)。过程放热401.727 kJ。求
(1)
C10H8(s)?12O2(g)?10CO2(g)?4H2O(l)的反应进度;
??(2)C10H8(s)的?CUm; (3)C10H8(s)的?CHm。
解:(1)反应进度:???n/???n/1??n?10?0.078019mol?78.019mmol128.173
?(2)C10H8(s)的?CUm:M萘=128.173
每摩尔萘的恒容恒温燃烧热为
??cUm(298.15K)??rUm(298.15K)?128.173?(?401.727)kJ?mol?1 10 ??5149kJ?mol?1 (3)所以本题所给反应的标准摩尔反应焓为
30
物理化学上册习题解(天津大学第五版)
???rHm(298.15K)??rUm(298.15K)???B(g)?RT ?{-5149kJ?(-2)?8.314?298.15?10-3}kJ?mol?1 ?-5154kJ?mol-1???CHm??rHm?-5154kJ?mol-1
2-34 应用附录中有关物质在25℃的标准摩尔生成焓的数据,计算下列
??反应的?rHm(298.15K)。 (298.15K)?rUm(1) 4NH3(g)+5O2(g)(2) 3NO2(g)+ H2O(l)
4NO(g)+6H2O(g) 2HNO3(l)+NO(g) 2Fe(s)+3CO(g)
(3) Fe2O3(s)+3C(石墨)解:计算公式如下:
?????rHm???B??fHm(B,?,T);?rUm??rHm???B(g)?RT
?(1)?rHm(298.15K)?{4?90.25?6?(?241.818)?4?(?46.11)?kJ?mol?1
??905.468kJ?mol?1??905.47kJ?mol?1
??rUm(298.15K)??905.47?1?8.3145?298.15?10?3kJ?mol?1 ??907.95kJ?mol?1
???(2)?rHm(298.15K)??2?(?174.10)?90.25?(3?33.18?285.83)?kJ?mol?1
= ?71.66kJ?mol?1
??rUm(298.15K)??71.66?(?2)?8.3145?298.15?10?3kJ?mol?1 ??66.70kJ?mol?1
???(3)?rHm(298.15K)??3?(?110.525)?(?824.2)?kJ?mol?1=
492.63kJ?mol?1
??rUm(298.15K)?492.63?3?8.3145?298.15?10?3kJ?mol?1?485.19kJ?mol?1
??2-35 应用附录中有关物质的热化学数据,计算25℃时反应
2CH3OH(l)?O2(g) HCOOCH3(l)?2H2O(l) 的标准摩尔反应焓,要求:(1)应用25℃的标准摩尔生成焓数据;
?(2)应用?fHm(HCOOCH3,l)??379.07kJ?mol?1。
25℃的标准摩尔燃烧焓数据。
解:(1)2CH3OH(l)?O2(g) HCOOCH3(l)?2H2O(l)
31
物理化学上册习题解(天津大学第五版)
?????rHm?2??fHm(H2O,l)+?fHm(HCOOCH3,l)-2??fHm(CH3OH,l)
={2×(-285.830)+(-379.07)-2×(-238.66)}kJ〃mol-1 = - 473.52 kJ〃mol-1
???(2)?rHm?2??CHm(CH3OH,l)-?CHm(HCOOCH3,l)
={2×(-726.51)-(-979.5)}kJ〃mol-1 = - 473.52 kJ〃mol-1
2-36 (1)写出同一温度下下,一定聚集状态分子式为CnH2n的物质的
??与其?cHm之间的关系。 ?fHm?(2)若25℃下环丙烷CH2·CH2·CH2(g)的?cHm??2091.5kJ?mol?1,求该温度?下环丙烷的?fHm。
解:(1)CnH2n的物质进行下述反应:
CnH2n?4nO(g)nCO2(g)?nH2O2
??????cHm(CnH2n)??rHm?n?fHm(H2O,l)?n?fHm(CO2g)??fHm(CnH2n)??
故有
?????fHm(CnH2n)??cHm(CnH2n)?n?fHm(H2O,l)??fHm(CO2g)??
(2)常压恒定温度25℃的条件下,环丙烷进行下述反应:
CH2·CH2·CH2?1O2(g)43CO(g)?3H2O(l)
???rHm(298.15kK)?3?fHm(CO2,298.15kK)
?? ?3?fHm(H2O,l,298.15kK)??fHm(环丙烷,g,298.15kK)
??? ?fHm(环丙烷,g,298.15kK)?3?fHm(CO2,g,298.15K) ?3?fHm(H2O,l,298.15K)??rHm(298.15K)??
?{3?(?393.51)?3?(?285.83)?(?2091.5)}kJ?mol?1?53.48kJ?mol?1
?2-37 已知25℃甲酸乙酯(HCOOCH3,l)的标准摩尔摩尔燃烧焓?cHm为
32
物理化学上册习题解(天津大学第五版)
-979.5 kJ?mol?1,甲酸乙酯(HCOOCH3,l)、甲醇(CH3OH,l)、水(H2O,l)
?及二氧化碳(CO2,g)的标准摩尔生成焓数据?fHm分别为-424.72kJ?mol?1,
-238.66kJ?mol?1,-285.83kJ?mol?1及-393.509kJ?mol?1。应用这些数据求25℃时下列反应的标准摩尔反应焓。
HCOOH(l)?CH3OH(l) HCOOCH3(l)?H2O(l)
?解:(1)先求?fHm(HCOOCH3,l)
HCOOCH3(l)?2O2(g) 2CO2(g)?2H2O(l)
?????rHm?2??fHm(HCOOCH3,l) (CO2,g) + 2×?fHm(H2O,l)-?fHm?? ?rHm=?CHm(HCOOCH3,l)
所以有
????(HCOOCH3,l) (H2O,l)-?CHm?fHm(HCOOCH3,l)=2??fHm(CO2,g) + 2×?fHm ={2×(-393.509)+2×(-285.83)-(-979.5)}kJ〃mol-1 = - 379.178 kJ〃mol-1 (2)HCOOH(l)?CH3OH(l) HCOOCH3(l)?H2O(l)
????rHm??fHm(HCOOCH3,l)+?fHm(HO2,l)
??-?fHm(HCOOH,l)-?fHm(CH3OH,l)
={(-379.178)+(-285.83)-(-424.72)-(-238.66)}kJ〃mol-1 = - 1.628 kJ〃mol-1
2-38 已知CH3COOH(g)、CO2(g)和CH4(g)的平均定压热容Cp,m分别为52.3 J〃mol-1〃K-1,31.4 J〃mol-1〃K-1,37.1 J〃mol-1〃K-1。试由附录
?中各化合物的标准摩尔生成焓计算1000K时下列反应的?rHm。
CH3COOH(g)CH4(g)+CO2(g)
33
物理化学上册习题解(天津大学第五版)
解:由附录中各物质的标准摩尔生成焓数据,可得在25℃时的标准摩尔反应焓
???rHm(298.15K)???B??fHm(298.15K)?1?1
?{?74.81?393.51?(?432.2)}kJ?mol??36.12kJ?mol题给反应的 16.8J〃mol-1〃K-1
?rCp,m???BCp,m,B=(37.7+31.4-52.3)J〃mol-1〃K-1=
所以,题给反应在1000K时的标准摩尔反应焓
???rHm(1000K)??rHm(298.15K)??1000K298K?rCpdT
={-36.12+16.8×(1000-298.15)×10-3}kJ〃mol-1=
-24.3kJ〃mol-1
2-39 对于化学反应
CH4(g)?H2O(g) CO(g)?3H2(g)
应用附录中各物质在25℃时标准摩尔生成焓数据及摩尔定压热容与温度的函数关系式:
?(1)将?rHm(T)表示成温度的函数关系式; ?(2)求该反应在1000K时的?rHm。
?解:为求?rHm(T)的温度函数关系式,查各物质的定压摩尔热容为
-1-1-3-1-2-6-1-3
H2:=26.88J〃mol〃K+4.374×10J〃mol〃K-0.3265×10J〃mol〃K C?p,m-1-1-3-1-2-6-1-3CO:=26.537J〃mol〃K+7.6831×10J〃mol〃K-1.172×10J〃mol〃K C?p,m-1-1-3-1-2H2O(l):C?=29.16J〃mol〃K+14.49×10J〃mol〃K-2.022×p,m10-6J〃mol-1〃K-3
-1-1-3-1-2CH4(g):C?=14.15J〃mol〃K+75.496×10J〃mol〃K-17.99×p,m10-6J〃mol-1〃K-3
34
物理化学上册习题解(天津大学第五版)
?a???BaB=63.867 J〃mol〃K;
B-1-1
?b???BbB= - 69.2619 J〃mol〃K
B-1-1
?c???BcB= - 69262 J〃mol〃K
B-1-1
?再查298.15K时的各物质的标准摩尔生成焓,求?rHm(295.15K):
????(CO,g)-?fHm(H2O,g)-?fHm(CH4,g) ?rHm(295.15K)=?fHm ={(-110.525)-(-74.81)-(-241.818)}kJ〃mol-1 = 206.103 kJ〃mol-1 根据基希霍夫公式
???rHm(T)=?rHm(295.15K)+?T298.15KT?rC?p,mdT
=?rHm(295.15K)+?298.15K(?a??bT??cT2)dT
?
?=?rHm(295.15K)+?a(T?298.15)+?b{T2?(298.15)2}+?b{T3?(298.15)3} ?将?rHm(295.15K),?a,?b,?c的数据代入上式,并整理,可得 ??rHm(T)={189982+63.867(T/K)
1213-34.6310×10-3(T/K)2 +5.9535×10-6(T/K)3} J〃mol-1
(2)将1000K代入上式计算得
??rHm(T)= 225.17 k J〃mol
-1
2-40 甲烷与过量50%的空气混合,为使恒压燃烧的最高温度能达2000℃,求燃烧前混合气体应预热到多少摄氏度?
计算中N2、O2、H2O(g)、CH(、CO2平均定压摩尔热容Cp,m分别为33.47、4g)33.47、41.84、75.31、54.39J〃mol-1〃K-1,所需其他数据见附录。
解:根据题意画出如下方框图:
35
物理化学上册习题解(天津大学第五版)
CH(+2O(+O2+34g)2g)t 79N2 21据题列方框
CO(+2 H2O(g)+O2+32g) 2000℃ 意可画出下
79N2 图: 21绝热、恒压 △H =0
△H1 △H2
79N2 21
CO(+2 H2O(g)+O2+32g) 25℃ CH(+2O(+O2+34g)2g)25℃ 79N2 21△rHmθ(298K)
???rHm(298.15K)???B??fHm(B,?,298.15K)
?1?{?393.51?2(?241.82)?(?74.81)}kJ?mol??802.34kJ?mol?1?H1?(Cp,m,CH4?3Cp,m,O2?379Cp,m,N2)?(298.15-T/K)2179 ?{(75.31?3?33.47?3?33.47)(298.15?T/K)}J?mol?1
21 ?553.45(298.15K?T/K)J?mol?1?H2?(Cp,m,CO2?2Cp,m,H2O(g)?Cp,m,O2?3 ?{(54.39?2?41.84?33.47?379Cp,m,N2)?(2273.15-298.15) 2179?33.47)?(2273.15-298.15)}J?mol?121 ?1084.81kJ?mol?1
?? ?H??H1??rHm(298.15K)??H2?0
即 553.45(298.15-T/K)×10-3+(-802.34)+1084.81=0
36
物理化学上册习题解(天津大学第五版)
所以 T=808.15K或t=535℃。
2-411molH2与过量50%空气的混合物的始态为25℃、101.325kPa。若该混合气体于容器中发生爆炸,试求所能达到的最高温度和压力。设所有气体均可按理想气体处理,H2O(g)、O2及N2的CV,m分别为37.66、25.1及25.1J〃mol-1〃K-1。
79N2 21解:
据题意列方框
2H2O(g)+0.25O2+0.75 t,p H(+0.5O(+0.25O2+0.752g)2g) 25℃,101.325kPa 79N2 21可画出下图:
△U =0 绝热、 恒容
△rUm(298K) △U1
2H2O(g)+0.25O2+0.75 25℃ 79N2 2137
物理化学上册习题解(天津大学第五版)
?rUm(298.15K)??rHm???B(g)?RT? ??rHm(H2O,g,298K)???B(g)?RT
?{?241820?(?0.5?8.314?298.15)}J?mol?1 ??240581J?mol?1?U1?(CV,m,H2O(g)?0.25CV,m,O2?0.75 ?{(37.66?0.25?25.1?0.7579CV,m,N2)?(T/K-298.15)2179?25.1)?(T/K-298.15)}J?mol?121 ?114.753(T/K-298.15)}J?mol?1? ?U??rUm(298.15K)??U1?0
即 -240581=11.753(T/K-298.15) 解得:T=2394.65K 所以 ng,末态?(1?0.25?0.75?79)mol?4.0714mol2179)mol?4.5714mol21
ng,始态?(1?0.75?0.75? T始态=298.15K,p始态=101.325kPa
? p始态V?ng,始态?RT始态 pV?ng,末态?RT末态
4.0714?2394.65?101.325kPa?724.5kPa
4.5714?298.15? p?ng,末态Tng,始态T始态?p始态?2-42 容积恒定的带有二通活塞的真空容器臵于压力恒定、温度T0的大气中。现将二通活塞打开,使大气迅速进入并充满容器,达到容器内外压力相等。求证进入容器后大气的温度T=γT0。γ为大气的热容比。推导时不考虑容器的热容,大气按一种气体对待。
提示:全部进入容器的气体为系统,系统得到流动功。
解:真空容器终态温度为T,终态时进入容器内的空气原来在容器外时所占的体积为V0。
(1)选取最后进入容器内的全部气体为系统,物质的量为 n。终态时的界面包括了此容器内壁所包围的空间V;始态时的体积为V+V0(始态时界面内包括了一部分真空空间V)。
38
物理化学上册习题解(天津大学第五版)
(2)实际上大气流入真空容器时并不作功,但大气进入容器内是由于其余的外界大气对其压缩作功的结果,这种功叫流动功。压缩过程中,环境以恒外压p0将界面内的体积压缩了
△V=V-(V+V0)= -V0 所以,环境所作的功为
W = - p0△V = p0V0= nRT0 (a)
由于大气流入真空容器的过程进行得很快,可以看作是绝热过程,由热力学第一定律可得
?U?nCV,m(T?T0)?W?p0V0?nRT0
CV,m(T?T0)?RT0 (b)
(4) 把大气当作理想气体,就有
Cp,m?CV,m?R
Cp,m/CV,m??
联立求解得 CV,m?R/(??1) (c) 将式(c)代入(b)得
R??1(T?T0)?RT0 所以 T??T0
39
物理化学上册习题解(天津大学第五版)
第三章 热力学第二定律
3-1 卡诺热机在 T1=600K的高温热源和T2=300K的低温热源间工作,求:
(1) 热机的效率;
(2)当环境作功 –W=100kJ时,系统从高温热源Q1及向低温热源放出的 –Q2。
解:(1)???W/Q1?(T1?T2)/T1?(600?300)/600?0.5 (2)?W/Q1?100kJ/Q1?0.5,得
Q1?200kJ
Q1?Q2??W?100kJ; Q1?(?W)??Q2?100kJ
3-2卡诺热机在T1=795K的高温热源和T2=300K的低温热源间工作,求: (1)热机的效率;
(2)当从高温热源吸热Q1=250 kJ时,系统对环境作的功 -W及向低温热源放出的 –Q2。
解:(1)???W/Q1?(T1?T2)/T1?(750?300)/750?0.6
(2)?W??Q1?0.6?250kJ?150kJ
Q1?Q2??W?150kJ; Q1?(?W)??Q2?100kJ
3-3 卡诺热机在T1=900K的高温热源和T2=300K的低温热源间工作,求: (1)热机的效率;
(2)当向低温热源放出的 –Q2=100kJ时,从高温热源吸热Q1及对环境作的功 -W。
解:(1)???W/Q1?(T1?T2)/T1?(900?300)/900?0.6667 (2)?W/Q1?0.6667 (a)
40
正在阅读:
物理化学上册的答案,第五版,周亚平,高等教育出版社11-03
介绍了色彩的基础知识06-11
2011年情人节促销活动方案03-03
档案分类和文书档案编号管理规则12-10
每立方米钢筋砼钢筋含量参考值09-11
这样挑选优良的八哥06-03
安全生产法律法规06-05
大学生社会责任感调查报告05-06
2 安全管理人员配备管理制度07-23
苏教版二年级上册数学期中试卷及答案11-02
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 亚平
- 高等教育出版社
- 物理化学
- 上册
- 答案