不定积分培优讲义

更新时间:2023-10-11 22:46:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

不定积分

内容要点

1.(影子法 LIATE) 2.基本的2个? 一、基本概念与性质

1.原函数与不定积分的概念

2.不定积分的性质

设 ?f?x?dx?F?x??C,其中F?x?为f?x?的一个原函数,C为任意常数。则 (1)

?F??x?dx?F?x??C

?? 或?dF?x??F?x??C

???(2) ??f?x?dx??f?x? 或d??f?x?dx??f?x?dx

(3) (4) ?kf?x?dx?k?f?x?dx ?f?x??g?x???dx??f?x?dx??g?x?dx ??3.原函数的存在性 1)设f?x?在区间I上连续,则f?x?在区间I上原函数一定存在 2)初等函数的原函数不一定是初等函数

?sin?x2?dx,?cos?xxa?12?dx,?sinxxdx,?cosxxdx,?dxlnx,?e?xdx

2二、基本积分公式 1.?xdx?1aa?1?C (a??1,实常数)

2.?dx?lnx?C

x3.?adx?x1lnaxa?C (a?0,a?1)

x?exdx?e?C

4.?cosxdx?sinx?C 5.?sinxdx??cosx?C

6.?secxdx?7.?cscxdx?22?cos?sin12xxdx?tanx?C

12dx??cotx?C

8.?tanxsecxdx?secx?C 9.?cotxcscxdx??cscx?C 10. ?tanxdx??lncosx?C 11. ?cotxdx?lnsinx?C 12. ?secxdx?lnsecx?tanx?C 13. ?cscxdx?lncscx?cotx?C 14. ?15. ?16. ?dxa?x22?arcsinxa?C (a?0)

dxa?xdxa?xdxx?a22222?1a1arctanxa?C (a?0)

?2alna?xa?x2?C (a?0) 17. ?2?lnx?x?a2?C (a?0)

三、换元积分法和分部积分法

1.第一换元积分法(凑微分法 影子法) 设?f?u?du?F?u??C,又??x?可导,则

?f????x??????x?dx??f????x???d??x?令u???x??f?u?du

?F(u)?C?F????x????C

常用的微分公式要“倒背如流”,也就是非常熟练地凑出微分。 常用的几种凑微分形式: (1) ?f?ax?b?dx?(2) ?f?ax?b?xnn?11a?f?ax?b?d?ax?b? (a?0) ?f?axna1ndx??b?d?ax?b? (a?0,n?0)

n(3) ?f?lnx?dxx??f?lnx?d?lnx?

(4) ?f??1?dx?1??f?2???x?x?x??1?d???x?? ?(5) ?f??xxdxxx?2?f1?x?d?x?

xx(6) ?f?a?adx??f?a?d?a? (a?0,a?1) lna?f?ex?f?e?edx?xx?d?e?

x(7) ?f?sinx?cosxdx??f?sinx?d?sinx?

(8) ?f?cosx?sinxdx???f?cosx?d?cosx? (9) ?f?tanx?secxdx?22?f?tanx?d?tanx?

(10) ?f?cotx?cscxdx???f?cotx?d?cotx? (11) ?f?secx?secxtanxdx??f?secx?d?secx?

(12) ?f?cscx?cscxcotxdx???f?cscx?d?cscx? (13) ?f?arcsinx?1?x2dx??f?arcsinx?d?arcsinx?

(14) ?f?arccosx?1?x2dx???f?arccosx?d?arccosx?

(15) ?f?arctanx?1?x2dx??f?arctanx?d?arctanx?

(16) ?f?arccotx?1?x2dx???f?arccotx?d?arccotx?

(17) ?1??f?arctan?1??1?x???dx??farctandarctan???? 2?1?xx??x??(18)?f?lnx???2?x?a222????????dx?x?af?lnx???2??f?lnx???f?lnx????x?a22????d?ln?x?????d?ln?x?x?a22?? (a?0) ?? (a?0)

(19)??x?a222dx?x?a?x?a22x?a22

(20) ?f??x?f?x?dx?lnf?x??C ?f?x??0?

2.第二换元积分法

?f?x?dx令x???t???1??f??t?tdt?Gt?C?G?????????x???????C,

其中t???1?x?为x???t?的反函数。

第二换元积分法绝大多数用于根式的被积函数,通过换元把根式去掉,其常见的变量替

换分为两大类:

第一类:被积函数是x与nax?b或x与n如

e?b等,只要令根式xax?bcx?d或由e构成的代数式等的根式,例

xg?x??t,解出x???t?已经不再有根式,那么就作这种变

量替换x???t?即可

第二类:被积函数含有Ax?Bx?C?A?0?,如果仍令2Ax?Bx?C?t,解出

2x???t?仍是根号,那么这样变量替换不行,要作特殊处理将A?0时先化为22A??x?x?l?;A?0时,先化为?0??22?A?l??x?x0??然后再作下列三种三角替换??之一:

根式的形式 所作替换 三角形示意图(求反函数用) a?x 22x?a sint a?x 22x?a tant x?a 22x?a sect 值得注意:如果既能用上述第二换元积分法,又可以用第一换元积分法,那么一般用第一换元积分法比较简单。

【例1】

令x?a=u22?xx?adx?133221?213x?ad?x?a2222?

1?2udu?u2?C??x?a22?3?C

【例2】

22?x?ax22dx?12?x?ax22d?x?a222?22令x?a=t122?tt2?adt 22??tt2?adt??2?a?1?22t?a???dt ?2?t?a2lna?ta?t?C?x?a?2a2lna?a?a?xa?x2222?C

去根号 倒代换 高次代换 三角代换、部分影子代换

3. 分部积分法。 设 u?x?, x?v?均有连续的导数,则

?u?x?dv?x??u?x?v?x???v?x?du?x?

???v??u?xx?d?x??v??x????u??xu xvxdx使用分部积分法时被积函数中谁看作u?x?、谁看作v??x?有一定规律。

L I A T E 典型例题

一、直接积分法 【例1】 求??1?x?x2dx.

解 原式??1?2x?xx122dx???x?12?2x2?x2dx

13? ?2x?43x2?325x2?C

5

【例2】 求下列不定积分 (1)?x?1x?124dx (2)?42dxx?x?1?

解 (1)?x?1x?1dx???x4?1??22x?1dx??x2??2x?1??2?dx ??x?1??3=

3?x?2arctanx?C

14sinu?C?x?44x2?C

四、分部积分法(有时还用了换元积分法) 【例1】 求下列不定积分 (1)?xedx

(3)??3x?x?1?cosxdx

2?x(2)?xe2?2xdx

解 (1)?xedx???xde(2)?xe=?12122?2x?x?x??xe?x?2?edx??(x?1)e?2x?x?x?C

dx??12?xde2?2x??212xe1?12?e

?2xdx

2xe2?2x??12xe?2xdx??1212xe?2x??xde2e?2x?2x=?xe2?2x?xe?2x??e?2xdx??121?2x?x??2????C ?(3)??3x?x?1?cosxdx?22??3x22?x?1?dsinx

=?3x?x?1?sinx??sinxd?3x?x?1? =?3x?x?1?sinx?2??6x?1?sinxdx ??6x?1?dcosx

=?3x?x?1?sinx?22=?3x?x?1?sinx??6x?1?cosx?6?cosxdx =?3x?x?1?sinx??6x?1?cosx?6sinx?C

2【例2】 求下列不定积分 (1)?xlnxdx(n??1) (3)?arctanxdx

解 (1)?xlnxdx(n??1)?==

1n?1xn?1nn(2)?arcsinxdx

1n?1?lnxd(xn?1)

lnx?1n?1?xn?11?dx x1n?1xn?1xn?1lnx?1?n?1?2xn?1?C

1??lnx????C n?1?n?1?

(2)解一

?arcsinxdx?xarcsinx??xdarcsinx

=xarcsinx??xdx1?x2?xarcsinx?1?2d(1?x)1?x22 =xarcsinx?1?x2?C

解二 令arcsinx?t,则x?sint

?arcsinxdx??tdsint?tsint??sintdt

=tsint+cost+C=xarcsinx+(3)?arctanxdx?xarctanx?=xarctanx?1-x+C

2?xdarctanx

12?1?x12x2dx?xarctanx??d(1?x)1?x22

=xarctanx?ln(1?x)?C

2

【例3】 求下列不定积分 (1)?lnxdx

3323(2)?arcsinxdx

1322解 (1)?lnxdx?xlnx?3??xlnx??dx?xlnx?3?lnxdx

x=xlnx?3xlnx?3?x?2lnx??dx

x321=xlnx?3xlnx?6?lnxdx

=xlnx?3xlnx?6xlnx?6?x?dx

x32321=x?lnx?3lnx?6lnx?6??C

32

(2)解一

??arcsinx?22dx?x?arcsinx??2?xd?arcsinx?

2=x?arcsinx??2?2xarcsinx1?x2dx

=x?arcsinx??2?arcsinxd1?x =x?arcsinx??2?1?xarcsinx?222??21?xdarcsinx?

?

=x?arcsinx??2?1?xarcsinx??dx?

22??=x?arcsinx??21?x2arcsinx?2x?C 解二 令arcsinx?t,则x?sint

2??arcsinx?22dx??tdsint?tsint?2?tsintdt

222=tsint?2?tdcost?tsint?2tcost?2?costdt =tsint?2tcost?2sint?C

=x(arcsinx)+21-xarcsinx-2x+C 【例4】 求下列不定积分

(1)?esinbxdx (a?0,b?0) 解 (1)?esinbxdx?=

1aeaxaxax222(2)??1aeaxx?adx a?0 1a221a?sinbxde1aeaxsinbx?ba2?edsinbx

axaxsinbx?ba?e2axcosbxdx?axsinbx??cosbxde

1aeaxsinbx?baeaxcosbx?ba22?eaxsinbxdx 2?b?1axbaxax1?esinbxdx?esinbx?ecosbx?C? ?2??2aaa???eaxsinbxdx?e2ax2a?b2?asinbx?bcosbx??C

22(2)?2x?adx?xx?a?x2222?xd2x?a dxx?a2222=xx?a?222?dx?xx?a?2x?a2?x?adx?a222? 2?x?adx?xx?a?alnx?22?x?a22??C?

?x?adx?22x2x?a?22a22lnx??x?a22??C

arctaneexx【例5】 求下列不定积分 (1)?dx1

xex3(2)?dx

解 (1)?dx1xex3???1?1?exd??x?x???t1令1x?t??tedt

?t=?tde=

1xe??t?te?1x?t??edt?te?t?e?t?C

1x?e?C

(2)令e?t,则

arctaneexxx?dx??arctantt21?1?dt???arctantd????arctant?t?t??11?dt 2t1?t=?arctant????dt 2?t?t1?t?=?arctant?lnt?t11212ln?1?t21?1t???C

2x=?e?xarctane?x?xln?1?e??C

2五、其他

【例1】 设f?x?的一个原函数F?x??ln解 I??x?x?1,求I?2??xf??x?dx

FxC?xdx?f????xf??x??x?1?ln2??df?x?x??x?F? x?2xx?12lnx???2?x?x?1?C

2?【例2】 设F??x??f?x?,当x?0时,f?x?F?x??xex22?1?x?,又F?0??1,

F?x??0,求f?x? ?x?0?.

2解 2?f?x?F?x?dx?2?F?x?dF?x??F而

x?x??C1

ex?xex2?1?x?dx?????x?1??1??ex?1?x?2dx??1?x???C2

dex?1?x?dx 2?e1?x??ex2?1?x?exdx??ex2?1?x?dx?ex1?x?F2?x??1?x?C,?F?0??1,?C?0,又F?x??0

因此 F?x??ex1?x?e21?x1e2xx

12e21?x?x则 f?x??F??x??21?x1?xxsinx?xe22?1?x?32x

【例3】 设f?sinx??2,求I??x1?xf?x?dx

arcsinuu解一 令u?sinx,则sinx?2u,x?arcsinu,f?u??

则 I??arcsin1?xxdx???arcsin1?xxd?1?x???2?arcsinxd1?x

??21?xarcsinx?2?1?x?11?xdx ??21?xarcsin

解二 令x?sint,则sint2 x?2x?C

x1?x?sintcost,dx?2costsintdt

则 I??t??2sintcostdt??2?tdcost costsint ??2tcost?2?costdt??2tcost?2sint?C ??21?xarcsin

【例4】 设In?x?2x?C

?dx?x2?a2?n

?n?2正,整数,a?,求证 ?0??x?In=??2n?3?In?1? n?1222?2?n?1?a??x?a???1证In=1a2?x?a??x??x?a?2222n2dx?1a2In?1?12a2?xd?x?a22n??x2?a2?

=1a2In?1?12?n?1?a2???1? xd?n?1?x2?a2?????=1a2In?1??x???In?1? n?1222?2?n?1?a??x?a???11??=?x2?n?1?a2?n?1??2n?3?In?1???x2?a2?? ?

其他参看PPT讲义和题型小节

本文来源:https://www.bwwdw.com/article/xunf.html

Top