初中数学总复习专题讲座

更新时间:2024-02-20 22:54:01 阅读量: 经典范文大全 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

篇一:初中数学中考总复习专题资料

初中数学中考总复习专题资料

专题1:方程与几何相结合型问题

解决方法:1、先根据题设条件及有关知识设法求出两条线段的和与积,然后利用根与系数的关系达到解题的目的。

2、根据题设条件中告诉的两条线段应满足的二次方程,逆推出两线段的和与积各应该是什么,然后按照此目标探寻解题途径。

3、由题设条件及根与系数关系的关系得出两条线段的和与积,然后综合运用代数、几何等相关知识求解。

2例题:1、已知:a,b,c是△ABC三条边的长,那么方程cx??a?b?x?c?0的根的情况4

是( )A、没有实数根B、有两个不相等的正实数根 C、有两个不相等的负实数根 D、有两个异号实数根

2、已知一个直角三角形的两条直角边的长恰好是方程2x2?8x?7?0的两个根,则这个直角三角形的斜边长是( ) A

B、3C、6D、9

3、在Rt△ABC中,∠C=90°,斜边C=5,两直角边的长a,b是关于x的一元二次2方程x?mx?2m?2?0的两个根,求Rt△ABC中较小锐角的正弦值。

2练习:1、如果两个圆的半径的长分别是方程x?5x?6?0的两个实数根,且圆心距为5,

那么这两个圆的位置关系是( )A、外离 B、相交 C、外切D、内切

2、已知等腰三角形三边的长为a,b,c,且a?c,若关于x的一元二次方

程ax2?c?

0 )

A、15° B、30°C、45° D、60°

3、如图,C在以AB为直径的半圆O上,CD⊥AB于D,cosA?

24,BD、AC的长分别5是关于x的方程x??m?1?x?2m?0两根之和与两根之差,求这个方程的两个根

、如图,已知⊙O的半径是2,弦AB所对的圆心角∠AOB=120°,P是AB上一点 4

OP

O的两条切线AC和BC交于C,PE⊥AC于E,PF⊥BC于F,设PE=a,

PF=b,求以a、b为根的一元二次方程。

AF

B

1?5、已知关于x的方程x2??2k?1?x?4?,⑴求证:无论k取什么实数值,这个方程k????0?2?

总有实数根;⑵若等腰三角形ABC的一边长a?4,另两边的长b,c恰好是方程的两个根,求△ABC的周长。

6、在△ABC中,∠C=90°,斜边AB=10,直角边AC、BC的长是关于x的方程x2?mx?3m?6?0的两个实数根

(1) 求m的值

(2) 计算:sinA?sinB?sinA?sinB

7、已知:如图,AB是半圆O的直径,AC切半圆于A,CB交⊙O于D,垂足是E,BD=10,DE、BE是方程x?2?m?2?x?2m?m?3?0的两个根(DE<BE),求BC的长

22

专题2:与三角形、四边形面积有关的函数题

例题:1、如图,二次函数y?x2?4x?3的图象交x轴于A、B两点,交y轴于点C,则△ABC的面积为( )

A、6 B、4C、3 D、1

2、已知:二次

函数y?x2?bx?c与

?b4c?b2?,若S?APBP??,?,AB?x1?x24??2x轴交于A?x1,0?,B?x2,0?两点,其顶点坐标?1,则b与c的关系式是( )

A、b2?4c?1?0 B、b2?4c?1?0 C、b2?4c?4?0 D、b2?4c?4?0

3、已知直线y?ax?2?a?0?与两坐标轴围成的三角形面积为1,求常数a的值。

4、如图,直线y?1x?2分别交x,y轴于点A、C,P是该直线上在第一象限内的一点,2

PB⊥x轴,B为垂足,S?ABP?9,求点P的坐标。

25、已知:直线y??x?3与x轴、y轴分别交于点B、C,抛物线y??x?bx?c经过点

B、C,点A是抛物线与x轴的另一个交点,

(1)求抛物线的解析式;(2)若点P在直线BC上,且S?PAC?

1S?PAB,求点P的坐标。 2

k与直线y??x??k?1?在第二象限的交点,x6、如图,Rt△ABO的顶点A是双曲线y?

AB⊥x轴于B,且S?ABO?3。(1)求这两个函数的解析式;(2)求直线与双曲线的两个交2

点A、C的坐标和△AOC的面积。

y轴分别交于点A和点B,7、如图,已知直线y??x?2

与x轴、另一直线y?kx?b?k?0?

经过点C?1,0?,且把△AOB分成两部分。

(1)若△AOB被分成的两部分面积相等,求k和b的值;

(2)若△AOB被分成的两部分面积比为1:5,求k和b的值。

强化训练:

1、已知抛物线y?2x2?3x?m有(m为常数)与x轴交于A、B两点,且线段AB的长为

2、已知函数y?kx?b?k?0?的图象经过点P?3,2?,它与两坐标轴围成的三角形面积等于4,求该函数的解析式

3、已知抛物线y?x??2m?1?x?m?m?2 221。(1)求m的值;(2)若该抛物线的顶点为P,求△ABP的面积。 2

⑴证明抛物线与x轴有两个不相同的交点;(2)分别求出抛物线与x轴的交点A、B的横坐标xA,xB以及与y轴的交点C的纵坐标yC(用含m的代数式表示)

4、已知函数y?x2?kx?3图象的顶点坐标为C,并与x轴相交于两点A,B,且AB=4 ⑴求实数k的值; ⑵若P为上述抛物线上的一个动点(除点C外),求使S?ABP?S?ABC成立的点P的坐标。

5、在平面直角坐标系内,一次函数y?kx?b?kb?0,b?0?的图象分别与x轴、y轴和直线x?4交于点A、B、C,直线x?4与x轴交于点D,四边形OBCD(O是坐标原点)的面积是10,若点A的横坐标是?

1,求这个一次函数的解析式 2

6、设二次函数y??x?2x?3的图象与x轴交于A、B两点(A点在B点左边),一次函数y?kx?b的图象经过A点,又与二次函数的图像交于另一点C,且△ABC的面积等于10个平方单位,试求一次函数的解析式

2

篇二:初中数学专题讲座学习心得

初中数学复习课教学的研究专题讲座学习心得

李兴霞

通过对专题讲座初中数学复习课教学的研究的学习,我体会到了很多,对照王玉起教授的这堂讲座,我深刻的反思了一下自己,平常上复习课不就是像王教授说的那样在上吗?一上来不是总结罗列那些条条框框的定义、概念、性质等等就是搬出大量的练习题来进行练习,罗列那些东西要浪费至少半节课的时间,而我们知道一节课的时间非常有限,所以结果可想而知,会的同学早已会,不会的同学依然还是一头雾水,复习课的效果没有达到。

温故而知新自古以来就是书生一直秉承的良好学习习惯,那么复习课更是如此,不仅仅要达到“温故”的效果,更要力求“知新”,知什么新呢?知思想、知方法。如果说前面的零碎章节是在教学生做题,那么后面的复习课就是在教学生总结做题的思想和方法;如果前面是在授人以鱼,那么后面就是在授人以渔。我们教育的目的不就是如此吗?提供给学生答案不如教会他们寻求答案的方法。

通过学习,首先我知道了什么是复习课,复习课是根据学生的认知特点和规律,在学习的某一阶段,以巩固、疏理已学知识、技能,促进知识系统化,提高学生运用所学知识解决问题的能力为主要任务的一种课型。 其目的是温故知新,查漏补缺,完善认知结构, 促进学生解题思想方法的形成, 发展数学能力,促进学生运用数学知识解决问题的能力。

其次我了解了上复习课应注意的问题,要上好一堂复习课,其难度绝不亚于一堂新课,所以备课一定要认真,决不能有敷衍了事或直接不备课、裸上等这些没有多大意义的心态或行为。上一堂复习课,最重要的是引导学生归纳总结一些数学思想和方法,掌握一定的技巧。对此我分析了一下自己以前上复习课存在的问题并把他们罗列如下:

1 .对知识的单纯重复,只 “ 温故 ” 而不 “ 知新 ” ;

3 .对复习课没有明确、合理的设计理念;

4 . 复习课与习题课混而不清;

5 . 复习课的操作模式单一。

这样就会造成学生对知识得不到更深刻的理解,能力得不到更好的提高,学习效果无明显进展。 在复习阶段, 如果我能够转变教学理念,恰当地调整教学设计,帮助学生建立良好的知识体系,就能使复习课的效率 “ 事半功倍 ” 。

针对这些问题,在王教授的启示下,我学习到了解决这类问题的一些方法。

(一)温故

复习课的教学要根据课程标准的要求,巩固基础知识,对学生掌握知识和技能情况进行查漏补缺,对学生的数学思想、思维方法等方面查漏补缺。 以前的复习课占用大量时间采用背诵、默写、齐读、罗列等形式对概念、公式、法则、定理等进行简单重复和再现。这样不利于学生对所学知识的再认识和深入理解。那么如何进行“温故”呢?

1. 以小题带概念

复习不是让学生简单重复、再现已学的概念、公式、法则、定理等,而是精心设置一些题组,以带动概念的复习,使学生在具体的题目情境中对所学知识进行再认识,同时加深对知识应用的理解。

例如:有理数的复习课 (1)

用数轴上的表示下列各有理数,并求其相反数和绝对值。

-0.5,-3.5,-4.5,7,-4

通过做这么一个小题,学生就可以复习有理数及其分类,数轴,数轴的三要素,绝对值以及相反数,及复习了概念又练习了题目,一举两得。在做的过程中提示学生要注意的问题,能让全体学生轻松把好 “ 基础关 ” .

2 . 展示学生近期作业、练习中的错误。

平时注意搜集学生解题时常犯的错误,复习课时以改错形式重现,通过辨别达到巩固基础,查漏补缺的目的,再类比改编题目,加强对知识的正确理解。 通过这样的辨别,帮助学生查出漏洞,使他们进行正确计算 。

(二)强化知识间的联系,使所学知识成为一体

以后的每节复习课都要引导学生按一定的标准对所学的零碎知识进行梳理、 归纳、 整合,作不同角度的分类,弄清它们的来龙去脉,沟通其纵横联系,从整体上把握知识结构。 引导、帮助学生进行知识梳理,让学生课前采用结构框图、表格、树状图、大括号图等形式梳理知识,让学生了解所学的内容之间的联系,并发展其归纳能力。而我作为教师展示学生的梳理情况,并补充完善知识体系。

(三)深化提炼数学思想方法, 亦即“知新”。

数学的学习是从厚到薄,又从薄到厚的过程,复习的目的不仅是要使知识系统化,还要对所学的知识有新的认识,对解题的思想方法进行归纳或提炼,使方法系统化,让不同层次的学生都有不同的程度的提高。例如: 七年级数学第三章的复习应深化转化思想、方程思想以及分类讨论思想。

(四) 提高实践应用能力

学习的最终目的是为了实践。复习不是简单的重复, 系统化不是复习的最终目的, 它的最终目的是 促使学生将所学知识内化迁移、 举一反三、触类旁通, 综合运用知识解决 实际问题,培养学生创新意识和实践能力,提高学生的数学思维品质。

此外我认识到复习课还应注意: 复习课教学目标的制定应该建立在对前期教学效果及学生学习现状的回顾与反思的基础上制定,目标要力求准确、具体、有针对性;要面向全体学生,教学设计的每个环节都要注意照顾各层次的学生,习题训练或考试最好有针对性的编制分层题目,让各类学生都能倾其所学、尽情发挥、各得其所; 留给学生思考的时间与空间, 问题是思维的核心,只有提出了有一定深度的问题,才能引发学生的积极思维,思考需要时间,带有思考性的问题要给学生时间,先让他们独立思考,再进行师生、生生交流才能有效培养各类学生的数学能力。

通过进一步学习,我要在以后的教学中努力改进,学习先进的教学方式,改变以往对上复习课的旧观念,备好每一节复习课,引导学生真正的“温故”和“知新”。

篇三:2015年初中数学知识点中考总复习总结归纳

第一章 实数

考点一、实数的概念及分类 (3分)

1、实数的分类

正有理数

零有限小数和无限循环小数 实数 负有理数 正无理数

无限不循环小数负无理数 2、无理数

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:

(1)开方开不尽的数,如7,2等;

(2)有特定意义的数,如圆周率π,或化简后含有π的数,如

π

+8等; 3

(3)有特定结构的数,如0.1010010001?等; (4)某些三角函数,如sin60o等

考点二、实数的倒数、相反数和绝对值 (3分)

1、相反数

实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。

2、绝对值

一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数

如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。 考点三、平方根、算数平方根和立方根 (3—10分)

1、平方根

如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。 一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a的平方根记做“?2、算术平方根

正数a的正的平方根叫做a的算术平方根,记作“a”。 正数和零的算术平方根都只有一个,零的算术平方根是零。 a(a?0) 。 a”

a?0

a2?a? ;注意a的双重非负性:-a(a<0)a?0

3、立方根

如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。 一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意:?a??a,这说明三次根号内的负号可以移到根号外面。

考点四、科学记数法和近似数 (3—6分)

1、有效数字

一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。

2、科学记数法

把一个数写做?a?10n

的形式,其中1?a?10,n是整数,这种记数法叫做科学记数法。 考点五、实数大小的比较 (3分)

1、数轴

规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。 2、实数大小比较的几种常用方法

(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。 (2)求差比较:设a、b是实数,

a?b?0?a?b, a?b?0?a?b, a?b?0?a?b

(3)求商比较法:设a、b是两正实数,

ab?1?a?b;ab?1?a?b;a

b

?1?a?b; (4)绝对值比较法:设a、b是两负实数,则a?b?a?b。 (5)平方法:设a、b是两负实数,则a2

?b2

?a?b。 考点六、实数的运算 (做题的基础,分值相当大)

1、加法交换律a?b?b?a

2、加法结合律(a?b)?c?a?(b?c) 3、乘法交换律ab?ba 4、乘法结合律(ab)c?a(bc) 5、乘法对加法的分配律 a(b?c)?ab?ac

6、实数的运算顺序

先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

第二章 代数式

考点一、整式的有关概念 (3分)

1、代数式

用运算符号把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。 2、单项式

只含有数字与字母的积的代数式叫做单项式。

注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如?4ab,这种表示就是错误的,应写成?

13

2

132

ab。一个单项式中,所有字母的指数的和叫做这个单项式的次数。如?5a3b2c3

是6次单项式。

考点二、多项式 (11分)

1、多项式

几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数。

单项式和多项式统称整式。

用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。 注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。 2、同类项

所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同类项。 3、去括号法则

(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。 (2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。 4、整式的运算法则 整式的加减法:(1)去括号;(2)合并同类项。

整式的乘法:a?a?a(a)?a

nmnm

n

m?n

(m,n都是正整数)

mn

(m,n都是正整数)

n

(ab)?ab(n都是正整数) (a?b)(a?b)?a?b (a?b)?a?2ab?b (a?b)?a?2ab?b 整式的除法:a?a?a

m

n

m?n

2

2

2

2

2

2

2

2

n

(m,n都是正整数,a?0)

注意:(1)单项式乘单项式的结果仍然是单项式。

(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同。 (3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号。 (4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。 (5)公式中的字母可以表示数,也可以表示单项式或多项式。

(6)a?1(a?0);a

?p

?

1

(a?0,p为正整数) ap

(7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,单项式

除以多项式是不能这么计算的。 考点三、因式分解 (11分)

1、因式分解

把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。 2、因式分解的常用方法

(1)提公因式法:ab?ac?a(b?c) (2)运用公式法:a2?b2?(a?b)(a?b)a2?2ab?b2?(a?b)2a2?2ab?b2?(a?b)2

(3)分组分解法:ac?ad?bc?bd?a(c?d)?b(c?d)?(a?b)(c?d) (4)十字相乘法:a2?(p?q)a?pq?(a?p)(a?q)

3、因式分解的一般步骤:

(1)如果多项式的各项有公因式,那么先提取公因式。

(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的项数:2项式可以尝试运用公式法分解因式;3项式可以尝试运用公式法、十字相乘法分解因式;4项式及4项式以上的可以尝试分组分解法分解因式

(3)分解因式必须分解到每一个因式都不能再分解为止。 考点四、分式 (8~10分)

1、分式的概念

一般地,用A、B表示两个整式,A÷B就可以表示成

AA

的形式,如果B中含有字母,式子就叫做分BB

式。其中,A叫做分式的分子,B叫做分式的分母。分式和整式通称为有理式。

2、分式的性质

(1)分式的基本性质:

分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。 (2)分式的变号法则:

分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。 3、分式的运算法则

acacacadad??;????; bdbdbdbcbc

anan

()?n(n为整数); bbaba?b??; cccacad?bc?? bdbd

考点五、二次根式 (初中数学基础,分值很大) 1、二次根式

式子(a?0)叫做二次根式,二次根式必须满足:含有二次根号“

”;被开方数a必须是非负数。

2、最简二次根式

若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。

化二次根式为最简二次根式的方法和步骤:

(1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。

(2)如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。 3、同类二次根式

几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。 4、二次根式的性质

(1)(a)2?a(a?0)

a(a?0)

(2)a?a?

?a(a?0)

(3)ab?

2

a?b(a?0,b?0)

(4)

aa

(a?0,b?0) b5、二次根式混合运算

二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号)。

第三章 方程(组)

考点一、一元一次方程的概念 (6分)

1、方程

含有未知数的等式叫做方程。 2、方程的解

能使方程两边相等的未知数的值叫做方程的解。 3、等式的性质

(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。 (2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。 4、一元一次方程

只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程

ax?b?(0x为未知数,a?0)叫做一元一次方程的标准形式,a是未知数x的系数,b是常数项。

考点二、一元二次方程 (6分)

1、一元二次方程

含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。 2、一元二次方程的一般形式

本文来源:https://www.bwwdw.com/article/xwpb.html

Top