An I-band calibration of the SBF method at blue colours
更新时间:2023-06-01 11:16:01 阅读量: 实用文档 文档下载
- angelababy推荐度:
- 相关推荐
An I-band calibration of the SBF method at blue colours
Astronomy&Astrophysicsmanuscriptno.mieskeFebruary5,2008
cESO2008
AnI-bandcalibrationoftheSBFmethodatbluecolours
arXiv:astro-ph/0605660v1 26 May 2006
S.Mieske1,M.Hilker2,andL.Infante3
1
2
3
EuropeanSouthernObservatory,Karl-Schwarzschild-Strasse2,85748GarchingbeiM¨unchen,Germany
e-mail:smieske@ArgelanderInstitutf¨urAstronomie-AbteilungSternwarte,AufdemH¨ugel71,53121Bonn,Germanye-mail:mhilker@astro.uni-bonn.deDepartamentodeAstronom´ ayAstrof´ sica,Ponti ciaUniversidadCat´olicadeChile,Casilla306,Santiago22,Chilee-mail:linfante@astro.puc.cl
ABSTRACT
Context.Thesurfacebrightness uctuation(SBF)methodisapowerfultooltoderivedistancestogalaxiesforwhichsinglestarscannotberesolved.Uptonow,themethodhasbeencalibratedmainlyatredcoloursduetotheintrinsicfaintnessofblueearly-typegalaxies.Aims.InthispaperweaddresstheI-bandcalibrationoftheSBFmethodatbluecolours,theregimeofdwarfellipticalgalaxies(dEs).
Methods.Wepresentdeepandwide- eldVIphotometryofthecentralFornaxclusterobtainedatLasCampanasObservatory.WiththesedataweperformanSBFanalysisof25dEsintherange 16.5<MV< 11.2mag,0.8<(V I)0<1.10mag.Ourcolourcalibrationisaccuratetobetterthan2%.ForthecalibrationanalysisweexcludeeightdEswhoseSBFmeasurementwasa ectedbypoorseeing(FWHM 1′′).Results.OurSBFdataareinconsistentatthe3σlevelwithacolourindependentabsoluteSBFmagnitude
MI (V I)plane.Weobtainthefollowingone-branchempiricalSBFcalibration:
MI,whichissigni cantlylarger
thanfoundatreddercolours.ThisisinagreementwiththosetheoreticalSBFmodelsthatpredict
indicator.ThisnormalisedamplitudeconvertedtomagnitudeisintheframeworkofSBFinvestigationsreferredtoasappar-ent uctuationmagnitude
o printrequeststo:S.Mieske
An I-band calibration of the SBF method at blue colours
2S.Mieskeetal.:SBFcalibrationatbluecolours
surveytomeasuretheapparentI-bandSBFmagnitude
MIandthedereddenedcolour
(V I)0,determinedintherange1.05<(V I)0<1.3:
MRand(B R)in
the
range
1
.
<
(
B
R)<1.3magbytargetingnearbydwarfellipticalgalaxieswithknowndistances.TheseauthorsbasedtheircalibrationonthetheoreticalpredictionsofWorthey(1994)modelsandusedtheirobservationaldatatoadjustthezero-pointofthosemod-els.InJerjenetal.(2001)theyfoundthatthemodelspredictedtoofaintSBFamplitudesby0.13mag.Furthermore,theypro-posetwoseparatebranchesinthe
MRbecomesbrighterwithyounger
andmoremetal-richstellarpopulation.Thismeansthattheage-metallicitydegeneracyof
Mz
vs.(g z)for1.0<(g z)<1.3.Theyobtainedasigni cantslopeinthatcolourrange(4.5σ),butdidnot ndevidenceforabimodalityof
MF160Wand(V I)0intherange
1.05<(V I)0<1.24mag,whichwasbasedonlyongiantgalaxiesandyieldedacomparableslopetothatinequation(1).Forgroundbasedinfraredbands,Jensenetal.(1998)andLiuetal.(2002)presentedcalibrationsbetweenKand(V I)0,alsobasedpurelyongiantgalaxies.ThesmallsampleofJensenetal.intherange1.15<(V I)0<1.27magwasconsistentwithazeroslopebetween(V I)0and
MIareplottedvs.(V I)0for
asetofoldtointermediateagestellarpopulationswithawiderangeofmetallicities,takenfromdi erentliteraturesources:Worthey(1994),whouseshisownstellarpopulationmod-elsbasedonVandenBerg(1985)andYale(Greenetal.1987)isochrones;Liuetal.(2000),whousetheupdatedmodelsbyBruzual&Charlot(1993)plustheBertellietal.(1994)Padovaisochrones;Blakesleeetal.(2001)whousethestellarpopula-tionmodelsofVazdekisetal.(1996)andtheupdatedGirardietal.(2000)Padovaisochrones;andCantielloetal.(2003),whousethestellarpopulationsynthesiscodebyBrocatoetal.(1999,2000)andtheTeramo-Pisa-Romeisochrones(e.g.Castellanietal.1991,Castellanietal.1992andBonoetal.1997a,1997b).Equation(1)isalsoshowninFig.1.TheWortheymodelpredictionsaresplitupintotheoriginalpredic-
An I-band calibration of the SBF method at blue colours
S.Mieskeetal.:SBFcalibrationatbluecolours3
tionsfromWorthey(1994)1andthosethat
use
the
alternatestel-
lar
evolutionary
isochrone
library
fromBertelliet
al.(1994)2
.Forthe
sakeofclarity,weseparatethemodelpredictionsintotwodi erentplots.
Forredcolours,allmodelstraceequation(1)reasonablywell,withtheoriginalWorthey-modelsandthoseofBlakesleeetal.beingmoredeviantfromtheempiricalcalibrationthantheothermodels.Inthebluerange,thereisanotablediscrepancybetweenthemodelpredictions:theoriginalWorthey(1994)modelsandthoseofLiuetal.(2000)predictacolourinde-pendent
MIcausedby
agedi erences.Thosemodelspredictacontinuationofequa-tion(1)forintermediateagesanda atteningoftherelationforveryoldages.At(V I)0 0.90thisleadstoanuncertaintyofupto0.5maginrelating
MI= 2.0+2.25×((V I)0 1.09)mag
(2)
ThiscaserepresentsthetheoreticalSBFmodelsplottedintheleftpanelofFig.1,whichviewedasawholesuggestanon-zerobutshallowerslopethanthatoftheempiricalcalibrationatreddercolours.SeecaseC)belowforthereasonofchoosing(V I)=1.09ascolourlimit.
CaseC:Thisisequation(1)appliedfor(V I)0>1.09andaconstantof
MI 2.0mag
ofthemodelsintherightpanelofFig.1matchesthevalueof
MI= 2.00mag,likeincase
C).Thisisappliedtoallgalaxieswith(V I)0<1.09whosedistanceincaseB)islargerthanthemeandistance.Inotherwords,galaxieswith
MI= 2.00mag,whilethosebelowareassigned
relation(1).ThemeandistanceobtainedwiththiscaseisofcourseveryclosetothatincaseB).
aa
CarnegieObservatoriesSystemforMultiObjectSpectroscopy,http://llama.lco.cl/aoemler/COSMOS.html
3
An I-band calibration of the SBF method at blue colours
4S.Mieskeetal.:SBFcalibrationatblue
colours
Fig.1.Theoretical“isochrones”inthe
a
a
M
I
=
2.00magandthecontinuationofequation(1)for(V I)0≤1.09.SeeSect.4formoredetails.
strumentalmagnitudesweremeasuredwiththeIRAFpackageAPPHOTinaperturesequaltothoseusedbyLandolt(1994).Then,asinglephotometricsolutionwasdeterminedfortheentire8k×8kimage.Chip-to-chipvariationsaroundthemeanphotometriczeropointweresmallerthan0.02mag.Tocor-rectforgalacticreddeningandabsorption,weusedtheval-uesfromSchlegeletal.(1998),whogiveAI=0.025andE(V I)=0.018forthecoordinatesoftheFornaxcluster.
3.2.SBFmeasurement
TheSBFmeasurementprocedurewassimilartothatalreadyoutlinedinMieskeetal.(2005)basedonVLTFORS1photom-etry.Somenuanceshavebeenmodi ed:the uctuationsfromtheskybackgroundwerenowderivedinthesameimageclosetotheinvestigateddEinsteadofinacomparison eld.Thosesky uctuationsconsistedofundetectedbackgroundgalaxiesandfringing.Theseeingwasnotconstantoveronechip,gen-erallyincreasingtowardstheedgesofthe eldofview.Thiscausedacorrespondinglyvaryingamountof uctuationfromundetectedbackgroundgalaxiesalongthechip.Alsothefring-ingvariedinsomecasessigni cantlyoveronechip,seeFig.2.Thesetwodependencesonpositionrequiredalocaldetermina-
tionofsky uctuations.NotethatfortheVLTFORSphotom-etrytherewasnosigni cantfringingnorstrongvariationsofseeingamongthedi erentexposures.
Inturnwedescribetherelevantmeasurementstepsfordeter-miningtheSBFmagnitude:
1.ModelmeangalaxylightwithELLIPSEusingasigmaclip-pingalgorithmtodisregardcontaminatingsources,subtractthemodel.
2.Detectandsubtractremainingcontaminatingobjectsfromoriginalimage.
3.Modelmeangalaxylightonthecleanedimage.4.Subtractmodeloforiginalimage.
5.Divideresultingimagebysquarerootofthemodel,cutoutcircularportionwithradiustypically20-25pixel(4 5′′),cor-respondingtoabout4-8seeingdiskdiameters.
6.Maskoutcontaminatingsourceslikeforegroundstarsandbackgroundgalaxies.
7.Calculatethepowerspectrum(PS)ofthecleanedimage.8.CalculatethePSoftheskybackgroundinthreedi erentblankimagesectionsclosetotheinvestigatedgalaxy.ThisskybackgroundPScontainsboth uctuationcontributionsfromundetectedbackgroundgalaxiesas uctuationscausedbyfringing,seeexplanationatbeginningofthissubsection.
An I-band calibration of the SBF method at blue colours
S.Mieskeetal.:SBFcalibrationatbluecolours5
Normalisethese uctuationsbydividingtheseblankimagesbythemeangalaxyintensityintheregionwhereSBFaremea-sured.SubtractthisnormalisedbackgroundPSBGfromthePSoftheSBFimage.
9.ObtaintheazimuthalaverageoftheresultingPS.10.FitfunctionoftheformP(k)=E(k)×P0+P1
(3)
totheresult.Here,E(k)=PSF(k) W(k)withW(k)thePSofthemaskusedtoexcisecontaminatingsourcesandrestrictthemeasurementarea.PSF(k)istheundistortedpowerspec-trumofthePSFnormalisedtounityatk=0.PSF(k)isderivedfromonetothreewellexposedstar(s)inthesameimageclosetotherespectivegalaxy.Whenmorethanonestarwasused,theaveragePSF-PSwasadoptedasPSF(k).ThevariationsinPSFFWHMbetweenstarschosenforonegalaxyweresmall,around5%.UsingE(k)insteadofPSF(k)implicitlycorrectsforthepowerspectrumdampingatlowwavenumbersthatiscausedbytheconvolutionoftheundistortedPSF
(
k
)
with
thepowerspectrumofthe
mask(seeMieskeetal.2005).Theamountofpowerspectrumdampingatwavenumberzerowasonaverage0.11magwithagalaxy-to-galaxydispersionof0.04mag.Thesignal-to-noiseratiooftheSBFmeasurementisthende nedasS/N=P0
mIfrom
10 0.4 (MV+15)
=5(Milleretal.1998).Thecalculatedval-uesfor GCarelisted
inTable1,rangingbetween0.01magand
0.42magwithameanof0.06magandmedianof0.03mag.Thecolour(V I)0ofeachgalaxywasadoptedasthemeanoftwovalues: rst,the(V I)0estimatesfromtheIMACSdataintheregionwhereSBFweremeasured;second,thecoloursde-rivedbyusforthesamegalaxiesinHilkeretal.(2003).TheselatterdatawerebasedonWFCCDphotometrywiththe2.5mduPonttelescope,alsoatLasCampanas.Thosecolourshadbeendeterminedincircularaperturesof4′′radius,whichisincloseagreementtothesizeoftheregionwhereSBFweremeasured.ForthosegalaxiesenteringourSBFdataset,thesystematicdif-ferencebetweentheIMACSandWFCCDcoloursis0.017±
0.021mag,withascatterof0.10mag.Thisshowsthatourpho-tometriccolourcalibrationisaccuratetobetterthan0.02mag.Fig.3showstheCMDoftheinvestigatedgalaxiesforthevar-iouscoloursets.Thermsdispersionincolourofalinear tis0.083magfortheIMACSdata,0.068fortheWFCCDdataand0.058magforthemean,independentofmagnitude.Weadoptthisverydispersionof0.058magascolouruncertainty.Thisistobeseenasanupperlimittotherealcolourerrorbecausethermsdispersioncertainlyincludessome“cosmic”scatter.With(V I)0athand,
mI,
thisyieldedthe“nullhypothesis”distancemodulus(m M)A,seeTable1.Fig.4showsthumbnailimagesillustratingtheSBFmeasurementprocedurefortwooutofthe28dEswithclearSBFsignal.25ofthe28investigatedgalaxieshadS/N>3andenteredoursubsequentanalysis.Theirabsolutebrightnessesareintherange 16.5<MV< 11.2mag,theircentralsurfacebrightnessescovertheregime20.3<µV<24.6mag/arcsec2.Theyoccupyacolourrange0.8<(V I)0<1.10mag,ide-allysuitedforextendingtheTonrycolourrangetotheblue.InFig.5weshowthatthenullhypothesisSBFdistancemodulusdoesnotcorrelatewiththeS/NoftheSBFmeasurementnorwiththeamountofbackground uctuationsBG.
NotethelargerangeofBGvaluesinFig.5.Thishasthreerea-sons:The rstandmainreasonisrelatedtothefactthatBGisdeterminedby ttingequation(3)tothenormalisedskyback-groundPS.Forthis ttingwehavetoexcludethesamelowwavenumberregimethatisexcludedfor ttingthegalaxySBFamplitudeP0.SinceBGisonlyafractionofP0,thisexclusionoflowwavenumbershasastrongere ectonthe ttingpreci-sionforBGthanfor ttingP0.Indeed,thenegativevalueforBGthatismeasuredforFCC215(seeTable1andFig.5)isaconsequenceofthislowwavenumberexclusion.Theback-groundPSintheremainingwavenumbersispredominantlynoisedominatedsuchthataformallynegativevalueforBGis tted.Asaconsequenceofthat,theSBFdatawithpoorseeing(FWHM>0.85′′)showascatterinBGof0.16magwhichisal-mosttwiceaslargeasthescatterof0.09magforthedatawithgoodseeing(FWHM<0.85′′),seeFig.5.ThesecondreasonforthevariationofBGisthatthegalaxiesinvestigatedspanaconsiderablerangeinsurfacebrightness(>4mag).ThisleadstovaryingrelativeamountsofBG,giventhattheSBFsignalinlowersurfacebrightnessregionsismorestronglya ectedbyskybackground uctuations.Thethirdreasonisthesomewhatvaryingfringingamplitude,bothbetweendi erentchipsanddi erentnights,seeforexampleFig.2.
We nallynotethattheskybackgroundcorrectionofthegalaxySBFdataisdonebydirectlysubtractingtheskyback-groundPSimagefromthenormalisedgalaxylightPSimage.Onlythequanti cationofthecorrectionisachievedby ttingaPS.Totaketheuncertaintyarisingfromthepower-spectrum tandfromthesky uctuationvariabilityintoaccount,weadoptthescatterofP0resultingfromthesubtractionofthreedi er-entskybackgroundPSimagesaserrorestimateoftheSBFmeasurement,seethefollowingSect.3.2.1.
An I-band calibration of the SBF method at blue colours
6S.Mieskeetal.:SBFcalibrationatblue
colours
Fig.2.TwoimageexcerptsfromthesamechipandexposureclosetotwoinvestigateddEs,illustratingthevariabledegreeoffringing.Intheleftthumbnail,FCC194isatthebottomright.Intherightthumbnail,FCC196isatthebottom.Bothimageshavethesameintensitycuts.Notethefringingpatternsintherightthumbnail,whicharenotpresentintheleft
one.
Fig.3.ColourmagnitudediagramofthegalaxiesenteringourSBFanalysis,i.e.thoseoneswithanSBFS/N>3,seealsoFig.5.SmallbluecirclesindicatecoloursderivedfromthepresentIMACSdataset.SmallredasterisksindicatecoloursfromtheWFCCDdatasetofHilkeretal.(2003).Largeencir-cledasterisksisthemeanofbothvalues.TheVmagnitudeisfromtheWFCCDdatasetforallgalaxies.
TheerrorofP0wasestimatedintwoways:
1.basedontheMonteCarlosimulationspresentedinMieskeetal.(2003a).Forthemedianseeingofourdata(0.75′′),inter-polationofthesimulationresultsfor0.5and1.0′′forFornaxdEsand1hourintegrationyieldsthefollowinguncertainties:0.37magintherange 11>MV> 13mag,0.27magintherange 13>MV> 14.5mag,and0.20magintherangeMV< 14.5mag.Notethatthesimulationerrorsarecalcu-latedforimagesofthesamepixelscalethantheoneusedhere.ThefainterVLT-FORSzeropointsassumedinthesimulationsarepracticallycompensatedbythelargerintegrationtimesofourMagellan-IMACSdata.
2.fromthescatterofthe ttedvaluesforP0whensubtractingthethreedi erentskybackgroundpowerspectra.Thiswasanimportantdouble-checkoftheerrorsadoptedfromthesimu-lations,becausethefringingoftheIMACSdatarepresentanadditionaluncertaintysource,apartfromthephotonnoiseandbackgroundgalaxy uctuationswhichhadbeenincludedinthesimulations.
ThemaximumofbotherrorestimateswasadoptedaserrorinP0.Forsevenoutofthe25dEsinvestigated,thescatterfrombackgroundsubtractionwaslargerthantheMonteCarloesti-mate,seeTable1.Theresultingmeanerrorof(m M)is0.41magwhenadoptingcalibrationcaseA).Therearefourgalax-iesintherange 16.5<MV< 11.5magwhichwereim-agedtwiceinthecourseofoursurveysincetheywerelocatedintheoverlapofadjacent elds.Thedi erencesin(m M)betweenthosedoublemeasurementsrangedbetween0.10and0.35mag.Thisisencouraginglylow,indicatingthatouruncer-taintyestimatesareontheconservativeside.
3.2.1.ErrorestimateforSBFdistances
Theerrorof(m M)hastwoequallyimportantcontributions:uncertaintyin(V I)0andP0.
Theuncertaintyin(V I)0of0.058mag(seeabove)translatesintoa0.26magdistanceuncertaintyinthecaseoftheempiri-callycalibratedslope4.5.
3.3.Correlationbetweenseeingand
mIasa
functionofseeing,seeFig.6.Thosetwoobservablesshouldbeindependentofeachother.However,wedo nda2σsig-
An I-band calibration of the SBF method at blue colours
S.Mieskeetal.:SBFcalibrationatbluecolours
NameFCC222
1.036
FCC223
1.121
FCC241
0.900
FCC156
1.012
FCC196
0.898
FCC218
0.971
FCC140
0.881
FCC168
1.013
FCC214
1.016
FCC215
0.986
FCC192
0.860
LSB6-4
0.863
LSB10-8
20.01
28.72±0.37
5.5
0.29
0.04
0.64
31.76±0.45
31.24±0.39
30.73±0.37
19.87
28.26±0.37
8.1
0.17
0.02
0.86
31.31±0.45
30.79±0.39
30.27±0.37
19.40
28.74±0.45
4.2
0.41
0.01
0.68
31.21±0.52
30.98±0.47
30.75±0.45
19.07
28.75±0.37
7.5
0.27
0.03
0.62
31.09±0.45
30.93±0.39
30.76±0.37
18.88
28.69±0.37
9.9
0.24
0.04
0.66
31.05±0.45
30.88±0.39
30.70±0.37
18.54
29.11±0.37
4.5
0.39
0.02
0.67
32.07±0.45
31.60±0.39
31.12±0.37
18.17
29.07±0.27
7.6
0.21
0.02
0.73
31.61±0.37
31.34±0.30
31.08±0.27
17.67
29.17±0.27
5.3
0.24
0.07
0.79
32.04±0.37
31.61±0.30
31.18±0.27
17.24
29.24±0.31
7.1
0.41
0.42
1.20
31.61±0.41
31.43±0.34
31.25±0.31
16.40
29.31±0.20
9.4
0.22
0.03
0.65
32.18±0.33
31.75±0.24
31.32±0.20
15.86
29.56±0.20
11.0
0.23
0.02
0.71
31.44±0.33
31.44±0.33
31.44±0.33
15.65
mI
29.44±0.20
S/N4.1
BG0.05
GC0.07
seeing[′′]
0.65
(m M)A31.69±0.33
(m M)B31.57±0.24
(m M)C31.45±0.20
7(m M)D31.45±0.2031.44±0.3331.32±0.2031.25±0.3131.18±0.2731.08±0.2731.12±0.3731.05±0.4531.09±0.4531.21±0.5231.31±0.4530.73±0.37
Table1.ResultsofSBFmeasurementsforthe25FornaxdEswithS/N>3intheSBFmeasurement.Thegalaxiesareorderedbydecreasingbrightness.Inthe rstcolumn,the
reference
number
in
theFornaxClusterCatalogFCC(Ferguson&Sandage1989)isgiven.Thelastfourgalaxieshadbeentoofaintforthiscatalog.Theyarelabelledwitha eldnumberandrunningindexaccordingtoHilkeretal.(2003).AllcolumnshavemagnitudesasunitsexceptS/Nandseeing.(V I)0isthemeancolourofthephotometryfromHilkeretal.(2003)andthispaper.VisfromHilkeretal.(2003).Theotherparametersarederivedinthispaper.BGgivestheamountofbackground uctuationpresentintheoriginal uctuationimage,comprisingboth uctuationsfromundetectedbackgroundsourcesand uctuationsarisingfromfringing.(m M)Ato(m M)Dgivethefoursetsofdistancesobtainedwhenapplyingthefourdi erentcalibrationtestcases,seeSect.2.
ni cantcorrelationinthesensethatbadseeingdatahavestronger
mIisthata ttothesameseeingpowerspectrumyieldssys-tematicallyhigherP0whenexcludingmorelowkdatapoints(whichisthecaseforbadseeingdata).Wehavetestedthisforourstellarpowerspectra:fora xedassumedwidthofthepowerspectrum,the ttedP0dependsonlyverymarginally(toafewpercent)onthelimiting twavenumberk,evenwhenthe ttedpowerspectrumdatapointsareallbelow1/3ofP0.Wehavealsodouble-checkedwhetherforsomelargeseeingdatawemayerroneouslyhaveusedmarginallyresolvedobjectsforPSF tting.However,thiswasnotthecase.
Jensen,Tonry&Luppino(1998)arguethatpoorqualitySBFdatainIRSBFmeasurementsarepronetoarti cialincreasesofthe uctuationamplitudeduetoskybackground uctuations,imperfectgalaxymodellingorundetectedbackgroundsources.Forourdata,wecanmostlikelyexcludethee ectofsky uc-tuationsandundetectedbackgroundsources,seeSect.3.2.Thesky uctuationsareindependentofseeingandderiveddistance(seeabove),andtheglobularcluster uctuationsaresmall.We
concludethattheimperfectgalaxysubtraction(seee.g.rightpanelofFig.4)isthemajorcontributortotheincreaseof uc-tuationpoweratlargeseeing.ThisisbecausethePSFscaleapproachesthatexpectedforgalaxymodelresiduals(theSBFimagesfortheworstseeingdatahaveadiameterofonlyabout8PSFFHWM)suchthatthecommonlyappliedrejectionoflowwavenumbersinthepowerspectrum tcanapparentlynotremovealltheresidualpowerforthebadseeingdata.
FortheSBFcalibration,wethereforeexcludealldatawithsee-ingworsethan0.85′′FWHM.Doingthisremovesthedepen-denceofseeingon
mIvs.(V I)0.
An I-band calibration of the SBF method at blue colours
8
Calibration
S.Mieskeetal.:SBFcalibrationatbluecolours
d(m M)
d(V I)0
31.64±0.14
Equ.(1)and(2)(caseB)
31.13±0.10
Equ.(1)andconstant(caseD)
+0.190.47 0.10+0.180.45 0.10
0.40±0.020.31±0.02
2.23±1.681.775±1.65
0.079±0.079 0.189±0.062
(m M)SBF
Equ.(1)(caseA)
31.24±0.10
Constant(caseC)
31.23±0.08
31.39±0.12
σ(m M)
+0.180.44 0.10+0.110.28 0.06
δ(m M)
0.35±0.020.37±0.02
d(m M)
dV0
0.82±1.130.57±0.71
0.102±0.051 0.037±0.033
Table3.LikeTable2,butnowincludingall25investigateddEs.
Inallplots,galaxieswithseeingworsethan0.85′′areindi-cated.Table1givestheresultsinnumbers.Table2summarises
theparametersforeachcalibrationcasewhenusingonlythose17galaxieswithseeingbetterthan0.85′′.Shownisthemean(m M),thedistancescatter,themeanmeasurementerror,andthedependenceof(m M)oncolourandmagnitude(d(m M)).Table3showsthesame,butforall25galaxies.
Asastartingpointtotestthesecases,wehavetoadopta du-cialFornaxclusterdistancemodulus.ThemeanoftheCepheid,PNLF,GCLFandI-bandSBFdistancefromtheHST-KeyprojectsummaryofFerrareseetal.(2000)is(m M)=31.52mag.Notethathere,theCepheidscaleisusedtocalibratetheothermethods.Freedmanetal.(2001)presentarevisedCepheidcalibration,whichcausesadownwardcorrectionof0.13magfortheaverageCepheiddistancetotheFornax,VirgoandLeoIclusters(Table8oftheirpaper).Theresult-ingcorrectedmeanFornaxdistancethenis31.39mag.ThiscorrespondsexactlytotherevisedCepheiddistanceforFornaxfromFreedmanetal.(2001),whichhasanerrorof0.12mag.Therefore,wede neareferencedistanceof(m M)=31.39±0.12mag.BecauseofthesameCepheidscalerevision,alsotheformalzero-pointofequation(1)becomesfainterby0.09±0.02mag,ascalculatedfromcomparingtherevisedCepheiddistanceswiththeoldonesusedbyTonryetal.(1997)fortheirgroupcalibration.However,thisisasmallchangecomparedtothezero-pointscatterofmodelsshowninFig.1.Wedidthere-forenotincludethiso setinthetestcases,alsobecausetheTonrycalibrationdidnotextendtobluecolours.
Wede nethreecontrolcriteriaforthefourdi erentsetsofdis-tancemoduli:1)wedemandthatthereisnosigni cantcorrela-tionbetweencolour(V I)0anddistance(m M).Sinceweaimatacalibrationof
dV0
MIwithsmallcosmicvariance–aspredictedbytheLiuandWortheymodels,seeFig.1–doesnot tourSBFmea-surements.ThelargescatterofcaseC)isaccompaniedbyacleartrendofVwith(m M),signi cantatthe3σlevel.ThisstrengthenstheconclusionthatcaseC)isnotthebestapprox-imationofourdata.AlsoincaseB)thereissomecorrelationbetweenVand(m M),butatslightlylowersigni cance(2σ).CaseA)showsamarginaltrendofcolourwithdistance,butonlyatthe1.3σsigni cance.FortheshallowercalibrationcasesB)andD)thenominalvalueofthetrendbecomesverysmall.ForcaseC)thenominalslopeiscomparablebutofoppo-sitesigntothatincaseA).Thisisconsistentwithaslight at-teningoftherelation
between
An I-band calibration of the SBF method at blue colours
S.Mieskeetal.:SBFcalibrationatbluecolours
9
Fig.4.ExamplethumbnailsoftheSBFmeasurementproce-durefortwoFornaxclusterdEs.LeftFCC194,rightLSB6-4.Thumbnailsizeis12.5′′.Imagesequencefromtoptobottom:1.Originalgalaxyimage.2.Galaxylightmodelsubtractedfromformerimage.3.Formerimagedividedbysquarerootofgalaxymodel,withcontaminatingsources/ tresidualsmaskedandwiththemeasurementregionrestrictedtoacirculararea.4.AzimuthallyaveragedpowerspectrumoftheformerSBFimage,withthe tindicatedbythedashedline.
Wenotethatforthefullsample,caseC)isrejectedatevenhighersigni canceduetoalowermeandistanceandstrongercorrelationbetween(m M)and(V I
).
Fig.5.DistancemodulusforcaseA)(seetext)plottedvs.S/NoftheSBFmeasurement(left)andtheamountofback-ground uctuationsBGcontributingtothemeasuredSBFsig-nal(right).ThethreesourcesmarkedwithlargecirclesintherightpanelarethosebelowS/N=3intheleftpanel.Filledcirclesareforgalaxieswithseeingbelow0.85′′,opencirclesforseeingabove0.85′′,seeFig.6and
text.
Fig.6.The uctuationmagnitude
mIisinsigni cant.
4.2.Theempiricalapproach
Wealsogivethebest tresultofapurelyempiricalcalibrationvalidinthecolourrange0.85<(V I)0<1.10mag,assuming(m M)=31.39±0.12mag:
An I-band calibration of the SBF method at blue colours
10S.Mieskeetal.:SBFcalibrationatblue
colours
Fig.7.ApparentVmagnitudeplottedvs.SBFdistancemodu-lusforthefourdi erentassumedcalibrationrelationsA)toD),asde nedinSect.2andTable2.Filledcirclesaregalaxieswithseeingbetterthan0.85′′.Theirmeandistanceandits1σerrorareindicatedbytheverticalsolidanddashedlines.Thegreenticksat(m M)=31.39magmarkthereferenceFornaxclusterdistancefromFreedmanetal.(2001)anditserror.Opencirclesaredatapointsforgalaxieswithseeingworsethan0.85′′.Theywerenotincludedincalculatingthemeandistanceandareonlyshownforthesakeof
completeness.
Fig.8.(V-I)0colourplottedvs.SBFdistancemodulusforfourdi erentassumedcalibrationrelations,seeFig.7.
Fig.9.ApparentSBFmagnitude
mIfainterthanthelineforcaseB),while
applyingthesolidandlongdashedlinetotheothergalaxies.
ThezeropointerrorincludesourstatisticalerrorsandtheerroroftheFornaxclusterreferencedistance.Thestatisticalerrorsofthezeropointandtheslopewerederivedfromthedisper-sionofthedatapointsaroundthelinearrelation,notfromthesinglemeasurementerrors(thiswouldhavedecreasedtheer-rorsby50%).TheformaldisagreementwiththeTonryslopeof4.5is1.1σ,whilethedisagreementwitha0slopeis1.3σ.Forthefullsampleofgalaxies,thezero-pointchangesto 2.31±0.15,andtheslopeto2.80±1.36.Notsurprisingly,thisagreeswiththe ndingfromthesemi-empiricalapproachthatcaseC)isrejectedathighersigni canceforthefullsample.
Toquantifytheintrinsicscatter–the“cosmicvariance”–oftheempirical“goodseeing”calibration,wesubtractinquadraturethemeansinglemeasurementuncertaintyin
MItobemoresensitivetodi erentage/metallicity
combinationsinthebluethaninthered(seeleftpanelofFig.1).NotethatthetwotheoreticalpredictionsbyLiuetal.andWortheyetal.intherightpanelofFig.1thatpredictacolourindependent
An I-band calibration of the SBF method at blue colours
S.Mieskeetal.:SBFcalibrationatbluecolours11
5.Discussion
TheresultsoftheprevioussectionsuggestanoverallshallowerslopethantheTonryslopedeterminedforredcolours,accom-paniedbyasigni cantcosmicscatter.ThequestioniswhetherthisiscreatedbyasinglerelationwithsomescatterasincaseB)(seealsoMeietal.2005),orbyatwo-branchsolutionasincaseD)(Jerjenetal.2001).CaseD)containstheimplicitas-sumptionthata)therelationbetweenMI-(V I)0plane.
Toinvestigatethis,wetestthedistancedistributioninthedif-ferentcalibrationcasesforbimodality.WeuseKMM(e.g.Ashman,Bird,&Zepf1994)inhomoscedasticmodetoquan-tifytheprobabilitywithwhichadouble-peakedGaussiandis-tancedistributionispreferredoverasingle-peakedone.Thisiscertainlyaverycrudeestimator,butthemeasurementuncer-taintiesandlownumbersdonotallowformoredetailedconsid-erations.Thecon dencelevelswithwhichabimodalGaussianispreferredoveraunimodalonearethefollowing:88%forcaseA),92%forcaseB),64%forcaseC),and27%forcaseD).Thestrongestcaseforadouble-peakeddistributioniscaseB),yieldingonemainpeakwith12galaxiesandasecondaryonewith ve.These vegalaxiesaretheonesbelowthelongdashedlineinFig.9.ThefactthattheprobabilitiesforcasesB)andD)aresodi erentisconsistentwithapropertwo-branchcalibrationasopposedtoaunimodalonewithbroadscatter.However,thecon dencelevelforcaseB)isonly1.8σ,andthereforethis ndingisstillofindicativenature.WenotethattheSBFS/Nandalsotheamountofbackground uctuationsBGisnotafunctionofdistancemodulus.Bothentitiesarein-distinguishablebetweenSBF-brightandSBF-faintsample.Arethereanyotherdi erencesbetweendEsbelongingtothebrightandfaint
mIisinthatcontextconsistentwithat
leasttwoseparatedwarfformationepisodesinFornax.
We nallynotethattheaverageprojectedradialdistancetoNGC1399isindistinguishableforbothsamples,indicatingthatbothgroupsarenotdistributedinasigni cantlydi er-entfashion.DuetotheintrinsicfaintnessoftheinvestigateddEs,onlythreeofthemhavespectroscopicmetallicitiesavail-able(Held&Mould1994andMieskeetal.2006),ofwhichonlyFCC211isbluerthan(V I)0=1.09.Thisobviouslydoesnotallowoneaspectroscopiccon rmationofbimodalityintheage-metallicitydistribution.
5.1.RevisitingtheHydraandCentaurusSBF
measurements
Attheendofthisdiscussionwerevisittherelativedistancebe-tweenHydraandCentaurus.Thepurelyempiricalcalibrationrelation(5)for0.85<(V I)0<1.10magcanbeusedtochecktheSBFdistancestothedEdominatedsampleofHydraandCentaurusclustergalaxiesfromMieske&Hilker(2003b)andMieskeetal.(2005).Thereisa0.05magoverlapofthecolourregimeforrelation(5)withthatofTonry’srelation(1).IntheHydra/Centauruspapersweassumedrelation(1)toholdfor(V I)0>1.00,anda50%smallerslopefor(V I)0<1.00.Boththezero-pointandslopeofrelation(5)areconsistentwiththatadoptedfor(V I)0<1.00inthosepapers.Thatis,theSBFdistancesremainunchangedinthecaseof(V I)0=1.00asthelimitbetweensteepandshallowslope.Ifwerestrictthevalidityofrelation(1)toHydra/Centaurusgalaxieswith(V I)0>1.10andadopttheslopeofrelation(5)forbluercolours,themeandistanceofbothsamplesbecomes0.09maglower.I.e.thereisnoconsequencefortherelativedistance.Theuncertaintyofre-lation’s(5)zero-pointislargerthanthisdi erence.ThereforewecanstatethattheblueSBFcalibrationfromthispaperdoesnotchangetherelativeHydra/Centaurusdistancenordoesitrequireachangeintheabsolutedistances.
6.Summaryandconclusions
WehavepresentedI-bandSBFmeasurementstakenwithIMACS@Magellanforasampleof25dEsintheFornaxclus-terinthecolourmagnituderange 16.5<MV< 11.2magand0.8<(V I)0<1.10mag.TheaimofthisinvestigationwastoaddresstheSBFcalibrationatbluecolours.Ourcolourcalibrationisaccuratetobetterthan0.02mag.Toavoidobser-vationalbiasestowardstoobrightSBFamplitudes,werestrictourcalibrationsampletothose17galaxieswithseeingbetterthan0.85′′.
Theseareourresults:
–OurSBFdataareinconsistentatthe3σcon dencelevelwithaconstant,colourindependentabsoluteSBFmagni-tude
MIand
(V I)0.Thereissomeevidencethatthisslopeisshallowerthanthevalueof4.5foundbyTonryetal.(1997)atreddercolours,butatlessthan2σ.–Inthe
An I-band calibration of the SBF method at blue colours
12S.Mieskeetal.:SBFcalibrationatbluecolours
asingleonewithsomeuniformscatter.We ndevidencethatthefaintergalaxiesinoursamplesexhibityoungerinte-gratedagesandhighermetallicitiesthanthebrightergalax-ies.
–FromapurelyempiricalSBFcalibration(relation
5)wede-ducea0.34±0.14magcosmicscatterof
MItobemoresensitivetodi erentage/metallicity
combinationsinbluecoloursthanatredcolours.
–ApplyingtheempiricalcalibrationtotheSBFmeasure-mentsofHydraandCentaurusclusterdEsfromMieske&Hilker(2003b)andMieskeetal.(2005)hasnoe ectontherelativeSBFdistanceofbothgalaxyclusters.Alsotheabsolutedistancesdonotrequirecorrection.
Acknowledgements.Wethanktheanonymousrefereeforhiscom-mentsandsuggestionswhichhelpedtoimprovethepaper.Weowethankstothesta atLasCampanasObservatoryfortheirassistanceincarryingouttheobservations.SMacknowledgessupportbyDFGprojectHI855/1andDAADPh.D.grantKennzi erD/01/35298.LIwassupportedbyFONDAP“CenterforAstrophysics”.
References
Ashman,K.M.,Bird,C.M.,Zepf,S.E.1994,AJ,108,2348
Bertelli,G.,Bressan,A.,Chiosi,C.,Fagotto,F.,&Nasi,E.1994,
A&AS,106,275
Blakeslee,J.P.,&Tonry,J.L.1995,ApJ,442,579
Blakeslee,J.P.,Vazdekis,A.,&Ajhar,E.A.2001,MNRAS,320,193Bono,G.,Caputo,F.,Cassisi,S.,Castellani,V.,&Marconi,M.1997a,
ApJ,479,279
Bono,G.,Caputo,F.,Cassisi,S.,Castellani,V.,&Marconi,M.1997b,
ApJ,489,822
Bothun,G.D.,Impey,C.D.,&Malin,D.F.1991,ApJ,376,404
Brocato,E.,Castellani,V.,Raimondo,G.,&Romaniello,M.1999,
A&AS,136,65
Brocato,E.,Castellani,V.,Poli,F.M.,&Raimondo,G.2000,A&AS,
146,91
Bruzual,G.,&Charlot,S.1993,ApJ,405,538
Cantiello,M.,Raimondo,G.,Brocato,E.,&Capaccioli,M.2003,AJ,
125,2783
Castellani,V.,Chie ,A.,&Pulone,L.1991,ApJS,76,911Castellani,V.,Chie ,S.,&Straniero,O.1992,ApJS,78,517Dirsch,B.,Richtler,T.,Geisler,D.etal.2003,AJ,125.,1908FergusonH.C.,SandageA.,1989,ApJ346,53
Ferrarese,L.,Mould,J.R.,Kennicutt,R.C.etal.2000,ApJ,529,745Freedman,W.L.,Madore,B.F.,Gibson,B.K.etal.2001,ApJ,553,
47
Geha,M.,Guhathakurta,P.,vanderMarel,R.P.2003,AJ,126,1794Girardi,L.,Bressan,A.,Bertelli,G.,&Chiosi,C.2000,A&AS,141,
371
Green,E.M.,Demarque,P.,&King,C.R.1987,Therevised
Yaleisochronesandluminosityfunctions,NewHaven:YaleObservatory,1987
Harris,W.E.,Whitmore,B.C,Karakla,D.,Okon,W.,Baum,W.A.,
Hanes,D.A.,Kavelaars,J.J.2006,ApJ,636,90HeldE.V.,MouldJ.R.,1994,AJ107,1307
Hilker,M.,Mieske,S.,&Infante,L.2003,A&AL,397,L9
Hilker,M.,Mieske,S.,&Infante,L.2005,toappearinthe
proceedingsoftheIAUC198”Near-FieldCosmologywithDwarfEllipticalGalaxies”,H.Jerjen&B.Binggeli(eds.),astro-ph/0505186
Jacoby,G.H.,Branch,D.,Ciardullo,R.etal.,1992,PASP,104,599
ApJ,468,519
Jensen,J.B.,Tonry,J.L.,&Luppino,G.A.1998,ApJ,505,111Jensen,J.B.,Tonry,J.L.,&Barris,B.J.,2003,ApJ583,712Jerjen,H.,Freeman,K.C.,&Binggeli,B.1998,AJ116,2873Jerjen,H.,Freeman,K.C.,&Binggeli,B.2000,AJ119,166
Jerjen,H.,Rekola,R.,Takalo,L.,Coleman,M.,&Valtonen,M.,2001,
A&A380,90
Jerjen,H.,Binggeli,B.,&Barazza,F.D.2004,AJ,127,771
Karick,A.,Drinkwater,M.J.,Gregg,M.D.2003,MNRAS,344,188Kissler-Patig,M.2000,ReviewsinModernAstronomy13:New
AstrophysicalHorizons,editedbyReinhardE.Schielicke.Hamburg,Germany:AstronomischeGesellschaft,2000.,p.13Kundu,A.,&Whitmore,B.C.2001,AJ,121,2950Landolt,A.U.1992,AJ,104,340
Liu,M.C.,Charlot,S.,&Graham,J.2000,ApJ,543,644Liu,M.C.,&Graham,J.R.2001,ApJletters,557,31
Liu,M.C.,Graham,J.R.,&Charlot,S.2002,ApJ,564,216Luppino,G.A.,&Tonry,J.L.1993,ApJ,410,81
Lynden-Bell,D.,Faber,S.M.,Burstein,D.etal.1988,ApJ,326,19Mei,S.,Blakeslee,J.P.,Tonry,J.L.etal.(ACSVCSteam)2005,ApJ,
625,121
Mieske,S.,Hilker,M.,&Infante,L.2003a,A&A,403,43Mieske,S.&Hilker,M.2003b,A&A,410,455
Mieske,S.,Hilker,M.,&Infante,L.2005,A&A,438,103Mieske,S.,Hilker,M.,Infante,L.&Jord´an,A.2006,AJ,131,2442Miller,B.W.,Lotz,J.,Ferguson,H.C.,Stiavelli,M.,&Whitmore,B.C.
1998,ApJ,508L,133
Pahre,M.A.,&Mould,J.R.1994,ApJ,433,567Peng,E.,Jord´an,A.,C ot´e,P.etal.(ACSVirgoClusterpaperIX)2006,
ApJ,639,95
Schlegel,D.J.,Finkbeiner,D.P.,&Davis,M.1998,ApJ,500,525Tonry,J.L.,&Schneider,D.P.1988,AJ,96,807
Tonry,J.L.,Blakeslee,J.P.,Ajhar,E.A.,&Dressler,A.1997,ApJ,475
399
Tonry,J.L.,Blakeslee,J.P.,Ajhar,E.A.,&Dressler,A.2000,ApJ,
530,625
Tonry,J.L.,Dressler,A.,Blakeslee,J.P.etal.2001,ApJ,546,681Vandenberg,D.A.1985,ApJS,58,711
Vazdekis,A.,Casuso,E.,Peletier,R.F.,&Beckman,J.E.1996,ApJS,
106,307
Worthey,G.1994,ApJS,95,107
正在阅读:
An I-band calibration of the SBF method at blue colours06-01
关于三公经费自查报告范本04-03
运动会班级文化展示解说词09-05
(完整word版)小学四年级第一学期班主任工作总结08-17
《金属凝固原理》思考题解答08-27
管理学11-24
幼儿园大班开学第一课教案-健康安全领域07-24
投资性房地产会计处理若干问题探讨01-24
(0037)《计算机导论》复习思考题答案11-26
高考语文古诗词鉴赏最新题集05-16
- 1A multistage camera self-calibration algorithm
- 2Immersive Calibration PRO Step By Step Guide - Dome
- 3Orthogonal polynomial method and odd vertices in matrix mode
- 4A Combining Method of Quasi-Cyclic LDPC
- 5A representative sample of Be stars III H band spectroscopy
- 6Orthogonal polynomial method and odd vertices in matrix models
- 7admm_slides_Alternating Direction Method of Multipliers
- 8贡献边际分析法(Contribution Analysis Method)
- 92010级大学英语期末Band 3 A卷
- 10Orthogonal polynomial method and odd vertices in matrix models
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- calibration
- colours
- method
- band
- blue
- SBF
- 《预防校园欺凌》主题班会计划总结及图片
- 关于全校性多学科渗透环境教育的总体规划和要求及落实情况2
- 2012年中考政治模拟试题
- 历史八年级上册第一单元复习提纲
- 小学三年级数学上册口算题
- 企业公共关系危机管理研究
- 基于电阻应变式传感器电子秤设计
- 农林类院校计算机辅助设计及应用公选课教学改革研究
- 建筑施工项目绿色施工方案完版
- 基于生态位理论的生态工业园竞争力研究
- 小学二年级数学竞赛试题及答案
- 房地产市场的竞争对手与竞争策略new
- 拓展训练团队建设,万众一心
- 2012届语文模拟试题
- 第八课走进国际社会 学案-一中政治组
- D8_3全微分
- 缅甸优质翡翠的成因与赌石预测方法总结
- 学习情境2-发动机总体构造认知
- 育软教育电子政务平台介绍
- 2016年02月27日383274603的高中化学组卷(1)