实验三 IIR数字滤波器设计及软件实现
更新时间:2023-03-20 12:57:01 阅读量: 实用文档 文档下载
- 实验三中推荐度:
- 相关推荐
IIR数字滤波器设计及软件实现,做实验时自己在老师指导下编写的程序
实验三 IIR数字滤波器设计及软件实现
1.实验目的
(1)熟悉用双线性变换法设计IIR数字滤波器的原理与方法;
(2)学会调用MATLAB信号处理工具箱中滤波器设计函数(或滤波器设计分析工具fdatool)设计各种IIR数字滤波器,学会根据滤波需求确定滤波器指标参数。
(3)掌握IIR数字滤波器的MATLAB实现方法。
(3)通过观察滤波器输入输出信号的时域波形及其频谱,建立数字滤波的概念。
2.实验原理
设计IIR数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用最广泛的是双线性变换法。基本设计过程是:①先将给定的数字滤波器的指标转换成过渡模拟滤波器的指标; ②设计过渡模拟滤波器;③将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。MATLAB信号处理工具箱中的各种IIR数字滤波器设计函数都是采用双线性变换法。
第六章介绍的滤波器设计函数butter、cheby1 、cheby2 和ellip可以分别被调用来直接设计巴特沃斯、切比雪夫1、切比雪夫2和椭圆模拟和数字滤波器。本实验要求读者调用如上函数直接设计IIR数字滤波器。
本实验的数字滤波器的MATLAB实现是指调用MATLAB信号处理工具箱函数filter对给定的输入信号x(n)进行滤波,得到滤波后的输出信号y(n)。
3. 实验内容及步骤
(1)调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号st,该函数还会自动绘图显示st的时域波形和幅频特性曲线,如图10.4.1所示。由图可见,三路信号时域混叠无法在时域分离。但频域是分离的,所以可以通过滤波的方法在频域分离,这就是本实验的目的。
IIR数字滤波器设计及软件实现,做实验时自己在老师指导下编写的程序
图10.4.1 三路调幅信号st的时域波形和幅频特性曲线
(2)要求将st中三路调幅信号分离,通过观察st的幅频特性曲线,分别确定可以分离st中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的通带截止频率和阻带截止频率。要求滤波器的通带最大衰减为0.1dB,阻带最小衰减为60dB。
提示:抑制载波单频调幅信号的数学表示式为
1s(t) cos(2 f0t)cos(2 fct) [cos(2 (fc f0)t) cos(2 (fc f0)t)] 2
其中,cos(2 fct)称为载波,fc为载波频率,cos(2 f0t)称为单频调制信号,f0为调制正弦波信号频率,且满足fc f0。由上式可见,所谓抑制载波单频调幅信号,就是2个正弦信号相乘,它有2个频率成分:和频fc f0和差频fc f0,这2个频率成分关于载波频率fc对称。所以,1路抑制载波单频调幅信号的频谱图是关于载波频率fc对称的2根谱线,其中没有载频成分,故取名为抑制载波单频调幅信号。容易看出,图10.4.1中三路调幅信号的载波频率分别为250Hz、500Hz、1000Hz。如果调制信号m(t)具有带限连续频谱,无直流成分,则s(t) m(t)cos(2 fct)就是一般的抑制载波调幅信号。其频谱图是关于载波频率fc对称的2个边带(上下边带),在专业课通信原理中称为双边带抑制载波 (DSB-SC) 调幅信号,简称双边带 (DSB) 信号。如果调制信号m(t)有直流成分,则s(t) m(t)cos(2 fct)就是一般的双边带调幅信号。其频谱图是关于载波频率fc对称的2个边带(上下边带),并包含载频成分。
(3)编程序调用MATLAB滤波器设计函数ellipord和ellip分别设计这三个椭圆滤波器,并绘图显示其幅频响应特性曲线。
(4)调用滤波器实现函数filter,用三个滤波器分别对信号产生函数mstg产生的信号st进行滤波,分离出st中的三路不同载波频率的调幅信号y1(n)、y2(n)和y3(n), 并绘图显示y1(n)、y2(n)和y3(n)的时域波形,观察分离效果。
4.信号产生函数mstg清单
function st=mstg
%产生信号序列向量st,并显示st的时域波形和频谱
%st=mstg 返回三路调幅信号相加形成的混合信号,长度N=1600
N=1600 %N为信号st的长度。
Fs=10000;T=1/Fs;Tp=N*T; %采样频率Fs=10kHz,Tp为采样时间
t=0:T:(N-1)*T;k=0:N-1;f=k/Tp;
fc1=Fs/10; %第1路调幅信号的载波频率fc1=1000Hz,
fm1=fc1/10; %第1路调幅信号的调制信号频率fm1=100Hz
fc2=Fs/20; %第2路调幅信号的载波频率fc2=500Hz
fm2=fc2/10; %第2路调幅信号的调制信号频率fm2=50Hz
fc3=Fs/40; %第3路调幅信号的载波频率fc3=250Hz,
fm3=fc3/10; %第3路调幅信号的调制信号频率fm3=25Hz
IIR数字滤波器设计及软件实现,做实验时自己在老师指导下编写的程序
xt1=cos(2*pi*fm1*t).*cos(2*pi*fc1*t); %产生第1路调幅信号
xt2=cos(2*pi*fm2*t).*cos(2*pi*fc2*t); %产生第2路调幅信号
xt3=cos(2*pi*fm3*t).*cos(2*pi*fc3*t); %产生第3路调幅信号
st=xt1+xt2+xt3; %三路调幅信号相加
fxt=fft(st,N); %计算信号st的频谱
%====以下为绘图部分,绘制st的时域波形和幅频特性曲线====================
subplot(3,1,1)
plot(t,st);grid;xlabel('t/s');ylabel('s(t)');
axis([0,Tp/8,min(st),max(st)]);title('(a) s(t)的波形')
subplot(3,1,2)
stem(f,abs(fxt)/max(abs(fxt)),'.');grid;title('(b) s(t)的频谱')
axis([0,Fs/5,0,1.2]);
xlabel('f/Hz');ylabel('幅度')
5.实验程序框图如图10.4.2所示
图10.4.2 实验4程序框图
6、滤波器参数及实验程序清单
1)、滤波器参数选取
观察图10.4.1可知,三路调幅信号的载波频率分别为250Hz、500Hz、1000Hz。带宽(也可以由信号产生函数mstg清单看出)分别为50Hz、100Hz、200Hz。所以,分离混合信号st中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的指标参数选取如下:
IIR数字滤波器设计及软件实现,做实验时自己在老师指导下编写的程序
对载波频率为250Hz的条幅信号,可以用低通滤波器分离,其指标为
带截止频率fp 280Hz,通带最大衰减 p 0.1dBdB;
450Hz,阻带最小衰减 s 60dBdB, 阻带截止频率fs
对载波频率为500Hz的条幅信号,可以用带通滤波器分离,其指标为
带截止频率fpl 440Hz,fpu 560Hz,通带最大衰减 p 0.1dBdB;
275Hz,fsu 900Hz,Hz,阻带最小衰减 s 60dBdB, 阻带截止频率fsl
对载波频率为1000Hz的条幅信号,可以用高通滤波器分离,其指标为
带截止频率fp 890Hz,通带最大衰减 p 0.1dBdB;
550Hz,阻带最小衰减 s 60dBdB, 阻带截止频率fs
说明:(1)为了使滤波器阶数尽可能低,每个滤波器的边界频率选择原则是尽量使滤波器过渡带宽尽可能宽。
(2)与信号产生函数mstg相同,采样频率Fs=10kHz。
(3)为了滤波器阶数最低,选用椭圆滤波器。
按照图10.4.2 所示的程序框图编写的实验程序为exp4.m。
2)、实验程序清单
%实验4程序exp4.m
% IIR数字滤波器设计及软件实现
clear all;close all
Fs=10000;T=1/Fs; %采样频率
%调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号st
st=mstg;
%低通滤波器设计与实现=========================================
fp=280;fs=450;
wp=2*fp/Fs;ws=2*fs/Fs;rp=0.1;rs=60; %DF指标(低通滤波器的通、阻带边界频)
[N,wp]=ellipord(wp,ws,rp,rs); %调用ellipord计算椭圆DF阶数N和通带截止频率wp
[B,A]=ellip(N,rp,rs,wp); %调用ellip计算椭圆带通DF系统函数系数向量B和A y1t=filter(B,A,st); %滤波器软件实现
% 低通滤波器设计与实现绘图部分
figure(2);subplot(3,1,1);
myplot(B,A); %调用绘图函数myplot绘制损耗函数曲线
yt='y_1(t)';
subplot(3,1,2);tplot(y1t,T,yt); %调用绘图函数tplot绘制滤波器输出波形
%带通滤波器设计与实现==================================================== fpl=440;fpu=560;fsl=275;fsu=900;
wp=[2*fpl/Fs,2*fpu/Fs];ws=[2*fsl/Fs,2*fsu/Fs];rp=0.1;rs=60;
[N,wp]=ellipord(wp,ws,rp,rs); %调用ellipord计算椭圆DF阶数N和通带截止频率wp
[B,A]=ellip(N,rp,rs,wp); %调用ellip计算椭圆带通DF系统函数系数向量B和A
y2t=filter(B,A,st); %滤波器软件实现
IIR数字滤波器设计及软件实现,做实验时自己在老师指导下编写的程序
figure(3);subplot(3,1,1);
myplot(B,A); %调用绘图函数myplot绘制损耗函数曲线
yt='y_2(t)';
subplot(3,1,2);tplot(y2t,T,yt); %调用绘图函数tplot绘制滤波器输出波形
%高通滤波器设计与实现================================================
fp=890;fs=600;
wp=2*fp/Fs;ws=2*fs/Fs;rp=0.1;rs=60; %DF指标(低通滤波器的通、阻带边界频)
[N,wp]=ellipord(wp,ws,rp,rs); %调用ellipord计算椭圆DF阶数N和通带截止频率wp
[B,A]=ellip(N,rp,rs,wp,'high'); %调用ellip计算椭圆带通DF系统函数系数向量B和A y3t=filter(B,A,st); %滤波器软件实现
figure(4);subplot(3,1,1);
myplot(B,A); %调用绘图函数myplot绘制损耗函数曲线
yt='y_3(t)';
subplot(3,1,2);tplot(y3t,T,yt); %调用绘图函数tplot绘制滤波器输出波形
调用的子函数:
(1)myplot:计算时域离散系统损耗函数并绘制曲线图。函数清单如下: function myplot(B,A)
[H,W]=freqz(B,A,1000);
m=abs(H);
plot(W/pi,20*log10(m/max(m)));grid on;
xlabel('\omega/\pi');ylabel('幅度(dB)')
axis([0,1,-80,5]);title('损耗函数曲线');
(2)tplot:时域序列连续曲线绘图函数,将采样序列绘图。函数清单如下: function tplot(xn,T,yn)
n=0:length(xn)-1;t=n*T;
plot(t,xn);
xlabel('t/s');ylabel(yn)
axis([0,t(end),min(xn),1.2*max(xn)]);
7、实验程序运行结果
实验4程序exp4.m运行结果如图104.2所示。由图可见,三个分离滤波器指标参数选取正确,算耗函数曲线达到所给指标。分离出的三路信号y1(n),y2(n)和y3(n)的波形是抑制载波的单频调幅波。
IIR数字滤波器设计及软件实现,做实验时自己在老师指导下编写的程序
(a) 低通滤波器损耗函数及其分离出的调幅信号y1
(t)
(b) 带通滤波器损耗函数及其分离出的调幅信号y2(t)
IIR数字滤波器设计及软件实现,做实验时自己在老师指导下编写的程序
(c)高通滤波器损耗函数及其分离出的调幅信号y3(t)
图104. 实验4程序exp4.m运行结果
8、思考题
(1)请阅读信号产生函数mstg,确定三路调幅信号的载波频率和调制信号频率。
(2)信号产生函数mstg中采样点数N=800,对st进行N点FFT可以得到6根理想谱线。如果取N=1000,可否得到6根理想谱线?为什么?N=2000呢?请改变函数mstg中采样点数N的值,观察频谱图验证您的判断是否正确。
(3)修改信号产生函数mstg,给每路调幅信号加入载波成分,产生调幅(AM)信号,重复本实验,观察AM信号与抑制载波调幅信号的时域波形及其频谱的差别。
提示:AM信号表示式:s(t) [1 cos(2 f0t)]cos(2 fct)。
答:
(1)已经在10.4.2节解答。
(2) 因为信号st是周期序列,谱分析时要求观察时间为整数倍周期。所以,本题的一般解答方法是,先确定信号st的周期,在判断所给采样点数N对应的观察时间Tp=NT是否为st的整数个周期。但信号产生函数mstg产生的信号st共有6个频率成分,求其周期比较麻烦,故采用下面的方法解答。
分析发现,st的每个频率成分都是25Hz的整数倍。采样频率Fs=10kHz=25×400Hz,即在25Hz的正弦波的1个周期中采样400点。所以,当N为400的整数倍时一定为st的整数个周期。因此,采样点数N=800和N=2000时,对st进行N点FFT可以得到6根理想谱线。如果取N=1000,不是400的整数倍,不能得到6根理想谱线。
(3)
1))、信号产生函数mstg清单
function st=mstg
%产生信号序列向量st,并显示st的时域波形和频谱
IIR数字滤波器设计及软件实现,做实验时自己在老师指导下编写的程序
%st=mstg 返回三路调幅信号相加形成的混合信号,长度N=1600
N=1600 ; %N为信号st的长度。
Fs=10000;T=1/Fs;Tp=N*T; %采样频率Fs=10kHz,Tp为采样时间
t=0:T:(N-1)*T;k=0:N-1;f=k/Tp;
fc1=Fs/10; %第1路调幅信号的载波频率fc1=1000Hz,
fm1=fc1/10; %第1路调幅信号的调制信号频率fm1=100Hz
fc2=Fs/20; %第2路调幅信号的载波频率fc2=500Hz
fm2=fc2/10; %第2路调幅信号的调制信号频率fm2=50Hz
fc3=Fs/40; %第3路调幅信号的载波频率fc3=250Hz,
fm3=fc3/10; %第3路调幅信号的调制信号频率fm3=25Hz
xt1=cos(2*pi*fc1*t)+cos(2*pi*fm1*t).*cos(2*pi*fc1*t); %产生第1路调幅信号
xt2=cos(2*pi*fc1*t)+cos(2*pi*fm2*t).*cos(2*pi*fc2*t); %产生第2路调幅信号
xt3=cos(2*pi*fc1*t)+cos(2*pi*fm3*t).*cos(2*pi*fc3*t); %产生第3路调幅信号
st=xt1+xt2+xt3; %三路调幅信号相加
fxt=fft(st,N); %计算信号st的频谱
%====以下为绘图部分,绘制st的时域波形和幅频特性曲线==================== subplot(3,1,1)
plot(t,st);grid;xlabel('t/s');ylabel('s(t)');
axis([0,Tp/8,min(st),max(st)]);title('(a) s(t)的波形')
subplot(3,1,2)
stem(f,abs(fxt)/max(abs(fxt)),'.');grid;title('(b) s(t)的频谱') axis([0,Fs/5,0,1.2]);
xlabel('f/Hz');ylabel('幅度')
2))、实验程序清单
%实验4程序exp4.m
% IIR数字滤波器设计及软件实现
clear all;close all
Fs=10000;T=1/Fs; %采样频率
%调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号st
st=mstg;
%低通滤波器设计与实现=========================================
fp=280;fs=450;
wp=2*fp/Fs;ws=2*fs/Fs;rp=0.1;rs=60; %DF指标(低通滤波器的通、阻带边界频)
[N,wp]=ellipord(wp,ws,rp,rs); %调用ellipord计算椭圆DF阶数N和通带截止频率wp
[B,A]=ellip(N,rp,rs,wp); %调用ellip计算椭圆带通DF系统函数系数向量B和A y1t=filter(B,A,st); %滤波器软件实现
% 低通滤波器设计与实现绘图部分
figure(2);subplot(3,1,1);
myplot(B,A); %调用绘图函数myplot绘制损耗函数曲线
yt='y_1(t)';
IIR数字滤波器设计及软件实现,做实验时自己在老师指导下编写的程序
subplot(3,1,2);tplot(y1t,T,yt); %调用绘图函数tplot绘制滤波器输出波形 %带通滤波器设计与实现==================================================== fpl=440;fpu=560;fsl=275;fsu=900;
wp=[2*fpl/Fs,2*fpu/Fs];ws=[2*fsl/Fs,2*fsu/Fs];rp=0.1;rs=60;
[N,wp]=ellipord(wp,ws,rp,rs); %调用ellipord计算椭圆DF阶数N和通带截止频率wp
[B,A]=ellip(N,rp,rs,wp); %调用ellip计算椭圆带通DF系统函数系数向量B和A y2t=filter(B,A,st); %滤波器软件实现
figure(3);subplot(3,1,1);
myplot(B,A); %调用绘图函数myplot绘制损耗函数曲线
yt='y_2(t)';
subplot(3,1,2);tplot(y2t,T,yt); %调用绘图函数tplot绘制滤波器输出波形 %高通滤波器设计与实现================================================ fp=890;fs=600;
wp=2*fp/Fs;ws=2*fs/Fs;rp=0.1;rs=60; %DF指标(低通滤波器的通、阻带边界频)
[N,wp]=ellipord(wp,ws,rp,rs); %调用ellipord计算椭圆DF阶数N和通带截止频率wp
[B,A]=ellip(N,rp,rs,wp,'high'); %调用ellip计算椭圆带通DF系统函数系数向量B和A y3t=filter(B,A,st); %滤波器软件实现
figure(4);subplot(3,1,1);
myplot(B,A); %调用绘图函数myplot绘制损耗函数曲线
yt='y_3(t)';
subplot(3,1,2);tplot(y3t,T,yt); %调用绘图函数tplot绘制滤波器输出波形
调用的子函数:
(1)myplot:计算时域离散系统损耗函数并绘制曲线图。函数清单如下: function myplot(B,A)
[H,W]=freqz(B,A,1000);
m=abs(H);
plot(W/pi,20*log10(m/max(m)));grid on;
xlabel('\omega/\pi');ylabel('幅度(dB)')
axis([0,1,-80,5]);title('损耗函数曲线');
(2)tplot:时域序列连续曲线绘图函数,将采样序列绘图。函数清单如下: function tplot(xn,T,yn)
n=0:length(xn)-1;t=n*T;
plot(t,xn);
xlabel('t/s');ylabel(yn)
axis([0,t(end),min(xn),1.2*max(xn)]);
IIR数字滤波器设计及软件实现,做实验时自己在老师指导下编写的程序
3))、实验程序运行结果
IIR数字滤波器设计及软件实现,做实验时自己在老师指导下编写的程序
正在阅读:
实验三 IIR数字滤波器设计及软件实现03-20
走进大学校园02-14
教师职业道德自我评价02-24
2014年学术学位硕士研究生招生专业目录 - 图文07-10
腊子口隧道进口进洞方案01-24
一元一次方程应用题归类汇集04-11
信息化建设规划方案12-23
中华文化与民族凝聚力(下)试卷90分12-14
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- 滤波器
- 实验
- 实现
- 数字
- 设计
- 软件
- IIR
- “健康长伴”八宝粥产品策划书
- 浅谈农村留守儿童教育问题--教育概论
- 北京邮电大学第六届“研究生学术论坛”参赛手册
- 八年级英语上册学案第24课时
- CA锁(电子印章)办理流程及联系方式
- 历史中心与历史联系_对全球史观的冷思考
- 手把手教你组建磁盘阵列
- 税务师《涉税服务实务》知识点:纳税评估
- 电子科技大学大学物理II期末考试要求
- 2010网页设计师CIW认证 Dreamweaver
- 4.1平行四边形的性质【经典学案】
- 新编大学英语第三册课后翻译
- 英国优势产业情况介绍
- A critical question for HIV vaccine development Which antibodies to induce.
- 木窗帘盒、金属窗帘杆安装
- 教师备选题库(含2021人教版高中生物必修1优化探究学案第5章)
- 小学高年级课外阅读指导课教案
- 高中生物选修3专题1-2综合练习
- 飞机牵引和滑行安全要求
- 口袋妖怪白金版捉宠金手指