数据结构题集(C语言版)算法设计题答案

更新时间:2023-04-05 00:12:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

第一章绪论

1.16

void print_descending(int x,int y,int z)//

按从大到小顺序输出三个数

{

scanf("%d,%d,%d",&x,&y,&z);

if(xy; //<->为表示交换的双目运算符,以下同

if(yz;

if(xy; //冒泡排序

printf("%d %d %d",x,y,z);

}//print_descending

1.17

Status fib(int k,int m,int &f)//求k 阶斐波那契序列的第m 项的值f

{

int tempd;

if(k<2||m<0) return ERROR;

if(m

else if (m==k-1) f=1;

else

{

for(i=0;i<=k-2;i++) temp[i]=0;

temp[k-1]=1; //初始化

for(i=k;i<=m;i++) //求出序列第k 至第m 个元素的值

{

sum=0;

for(j=i-k;j

temp[i]=sum;

}

f=temp[m];

}

return OK;

}//fib

分析:通过保存已经计算出来的结果,此方法的时间复杂度仅为O(m^2).如果采用递归编程(大多数人都会首先想到递归方法),则时间复杂度将高达O(k^m).

1.18

typedef struct{

char *sport;

enum{male,female}

gender;

char schoolname; //校名为'A','B','C','D'或'E'

char *result;

int score;

} resulttype;

typedef struct{

int malescore;

int femalescore;

int totalscore;

} scoretype;

void summary(resulttype result[ ])//求各校的男女总分和团体总分,假设结果已经储存在result[ ]数组中

{

scoretype score ;

i=0;

while(result[i].sport!=NULL)

{

switch(result[i].schoolname)

{

case 'A':

score[ 0 ].totalscore+=result[i].score;

if(result[i].gender==0) score[ 0 ].malescore+=result[i].score;

else score[ 0 ].femalescore+=result[i].score;

break;

case 'B': score.totalscore+=result[i].score;

if(result[i].gender==0) score.malescore+=result[i].score;

else score.femalescore+=result[i].score;

break;

…… …… ……

}

i++;

}

for(i=0;i<5;i++)

{

printf("School %d:\n",i);

printf("Total score of male:%d\n",score[i].malescore);

printf("Total score of female:%d\n",score[i].femalescore);

printf("Total score of all:%d\n\n",score[i].totalscore);

}

}//summary

1.19

Status algo119(int a[ARRSIZE])//求i!*2^i 序列的值且不超过maxint

{

last=1;

for(i=1;i<=ARRSIZE;i++)

{

a[i-1]=last*2*i;

if((a[i-1]/last)!=(2*i)) reurn OVERFLOW;

last=a[i-1];

return OK;

}

}//algo119

分析:当某一项的结果超过了maxint 时,它除以前面一项的商会发生异常.

1.20

void polyvalue()

{

float ad;

float *p=a;

printf("Input number of terms:");

scanf("%d",&n);

printf("Input the %d coefficients from a0 to a%d:\n",n,n);

for(i=0;i<=n;i++) scanf("%f",p++);

printf("Input value of x:");

scanf("%f",&x);

p=a;xp=1;sum=0; //xp 用于存放x 的i次方

for(i=0;i<=n;i++)

{

sum+=xp*(*p++);

xp*=x;

}

printf("Value is:%f",sum);

}//polyvalue

第二章线性表

2.10

Status DeleteK(SqList &a,int i,int k)//删

除线性表a 中第i 个元素起的k 个元素

{

if(i<1||k<0||i+k-1>a.length) return INFEASIBLE;

for(count=1;i+count-1<=a.length-k;count++) //注意循环结束的条件

a.elem[i+count-1]=a.elem[i+count+k-1];

a.length-=k;

return OK;

}//DeleteK

2.11

Status Insert_SqList(SqList &va,int x)//把x 插入递增有序表va 中

{

if(va.length+1>va.listsize) return ERROR;

va.length++;

for(i=va.length-1;va.elem[i]>x&&i>=0;i--)

va.elem[i+1]=va.elem[i];

va.elem[i+1]=x;

return OK;

}//Insert_SqList

2.12

int ListComp(SqList A,SqList B)//比较字符表A 和B,并用返回值表示结果,值为正,表示A>B;值为负,表示A

{

for(i=1;A.elem[i]||B.elem[i];i++)

if(A.elem[i]!=B.elem[i]) return A.elem[i]-B.elem[i];

return 0;

}//ListComp

2.13

LNode* Locate(LinkList L,int x)//链表上的元素查找,返回指针

{

for(p=l->next;p&&p->data!=x;p=p->next);

return p;

}//Locate

2.14

int Length(LinkList L)//求链表的长度

{

for(k=0,p=L;p->next;p=p->next,k++);

return k;

}//Length

2.15

void ListConcat(LinkList ha,LinkList hb,LinkList &hc)//把链表hb 接在ha 后面形成链表hc

{

hc=ha;p=ha;

while(p->next) p=p->next;

p->next=hb;

}//ListConcat

2.16

见书后答案.

2.17

Status Insert(LinkList &L,int i,int b)//在无头结点链表L 的第i 个元素之前插入元素b

{

p=L;q=(LinkList*)malloc(sizeof(LNode));

q.data=b;

if(i==1)

{

q.next=p;L=q; //插入在链表头部

}

else

{

while(--i>1) p=p->next;

q->next=p->next;p->next=q; //插入在第i 个元素的位置

}

}//Insert

2.18

Status Delete(LinkList &L,int i)//在无头结点链表L 中删除第i 个元素

{

if(i==1) L=L->next; //删除第一个元素

else

{

p=L;

while(--i>1) p=p->next;

p->next=p->next->next; //删除第i 个元素

}

}//Delete

2.19

Status Delete_Between(Linklist &L,int mink,int maxk)//删除元素递增排列的链表L 中值大于mink 且小于maxk 的所有元素

{

p=L;

while(p->next->data<=mink) p=p->next; //p 是最后一个不大于mink的元素

if(p->next) //如果还有比mink 更大的元素

{

q=p->next;

while(q->datanext; //q是第一个不小于maxk 的元素

p->next=q;

}

}//Delete_Between

2.20

Status Delete_Equal(Linklist &L)//删除元素递增排列的链表L 中所有值相同的元素

{

p=L->next;q=p->next; //p,q 指向相邻两元素

while(p->next)

{

if(p->data!=q->data)

{

p=p->next;q=p->next; //当相邻两元素不相等时,p,q 都向后推一步

}

else

{

while(q->data==p->data)

{

free(q);

q=q->next;

}

p->next=q;p=q;q=p->next; //当相邻元素相等时删除多余元素

}//else

}//while

}//Delete_Equal

2.21

void reverse(SqList &A)//顺序表的就地逆置

{

for(i=1,j=A.length;i

A.elem[i]<->A.elem[j];

}//reverse

2.22

void LinkList_reverse(Linklist &L)//链表的就地逆置;为简化算法,假设表长大于2

{

p=L->next;q=p->next;s=q->next;p->next=NULL;

while(s->next)

{

q->next=p;p=q;

q=s;s=s->next; //把L 的元素逐个插入新表表头

}

q->next=p;s->next=q;L->next=s;

}//LinkList_reverse

分析:本算法的思想是,逐个地把L 的当前元素q 插入新的链表头部,p 为新表表头.

2.23

void merge1(LinkList &A,LinkList &B,LinkList &C)//把链表A 和B 合并为C,A 和B 的元素间隔排列,且使用原存储空间

{

p=A->next;q=B->next;C=A;

while(p&&q)

{

s=p->next;p->next=q; //将B 的元素插入

if(s)

{

t=q->next;q->next=s; //如A 非空,将A 的元素插入

}

p=s;q=t;

}//while

}//merge1

2.24

void reverse_merge(LinkList &A,LinkList &B,LinkList &C)//把元素递增排列的链表A 和B 合并为C,且C中元素递减排列,使用原空间

{

pa=A->next;pb=B->next;pre=NULL; //pa 和pb 分别指向A,B 的当前元素

while(pa||pb)

{

if(pa->datadata||!pb)

{

pc=pa;q=pa->next;pa->next=pre;pa=q; //将A 的元素插入新表

}

else

{

pc=pb;q=pb->next;pb->next=pre;pb=q; //将B 的元素插入新表

}

pre=pc;

}

C=A;A->next=pc; //构造新表头

}//reverse_merge

分析:本算法的思想是,按从小到大的顺序依次把 A 和 B 的元素插入新表的头部pc 处,最后处理 A 或 B 的剩余元素.

2.25

void SqList_Intersect(SqList A,SqList B,SqList &C)//求元素递增排列的线性表A 和B 的元素的交集并存入C 中{

i=1;j=1;k=0;

while(A.elem[i]&&B.elem[j])

{

if(A.elem[i]

if(A.elem[i]>B.elem[j]) j++;

if(A.elem[i]==B.elem[j])

{

C.elem[++k]=A.elem[i]; //当发现了一个在A,B 中都存在的元素,

i++;j++; //就添加到C 中

}

}//while

}//SqList_Intersect

2.26

void LinkList_Intersect(LinkList A,LinkList B,LinkList &C)//在链表结构上重做上题

{

p=A->next;q=B->next;

pc=(LNode*)malloc(sizeof(LNode));

while(p&&q)

{

if(p->datadata) p=p->next;

else if(p->data>q->data) q=q->next;

else

{

s=(LNode*)malloc(sizeof(LNode));

s->data=p->data;

pc->next=s;pc=s;

p=p->next;q=q->next;

}

}//while

C=pc;

}//LinkList_Intersect

2.27

void SqList_Intersect_True(SqList &A,SqList B)//求元素递增排列的线性表A 和B 的元素的交集并存回A 中{

i=1;j=1;k=0;

while(A.elem[i]&&B.elem[j])

{

if(A.elem[i]

else if(A.elem[i]>B.elem[j]) j++;

else if(A.elem[i]!=A.elem[k])

{

A.elem[++k]=A.elem[i]; //当发现了一个在A,B 中都存在的元素

i++;j++; //且C 中没有,就添加到C中

}

}//while

while(A.elem[k]) A.elem[k++]=0;

}//SqList_Intersect_True

2.28

void LinkList_Intersect_True(LinkList &A,LinkList B)//在链表结构上重做上题{

p=A->next;q=B->next;pc=A;

while(p&&q)

{

if(p->datadata) p=p->next;

else if(p->data>q->data) q=q->next;

else if(p->data!=pc->data)

{

pc=pc->next;

pc->data=p->data;

p=p->next;q=q->next;

}

}//while

}//LinkList_Intersect_True

2.29

void SqList_Intersect_Delete(SqList &A,SqList B,SqList C)

{

i=0;j=0;k=0;m=0; //i 指示A 中元素原来的位置,m 为移动后的位置while(i

{

if(B.elem[j]

else if(B.elem[j]>C.elem[k]) k++;

else

{

same=B.elem[j]; //找到了相同元素same

while(B.elem[j]==same) j++;

while(C.elem[k]==same) k++;

//j,k 后移到新的元素while(i

A.elem[m++]=A.elem[i++]; //需保留的元素移动到新位置

while(i

i++; //跳过相同的元素

}

}//while

while(i

A.elem[m++]=A.elem[i++]; //A 的剩余元素重新存储。

A.length=m;

}// SqList_Intersect_Delete

分析:先从B 和C 中找出共有元素,记为same,再在A 中从当前位置开始, 凡小于same 的元素均保留(存到新的位置),等于same的就跳过,到大于same 时就再找下一个same.

2.30

void LinkList_Intersect_Delete(LinkList &A,LinkList B,LinkList C)//在链表结构上重做上题

{

p=B->next;q=C->next;r=A-next;

while(p&&q&&r)

{

if(p->datadata) p=p->next;

else if(p->data>q->data) q=q->next;

else

{

u=p->data; //确定待删除元素u

while(r->next->datanext; //确定最后一个小于u 的元素指针r

if(r->next->data==u)

{

s=r->next;

while(s->data==u)

{

t=s;s=s->next;free(t); //确定第一个大于u 的元素指针s

}//while

r->next=s; //删除r 和s 之间的元素

}//if

while(p->data=u) p=p->next;

while(q->data=u) q=q->next;

}//else

}//while

}//LinkList_Intersect_Delete

2.31

Status Delete_Pre(CiLNode *s)//删除单循环链表中结点s 的直接前驱

{

p=s;

while(p->next->next!=s) p=p->next; //找到s 的前驱的前驱p

p->next=s;

return OK;

}//Delete_Pre

2.32

Status DuLNode_Pre(DuLinkList &L)//完成双向循环链表结点的pre 域

{

for(p=L;!p->next->pre;p=p->next) p->next->pre=p;

return OK;

}//DuLNode_Pre

2.33

Status LinkList_Divide(LinkList &L,CiList &A,CiList &B,CiList &C)//把单链表L 的元素按类型分为三个循环链表.CiList 为带头结点的单循环链表类型.

{

s=L->next;

A=(CiList*)malloc(sizeof(CiLNode));p=A;

B=(CiList*)malloc(sizeof(CiLNode));q=B;

C=(CiList*)malloc(sizeof(CiLNode));r=C; //建立头结点

while(s)

{

if(isalphabet(s->data))

{

p->next=s;p=s;

}

else if(isdigit(s->data))

{

q->next=s;q=s;

}

else

{

r->next=s;r=s;

}

}//while

p->next=A;q->next=B;r->next=C; //完成循环链表

}//LinkList_Divide

2.34

void

Print_XorLinkedList(XorLinkedList L)//从左向右输出异或链表的元素值

{

p=L.left;pre=NULL;

while(p)

{

printf("%d",p->data);

q=XorP(p->LRPtr,pre);

pre=p;p=q; //任何一个结点的LRPtr域值与其左结点指针进行异或运算即得到其右结点指针}

}//Print_XorLinkedList

2.35

Status

Insert_XorLinkedList(XorLinkedList &L,int x,int i)//在异或链表L 的第i 个元素前插入元素x

{

p=L.left;pre=NULL;

r=(XorNode*)malloc(sizeof(XorNode));

r->data=x;

if(i==1) //当插入点在最左边的情况

{

p->LRPtr=XorP(p.LRPtr,r);

r->LRPtr=p;

L.left=r;

return OK;

}

j=1;q=p->LRPtr; //当插入点在中间的情况

while(++j

{

q=XorP(p->LRPtr,pre);

pre=p;p=q;

}//while //在p,q 两结点之间插入

if(!q) return INFEASIBLE; //i 不可以超过表长

p->LRPtr=XorP(XorP(p->LRPtr,q),r);

q->LRPtr=XorP(XorP(q->LRPtr,p),r);

r->LRPtr=XorP(p,q); //修改指针

return OK;

}//Insert_XorLinkedList

2.36

Status Delete_XorLinkedList(XorlinkedList &L,int i)//删除异或链表L 的第i 个元素

{

p=L.left;pre=NULL;

if(i==1) //删除最左结点的情况

{

q=p->LRPtr;

q->LRPtr=XorP(q->LRPtr,p);

L.left=q;free(p);

return OK;

}

j=1;q=p->LRPtr;

while(++j

{

q=XorP(p->LRPtr,pre);

pre=p;p=q;

}//while //找到待删结点q

if(!q) return INFEASIBLE; //i 不可以超过表长

if(L.right==q) //q 为最右结点的情况

{

p->LRPtr=XorP(p->LRPtr,q);

L.right=p;free(q);

return OK;

}

r=XorP(q->LRPtr,p); //q 为中间结点的情况,此时p,r 分别为其左右结点

p->LRPtr=XorP(XorP(p->LRPtr,q),r);

r->LRPtr=XorP(XorP(r->LRPtr,q),p); //修改指针

free(q);

return OK;

}//Delete_XorLinkedList

2.37

void OEReform(DuLinkedList &L)//按1,3,5,...4,2 的顺序重排双向循环链表L中的所有结点{

p=L.next;

while(p->next!=L&&p->next->next!=L)

{

p->next=p->next->next;

p=p->next;

} //此时p 指向最后一个奇数结点

if(p->next==L) p->next=L->pre->pre;

else p->next=l->pre;

p=p->next; //此时p 指向最后一个偶数结点

while(p->pre->pre!=L)

{

p->next=p->pre->pre;

p=p->next;

}

p->next=L; //按题目要求调整了next链的结构,此时pre 链仍为原状

for(p=L;p->next!=L;p=p->next) p->next->pre=p;

L->pre=p; //调整pre 链的结构,同2.32方法

}//OEReform

分析:next 链和pre 链的调整只能分开进行.如同时进行调整的话,必须使用堆栈保存偶数结点的指针,否则将会破坏链表结构,造成结点丢失.

2.38

DuLNode *

Locate_DuList(DuLinkedList &L,int x)//带freq 域的双向循环链表上的查找

{

p=L.next;

while(p.data!=x&&p!=L) p=p->next;

if(p==L) return NULL; //没找到

p->freq++;q=p->pre;

while(q->freq<=p->freq) q=q->pre; //查找插入位置

if(q!=p->pre)

{

p->pre->next=p->next;p->next->pre=p->pre;

q->next->pre=p;p->next=q->next;

q->next=p;p->pre=q; //调整位置

}

return p;

}//Locate_DuList

2.39

float GetValue_SqPoly(SqPoly P,int x0)//求升幂顺序存储的稀疏多项式的值

{

PolyTerm *q;

xp=1;q=P.data;

sum=0;ex=0;

while(q->coef)

{

while(exexp) xp*=x0;

sum+=q->coef*xp;

q++;

}

return sum;

}//GetValue_SqPoly

2.40

void Subtract_SqPoly(SqPoly P1,SqPoly P2,SqPoly &P3)//求稀疏多项式P1 减P2 的差式P3

{

PolyTerm *p,*q,*r;

Create_SqPoly(P3); //建立空多项式P3

p=P1.data;q=P2.data;r=P3.data;

while(p->coef&&q->coef)

{

if(p->expexp)

{

r->coef=p->coef;

r->exp=p->exp;

p++;r++;

}

else if(p->expexp)

{

r->coef=-q->coef;

r->exp=q->exp;

q++;r++;

}

else

{

if((p->coef-q->coef)!=0) //只有同次项相减不为零时才需要存入P3 中

{

r->coef=p->coef-q->coef;

r->exp=p->exp;r++;

}//if

p++;q++;

}//else

}//while

while(p->coef) //处理P1 或P2 的剩余项

{

r->coef=p->coef;

r->exp=p->exp;

p++;r++;

}

while(q->coef)

{

r->coef=-q->coef;

r->exp=q->exp;

q++;r++;

}

}//Subtract_SqPoly

2.41

void QiuDao_LinkedPoly(LinkedPoly &L)//对有头结点循环链表结构存储的稀疏多项式L 求导

{

p=L->next;

if(!p->data.exp)

{

L->next=p->next;p=p->next; //跳过常数项

}

while(p!=L)

{

p->data.coef*=p->data.exp--;//对每一项求导

p=p->next;

}

}//QiuDao_LinkedPoly

2.42

void Divide_LinkedPoly(LinkedPoly &L,&A,&B)//把循环链表存储的稀疏多项式L 拆成只含奇次项的A 和只含偶次项的B

{

p=L->next;

A=(PolyNode*)malloc(sizeof(PolyNode));

B=(PolyNode*)malloc(sizeof(PolyNode));

pa=A;pb=B;

while(p!=L)

{

if(p->data.exp!=2*(p->data.exp/2))

{

pa->next=p;pa=p;

}

else

{

pb->next=p;pb=p;

}

p=p->next;

}//while

pa->next=A;pb->next=B;

}//Divide_LinkedPoly

第三章栈与队列

3.15

typedef struct{

Elemtype *base[2];

Elemtype *top[2];

}BDStacktype; //双向栈类型

Status Init_Stack(BDStacktype &tws,int m)//初始化一个大小为m 的双向栈tws

{

tws.base[0]=(Elemtype*)malloc(sizeof(Elemtype));

tws.base[1]=tws.base[0]+m;

tws.top[0]=tws.base[0];

tws.top[1]=tws.base[1];

return OK;

}//Init_Stack

Status push(BDStacktype &tws,int i,Elemtype x)//x 入栈,i=0 表示低端栈,i=1 表示高端栈{

if(tws.top[0]>tws.top[1]) return OVERFLOW; //注意此时的栈满条件

if(i==0) *tws.top[0]++=x;

else if(i==1) *tws.top[1]--=x;

else return ERROR;

return OK;

}//push

Status pop(BDStacktype &tws,int i,Elemtype &x)//x 出栈,i=0 表示低端栈,i=1 表示高端栈{

if(i==0)

{

if(tws.top[0]==tws.base[0]) return OVERFLOW;

x=*--tws.top[0];

}

else if(i==1)

{

if(tws.top[1]==tws.base[1]) return OVERFLOW;

x=*++tws.top[1];

}

else return ERROR;

return OK;

}//pop

3.16

void Train_arrange(char *train)//这里用字符串train 表示火车,'H'表示硬席,'S'表示软席{

p=train;q=train;

InitStack(s);

while(*p)

{

if(*p=='H') push(s,*p); //把'H'存入栈中

else *(q++)=*p; //把'S'调到前部

p++;

}

while(!StackEmpty(s))

{

pop(s,c);

*(q++)=c; //把'H'接在后部

}

}//Train_arrange

3.17

int IsReverse()//判断输入的字符串中'&'前和'&'后部分是否为逆串,是则返回1,否则返回0 {

InitStack(s);

while((e=getchar())!='&')

push(s,e);

while((e=getchar())!='@')

{

if(StackEmpty(s)) return 0;

pop(s,c);

if(e!=c) return 0;

}

if(!StackEmpty(s)) return 0;

return 1;

}//IsReverse

3.18

Status Bracket_Test(char *str)//判别表达式中小括号是否匹配

{

count=0;

for(p=str;*p;p++)

{

if(*p=='(') count++;

else if(*p==')') count--;

if (count<0) return ERROR;

}

if(count) return ERROR; //注意括号不匹配的两种情况

return OK;

}//Bracket_Test

3.19

Status AllBrackets_Test(char *str)//判别表达式中三种括号是否匹配

{

InitStack(s);

for(p=str;*p;p++)

{

if(*p=='('||*p=='['||*p=='{') push(s,*p);

else if(*p==')'||*p==']'||*p=='}')

{

if(StackEmpty(s)) return ERROR;

pop(s,c);

if(*p==')'&&c!='(') return ERROR;

if(*p==']'&&c!='[') return ERROR;

if(*p=='}'&&c!='{') return ERROR;

//必须与当前栈顶括号匹配

}

}//for

if(!StackEmpty(s)) return ERROR;

return OK;

}//AllBrackets_Test

3.20

typedef struct {

int x;

int y;

} coordinate;

void Repaint_Color(int g[m][n],int i,int j,int color)//把点(i,j)相邻区域的颜色置换为color

{

old=g[i][j];

InitQueue(Q);

EnQueue(Q,{I,j});

while(!QueueEmpty(Q))

{

DeQueue(Q,a);

x=a.x;y=a.y;

if(x>1)

if(g[x-1][y]==old)

{

g[x-1][y]=color;

EnQueue(Q,{x-1,y}); //修改左邻点的颜色

}

if(y>1)

if(g[x][y-1]==old)

{

g[x][y-1]=color;

EnQueue(Q,{x,y-1}); //修改上邻点的颜色

}

if(x

if(g[x+1][y]==old)

{

g[x+1][y]=color;

EnQueue(Q,{x+1,y}); //修改右邻点的颜色

}

if(y

if(g[x][y+1]==old)

{

g[x][y+1]=color;

EnQueue(Q,{x,y+1}); //修改下邻点的颜色

}

}//while

}//Repaint_Color

分析:本算法采用了类似于图的广度优先遍历的思想,用两个队列保存相邻同色点的横坐标和纵坐标.递归形式的算法该怎么写呢?

3.21

void NiBoLan(char *str,char *new)//把中缀表达式str 转换成逆波兰式new

{

p=str;q=new; //为方便起见,设str 的两端都加上了优先级最低的特殊符号

InitStack(s); //s 为运算符栈

while(*p)

{

if(*p 是字母)) *q++=*p; //直接输出

else

{

c=gettop(s);

if(*p 优先级比c 高) push(s,*p);

else

{

while(gettop(s)优先级不比*p 低)

{

pop(s,c);*(q++)=c;

}//while

push(s,*p); //运算符在栈内遵循越往栈顶优先级越高的原则

}//else

}//else

p++;

}//while

}//NiBoLan //参见编译原理教材

3.22

int GetValue_NiBoLan(char *str)//对逆波兰式求值

{

p=str;InitStack(s); //s 为操作数栈

while(*p)

{

if(*p 是数) push(s,*p);

else

{

pop(s,a);pop(s,b);

r=compute(b,*p,a); //假设compute为执行双目运算的过程

push(s,r);

}//else

p++;

}//while

pop(s,r);return r;

}//GetValue_NiBoLan

3.23

Status NiBoLan_to_BoLan(char *str,stringtype &new)//把逆波兰表达式str 转换为波兰式new {

p=str;Initstack(s); //s 的元素为stringtype 类型

while(*p)

{

if(*p 为字母) push(s,*p);

else

{

if(StackEmpty(s)) return ERROR;

pop(s,a);

if(StackEmpty(s)) return ERROR;

pop(s,b);

c=link(link(*p,b),a);

push(s,c);

}//else

p++;

}//while

pop(s,new);

if(!StackEmpty(s)) return ERROR;

return OK;

}//NiBoLan_to_BoLan

分析:基本思想见书后注释.本题中暂不考虑串的具体操作的实现,而将其看作一种抽象数据类型stringtype,对其可以进行连接操作:c=link(a,b).

3.24

Status g(int m,int n,int &s)//求递归函数g 的值s

{

if(m==0&&n>=0) s=0;

else if(m>0&&n>=0) s=n+g(m-1,2*n);

else return ERROR;

return OK;

}//g

3.25

Status F_recursive(int n,int &s)//递归算法

{

if(n<0) return ERROR;

if(n==0) s=n+1;

else

{

F_recurve(n/2,r);

s=n*r;

}

return OK;

}//F_recursive

Status F_nonrecursive(int n,int s)//非递归算法

{

if(n<0) return ERROR;

if(n==0) s=n+1;

else

{

InitStack(s); //s 的元素类型为struct {int a;int b;}

while(n!=0)

{

a=n;b=n/2;

push(s,{a,b});

n=b;

}//while

s=1;

while(!StackEmpty(s))

{

pop(s,t);

s*=t.a;

}//while

}

return OK;

}//F_nonrecursive

3.26

float Sqrt_recursive(float A,float p,float e)//求平方根的递归算法

{

if(abs(p^2-A)<=e) return p;

else return sqrt_recurve(A,(p+A/p)/2,e);

}//Sqrt_recurve

float Sqrt_nonrecursive(float A,float p,float e)//求平方根的非递归算法

{

while(abs(p^2-A)>=e)

p=(p+A/p)/2;

return p;

}//Sqrt_nonrecursive

3.27

这一题的所有算法以及栈的变化过程请参见《数据结构(pascal 版)》,作者不再详细写出.

3.28

void InitCiQueue(CiQueue &Q)//初始化循环链表表示的队列Q

{

Q=(CiLNode*)malloc(sizeof(CiLNode));

Q->next=Q;

}//InitCiQueue

void EnCiQueue(CiQueue &Q,int x)//把元素x 插入循环链表表示的队列Q,Q指向队尾元素,Q->next 指向头结点,Q->next->next 指向队头元素

{

p=(CiLNode*)malloc(sizeof(CiLNode)

);

p->data=x;

p->next=Q->next; //直接把p 加在Q 的后面

Q->next=p;

Q=p; //修改尾指针

}

Status DeCiQueue(CiQueue &Q,int x)//从循环链表表示的队列Q 头部删除元素x

{

if(Q==Q->next) return INFEASIBLE; //队列已空

p=Q->next->next;

x=p->data;

Q->next->next=p->next;

free(p);

return OK;

}//DeCiQueue

3.29

Status EnCyQueue(CyQueue &Q,int x)//带tag 域的循环队列入队算法

{

if(Q.front==Q.rear&&Q.tag==1) //tag域的值为0 表示"空",1 表示"满"

return OVERFLOW;

Q.base[Q.rear]=x;

Q.rear=(Q.rear+1)%MAXSIZE;

if(Q.front==Q.rear) Q.tag=1; //队列满

}//EnCyQueue

Status DeCyQueue(CyQueue &Q,int &x)//带tag 域的循环队列出队算法

{

if(Q.front==Q.rear&&Q.tag==0) return INFEASIBLE;

Q.front=(Q.front+1)%MAXSIZE;

x=Q.base[Q.front];

if(Q.front==Q.rear) Q.tag=1; //队列空

return OK;

}//DeCyQueue

分析:当循环队列容量较小而队列中每个元素占的空间较多时,此种表示方法可以节约较多的存储空间,较有价值.

3.30

Status EnCyQueue(CyQueue &Q,int x)//带length 域的循环队列入队算法

{

if(Q.length==MAXSIZE) return OVERFLOW;

Q.rear=(Q.rear+1)%MAXSIZE;

Q.base[Q.rear]=x;

Q.length++;

return OK;

}//EnCyQueue

Status DeCyQueue(CyQueue &Q,int &x)//带length 域的循环队列出队算法

{

if(Q.length==0) return INFEASIBLE;

head=(Q.rear-Q.length+1)%MAXSIZE; //详见书后注释

x=Q.base[head];

Q.length--;

}//DeCyQueue

3.31

int Palindrome_Test()//判别输入的字符串是否回文序列,是则返回1,否则返回0

{

InitStack(S);InitQueue(Q);

while((c=getchar()!='@')

{

Push(S,c);EnQueue(Q,c); //同时使用栈和队列两种结构

}

while(!StackEmpty(S))

{

Pop(S,a);DeQueue(Q,b));

if(a!=b) return ERROR;

}

return OK;

}//Palindrome_Test

3.32

void GetFib_CyQueue(int k,int n)//求k阶斐波那契序列的前n+1 项

{

InitCyQueue(Q); //其MAXSIZE 设置为k

for(i=0;i

Q.base[k-1]=1; //给前k 项赋初值

for(i=0;i

for(i=k;i<=n;i++)

{

m=i%k;sum=0;

for(j=0;j

Q.base[m]=sum; //求第i 项的值存入队列中并取代已无用的第一项

printf("%d",sum);

}

}//GetFib_CyQueue

3.33

Status EnDQueue(DQueue &Q,int x)//输出受限的双端队列的入队操作

{

if((Q.rear+1)%MAXSIZE==Q.front) return OVERFLOW; //队列满

avr=(Q.base[Q.rear-1]+Q.base[Q.front])/2;

if(x>=avr) //根据x 的值决定插入在队头还是队尾

{

Q.base[Q.rear]=x;

Q.rear=(Q.rear+1)%MAXSIZE;

} //插入在队尾

else

{

Q.front=(Q.front-1)%MAXSIZE;

Q.base[Q.front]=x;

} //插入在队头

return OK;

}//EnDQueue

Status DeDQueue(DQueue &Q,int &x)//输出受限的双端队列的出队操作

{

if(Q.front==Q.rear) return INFEASIBLE; //队列空

x=Q.base[Q.front];

Q.front=(Q.front+1)%MAXSIZE;

return OK;

}//DeDQueue

3.34

void Train_Rearrange(char *train)//这里用字符串train 表示火车,'P'表示硬座,'H'表示硬卧,'S'表示软卧,最终按PSH 的顺序排列

{

r=train;

InitDQueue(Q);

while(*r)

{

if(*r=='P')

{

printf("E");

printf("D"); //实际上等于不入队列,直接输出P 车厢

}

else if(*r=='S')

{

printf("E");

EnDQueue(Q,*r,0); //0 表示把S 车厢从头端入队列

}

else

{

printf("A");

EnDQueue(Q,*r,1); //1 表示把H 车厢从尾端入队列

}

}//while

while(!DQueueEmpty(Q))

{

printf("D");

DeDQueue(Q);

}//while //从头端出队列的车厢必然是先S 后H 的顺序

}//Train_Rearrange

第四章串

4.10

void String_Reverse(Stringtype s,Stringtype &r)//求s 的逆串r

{

StrAssign(r,''); //初始化r 为空串

for(i=Strlen(s);i;i--)

{

StrAssign(c,SubString(s,i,1));

StrAssign(r,Concat(r,c)); //把s 的字符从后往前添加到r 中

}

}//String_Reverse

4.11

void String_Subtract(Stringtype s,Stringtype t,Stringtype &r)

//求所有包含在串s 中而t 中没有的字符构成的新串r

{

StrAssign(r,'');

for(i=1;i<=Strlen(s);i++)

{

StrAssign(c,SubString(s,i,1));

for(j=1;j

if(i==j)

{

for(k=1;k<=Strlen(t)&&StrCompare(c,SubString(t,k,1));k++); //判断当前字符是否包含在t 中

if(k>Strlen(t)) StrAssign(r,Concat(r,c));

}

}//for

}//String_Subtract

4.12

int Replace(Stringtype &S,Stringtype T,Stringtype V);//将串S 中所有子串T替换为V,并返回置换次数

{

for(n=0,i=1;i<=Strlen(S)-Strlen(T)+1;i++) //注意i 的取值范围

if(!StrCompare(SubString(S,i,Strlen(T)),T)) //找到了与T 匹配的子串

{ //分别把T 的前面和后面部分保存为head 和tail

StrAssign(head,SubString(S,1,i-1));

StrAssign(tail,SubString(S,i+Strlen(T),Strlen(S)-i-Strlen(T)+1));

StrAssign(S,Concat(head,V));

StrAssign(S,Concat(S,tail)); //把head,V,tail 连接为新串

i+=Strlen(V); //当前指针跳到插入串以后

n++;

}//if

return n;

}//Replace

分析:i+=Strlen(V);这一句是必需的,也是容易忽略的.如省掉这一句,则在某些情况下,会引起不希望的后果,虽然在大多数情况下没有影响.请思考:设S='place', T='ace', V='face',则省掉i+=Strlen(V);运行时会出现什么结果? 4.13

int Delete_SubString(Stringtype &s,Stringtype t)//从串s 中删除所有与t相同的子串,并返回删除次数

{

本文来源:https://www.bwwdw.com/article/xuil.html

Top