电动汽车动力传动系统匹配设计说明书1毕业设计

更新时间:2024-03-26 12:12:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

摘 要

随着石油资源的日益减少和环境保护要求的提高,电动汽车的发展越来越受到人们的重视,以往对于纯电动汽车的研究主要集中在能量存储系统,电驱动系统和控制策略的研究开发方面。然而,在动力电池和其他技术取得有效突破之前,对动力传动系统部件的设计参数进行研究是提高电动汽车性能的重要手段之一。变速器是汽车重要的传动系组成,在较大范围内改变汽车行驶速度的大小和汽车驱动轮上扭矩的大小。

本设计的变速箱采用两轴式两挡和锁环式同步器换挡,这种布置形式缩短了变速器轴向尺寸,在保证挡数不变的情况下,减少齿轮数目,从而使变速器结构更加紧凑。电动汽车的变速器与普通变速器相比,其结构有所不同。因为驱动电机的旋向可以通过电路控制实现变换,所以电动汽车无需内燃机汽车变速器中的倒档而设置倒档轴,只需应用电机反转来实现倒车行驶。设计中利用已知参数确定变速器各挡传动比、中心矩,齿轮的模数、压力角、齿宽等参数,由中心矩确定箱体的长度、高度、轴径,对轴和各挡齿轮进行校核,绘制出装配图及零件图。结论表明,变速器齿轮及各轴尺寸达到设计要求,齿轮及各轴强度的校核满足强度要求,结构合理。

同时本设计对电动汽车的动力传动系统进行了匹配设计计算,计算结果表明达到性能要求。

关键词: 电动汽车;传动系;变速箱;匹配

Abstract

With oil resources dwindling and environmental improvement, the development of electric vehicles is receiving increasing attention, in the past, pure electric vehicle for research mainly concentrated in the energy storage system, electric drive systems and control research and development strategy . However, in the motive power and other technical breakthroughs made effective before the powertrain components of the design parameters of the study is to improve the performance of electric vehicles, one of the important means. Transmission is important automotive powertrain components, a change in a wide range of size of vehicle speed and torque of the motor vehicle wheel size.

The design of a two-axis of the transmission block and the two lock ring synchronizer shift, the layout of the form of reducing the transmission of axial size, while ensuring the same block a few cases, to reduce the number of gears, so that transmission structure compact. The transmission of electric vehicles as compared with ordinary transmission, its structure is different. Because of the rotary drive motor circuit can be controlled to achieve the transformation, so no internal combustion engine for electric vehicles in the automobile transmission and set up reverse reverse axis, simply the application of inversion to achieve the reversing motor traffic. Known parameters of the design of transmission of the block to determine the transmission ratio, the center moment, the modulus gear, pressure angle, tooth width and other parameters determined by the central moment of the box length, plans and parts assembly. Concluded that the transmission gears and the shaft size to meet the design requirements, the gear shaft and checking the strength to meet the strength requirements of a reasonable structure.At the same time, the design of a matching calculation results show that the performance requirements to meet.

Key words: electric vehicle ;gearbox ; powertrain ;matchin

目 录

第1章 绪论 ........................................................ 1 1.1电动汽车的简介 ................................................ 1 1.2电动汽车传动装置的特点 ........................................ 1 1.3电动汽车变速器的功用 .......................................... 1 第2章 电动汽车动力传动系统匹配计算 ................................ 1 2.1计算最高车速 .................................................. 1 2.2车辆加速时间的计算 ............................................ 2 2.3车辆爬坡的计算 ................................................ 2 2.4续驶里程的计算 ................................................ 2 第3章 电动汽车变速器设计方案及论证 ................................ 3 3.1电动汽车变速器的要求: ........................................ 3 3.2变速器设计方案论证 ............................................ 3 第4章 变速器各主要参数的设计计算及校核 ............................ 6 4.1 主要参数设计 .................................................. 6 4.2齿轮强度计算 ................................................. 10 4.3确定轴的尺寸 ................................................. 13 第5章 同步器的设计 ............................................... 15 5.1 同步器的工作原理 ............................................. 15 5.2同步器的功用同步器的种类 ..................................... 16 5.3 同步器的参数的确定 ........................................... 16 5.3.1摩擦因数 ................................................. 16 5.3.2同步环主要尺寸确定 ....................................... 17 第6章 变速器操纵机构 ............................................. 19 6.1 对变速器操纵机构的要求 ...................................... 19 6.2 直接操纵手动换挡变速器 ...................................... 19 6.3 远距离操纵手动换挡变速器 .................................... 20

6.4 变速器自锁、互锁、倒挡锁装置 ................................ 20 6.4.1自锁装置 ................................................. 20 6.4.2互锁锁装置 ............................................... 21 第6章 变速器轴承 ................................................. 22 第8章 变速器的润滑与密封 ......................................... 23 第9章 零件的加工工艺 ............................................. 24 9.1 齿轮轴加工工艺 ............................................... 24 9.2齿轮加工工艺 ................................................. 25 9.3端盖加工工艺 ................................................. 26 第10章 结 论 ..................................................... 27 参考文献 .......................................................... 28 致 谢 ............................................................. 30 附录1 计算程序 .................................................... 31 动力传动系统匹配程序 ............................................ 31 齿轮校核程序 .................................................... 33 齿轮参数计算程序 ................................................ 33 附录2 专业外文语翻译 .............................................. 35 译文一:纽约时报 ................................................ 35 译文二: ........................................................ 42

第1章 绪论

1.1电动汽车的简介

电动汽车是指以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆。电动汽车的优点是:它本身不排放污染大气的有害气体,即使按所耗电量换算为发电厂的排放,除硫和微粒外,其它污染物也显著减少,由于电厂大多建于远离人口密集的城市,对人类伤害较少,而且电厂是固定不动的,集中的排放,清除各种有害排放物较容易,也已有了相关技术。由于电力可以从多种一次能源获得,如煤、核能、水力、风力等,解除人们对石油资源日见枯竭的担心。电动汽车还可以充分利用晚间用电低谷时富余的电力充电,使发电设备日夜都能充分利用,大大提高其经济效益。有关研究表明,同样的原油经过粗炼,送至电厂发电,经充入电池,再由电池驱动汽车,其能量利用效率比经过精炼变为汽油,再经汽油机驱动汽车高,因此有利于节约能源和减少二氧化碳的排量,正是这些优点,使电动汽车的研究和应用成为汽车工业的一个“热点”。

1.2电动汽车传动装置的特点

电动汽车传动装置的作用是将电动机的驱动转矩传给汽车的驱动轴,当采用电动轮驱动时,传动装置的多数部件常常可以忽略。因为电动机可以带负载启动,所以电动汽车上无需传统内燃机汽车的离合器。因为驱动电机的旋向可以通过电路控制实现变换,所以电动汽车无需内燃机汽车变速器中的倒档。当采用电动机无级调速控制时,电动汽车可以忽略传统汽车的变速器。在采用电动轮驱动时,电动汽车也可以省略传统内燃机汽车传动系统的差速器。

1.3电动汽车变速器的功用

(1)改变传动比,满足不同行驶条件对牵引力的需要,使发动机

尽量工作在有利的工况下,满足可能的行驶速度要求。 在较大范围内改变汽车行驶速度的大小和汽车驱动轮上扭矩的大小。由于汽车行驶条件不同,要求汽车行驶速度和驱动扭矩能在很大范围内变化。例如,在高速路上车速应能达到100km; =3567rpm

为主驱动电机的最高工作转速,rmin; =6000rpm 为车轮半径;r=0.2724 为主减速比;

2.2车辆加速时间的计算

(2-3)

其中:加速行驶起始车速m systems by Simulation techniques

[J] .EVS18. Berlin. 2001

[17] Richad T.M.Smokers, Arjan J.J.Dijkhuizen,Rob G.Winkel. Hybrid

Vehicles Overview Report [J] .2000

[18]文孝霞,杜子学,栾延龙.汽车动力传动系统匹配研究[J] . 重庆交

通大学学报 ,2006

[19]刘惟信. 汽车设计[M].北京:清华大学出版社,1994

[20] 彭明涛.汽车带式变速器的发展现状[J].重庆: 重庆工商大学学报

(自然科学版),2003

[21] 蔡炳炎.机械式汽车变速器速比优化设计及扭转振动分析.武汉:

武汉理工大学硕士学位论文[D].2005

[22] 朱辉.画法几何及工程制图[M].第5版.上海:上海科学技术出版

社,2003

[23] 刘鸿文. 材料力学[M]. 第4版. 北京:高等教育出版社,2004年

9月

[24] 蔡炳炎.机械式汽车变速器速比优化设计及扭转振动分析[J].武

汉:武汉理工大学硕士学位论文.2005

[25] 汽车工程手册编辑委员会编.汽车工程手册[M]:基础篇.北京:人

民交通出版社,2001

致 谢

本文主要阐述了电动汽车两挡变速器的设计及传动系统的匹配设计。而作为大学生活的最后一个环节—毕业设计,经过近12周的紧张准备,也将接近尾声。在这次毕业设计中,我不但巩固了以前所学的知识,并从中学到了很多新的东西,尤其是《汽车设计》和《汽车理论》这两门课程。王天利老师严谨求实的敬业精神、一丝不苟的治学态度,以及无私的奉献精神,给我留下了深刻的印象,使我受益匪浅,是老师的指导点拨和热心帮助使我的毕业设计得以顺利完成。老师的言传身教将使我受益一生。

大学学习生活中,汽车与交通工程学院各位老师在学业上给我的指导,尤其是各位老师一丝不苟的治学风范对我的影响很大;在毕业设计过程中,各位老师给予了大力的支持和帮助,并就设计中的部分问题和处理方法共同进行了有益的探讨,在此一并向他们致以诚挚的谢意!在此也对审阅和评议本毕业设计及答辩老师和教授致以崇高的敬意和诚挚的感谢!

最后,对在大学期间关心与帮助过我的其他所有人表示感谢!

附录1计算程序

动力传动系统匹配程序

Clear all;

a=0.15;ma=845;g=9.8;cd=0.35;A=1.5;f=0.013;r=0.2724;ig1=3.0;ig2=1.842;I0=4.714;

nmt=0.82;alpha=atan(a); nm=3567;nmax =6000; If=0.7; Iw=0.5; mb=4; %最高车速

F1=(ma+mb)*f*g*cosa;F2=(ma+mb)*g*sina; F3=(cd*A*ua*ua)21.15;F4=d*(ma+mb)*polyder(ua)3.6; Ft=F1 +F2 +F3 +F4;

d=1+ iw(m*r*r)+If*i*g*g*io*io*nt(m*r*r); ua=(0.377*r*nm)io %爬坡度

F=Ft-F3;k1=1+f*f;Q=(ma+mb)*g*sqrt(k1);k=atan(f);b=FQ; c=asin(b)-k;i=tan(c) %加速时间

k3=d*(ma+mb);k4=(ma+mb)*g*f;W=k3(Ft-k4-F3); T=trapz(W)3.6 %续驶里程

s=Ee=mb*wb[(ma+ma)*e0] 轴的校核程序

Temax=93.5*10^3;d1=33;d2=84; ao=20*pi180;an=20*pi180; bbo=25*pi180; bb7=20*pi180; i1=2.5;

a1=71;a2=100;a3=121;a4=45; Po=2*Temaxd1 Ro=2*Temax*tan(ao)d1

Qo=2*Temax*tan(ao)(d1*cos(bbo)) Pn=2*Temax*i1d2 Rn=2*Temax*i1*tan(ao)d2 Qn=0; Xg=Pn*a1a2 Yg=Rn*a1a2 Zg=Qn

G=sqrt(Xg^2+Yg^2) Xc=Pn-Xg Yc=Rn-Yg

C=sqrt(Xc^2+Yc^2) Xf=(Pn*a3-Po*a4)a4 Zf=Qn-Qo

F=sqrt(Xf^2+Yf^2) Xe=Po+Xf-Pn Ye=Ro+Rn-Yf E=sqrt(Xe^2+Ye^2) Zb=Qo

X=sqrt(Xb^2+Yb^2) Xa=Xb+Xc-Po Ya=Yb-Ro-Yc A=sqrt(Xa^2+Ya^2) z1=12;z2=29;d=45; Mc=Pn*a3;Ms=Rn*a3; Tn=Temaxz1*z2

M=sqrt(Mc^2+Ms^2+Tn^2); bbbb=32*M(pi*d^3)%δ T=372800;D=24;

Wt=pi*d^316;t=16*T(pi*D^3); bbbbt=sqrt(bbbb^2+t^2);I=pi*d^464; fc=Rn*a3^2*(a3-a3)^2(3*210000*I*a3) fs=Pn*a3^2*(a3-a1)^2(3*210000*I*a3)

bbbbb=Rn*a1*(a3-a1)*(a1-(a3-a1))(3*210000*I*a3); f=sqrt(fc^2+fs^2)

齿轮校核程序

z1=11;z2=28;z3=16;z4=16;y1=0.2; y2=0.18; y3=0.14; y4=0.14; m1=3;m3=2.5;z=[z1 z4];zw=[z2 z3];kc=[8 8];kcw=[8 8] ; y=[y1 y4];yw=[y2 y3];mn=[ m3];

t1=93.5*10^3;t2=t1z1*z2;t4=t2;t3=t4z4*z3; Tg=[t1 t4]; Tgw=[t2 t3];k1=1.65;%kδkf1=1.1;%主动齿轮 kf2=0.9;%从动齿轮 km=2.0;%kε

aaaa=[25 15 20];%β[β1 β3]; bb=aaaa*pi180;

w=2.*Tg.*cos(bb)*k1.(pi.*mn.^3.*z.*kc*km.*y)%δw(1 4) ww=2.*Tgw.*cos(bb)*k1.(pi.*mn.^3.*zw.*kcw*km.*yw)%δw(2 3) E=2.058*10^5;a=20*pi180;%α aw=30*pi180;dz=mn.*z;dzw=m.*z; db=mn.*zw;dbw=m.*zxw;rz=0.5.*dz; rzw=0.5.*dzw;rb=0.5.*db; rbw=0.5.*dbw; b=mn.*kc; bw=m.*kcx;

wj=0.418.*sqrt(2.*Tg2*E.*(cos(bb).^2.(rz*sin(a))+cos(bb).^2.(rb*sin(a))).(cos(a).*cos(bb).*dz.*b)) %δj(1, 2 ,3 ,4 ,)

齿轮参数计算程序

z1=11;z2=28;z3=16;z4=16 zn=[z1 z2 z3 z4];f0=1.0;%标准齿齿顶高系数Yn=[0.1 0.1 0.4];%4个齿mn=[2.5 2.5];m=[3 3];

cn=0.25.*mn;c=0.25.*m;an=30*pi180;%αna=20*pi180;%α aaaa=[25 25 20 20];b=aaaa*pi180;=(f0+Yn).*mn; =(f0+cn-Yn).*mn;=(pi2+2.*Yn*tan(an)).*mn;%齿厚 s=(pi2+2.*Y*tan(a)).*m;%齿厚 en=(pi2-2.*Yn*tan(an)).*mn;%齿槽宽 e=(pi2-2.*Y*tan(a)).*m;%齿槽宽

dn=mn.*zn.cos(b);d=m.*z;dan=dn+2.*;da=d+2.*=dn-2.*;df=d-2.*=dn.3

%为图上尺寸

r=d.3%为图上尺寸 ran=dan.3%为图上尺寸 ra=da.3%为图上尺寸 rfn=dfn.3%为图上尺寸 rf=df.3%为图上尺寸 kc=[8 8 8 8]; b=mn.*kc;%齿宽 b1=b.1.5

bw=m.*kcw;bw1=bw.1.5%齿宽

附录2专业外文语翻译

译文一:纽约时报

China Vies to Be World’s Leader in Electric Cars By KEITH BRADSHER Published: April 1, 2009

TIANJIN, China — Chinese leaders aimed at turning the country into one of the leading producers of three years, and making it the world leader in electric cars and buses after that.Skip to next paragraph

Chinese leaders aimed at turning the country into one of the leading producers of three years.

At the Tianjin-Qingyuan Electric Vehicle Company, a worker assembles a block of battery packs

The goal, which radiates from the very top of the Chinese government,

suggests that Detroit’s Big Three, already struggling to stay alive, will face even stiffer foreign competition on the next field of automotive technology than they do today.

“China is well positioned to lead in this,” said David Tulauskas, director of China government policy at General Motors.

To some extent, China is making a virtue of a liability. It is behind the United States, Japan and other countries when it comes to making gas-powered vehicles, but by skipping the current technology, China the next.

Japan is the market leader in on both electricity and gasoline, with cars like the Toyota Prius and Honda Insight. The United States a laggard in alternative vehicles. G.M.’s plug-in sale next year, and will be assembled in Michigan using rechargeable batteries imported from LG in South Korea.

China’s intention, in addition to creating a world-leading industry that will produce jobs and exports, is to reduce urban pollution and decrease its dependence on oil, which comes from the Mideast and travels over sea routes controlled by the United States Navy.

But electric vehicles may do little to clear the country’s smog-darkened sky or

curb its rapidly rising emissions of global warming gases. China gets three-fourths of its electricity from coal, which produces more soot and more greenhouse gases than other fuels.

A report by McKinsey & Company last autumn estimated that replacing a gasoline-powered car with a similar-size electric car in China would reduce greenhouse emissions by only 19 percent. It would reduce urban pollution, located outside cities.

Beyond manufacturing, subsidies of up to $8,800 are being offered to taxi fleets and local government agencies in 13 Chinese cities for each ordered to set up electric car charging stations in Beijing, Shanghai and Tianjin.

Government research subsidies for electric car designs are increasing rapidly. And an interagency panel is planning tax credits for consumers who buy alternative energy vehicles.

a consulting firm that does forecasts for automakers, predicts that Japan and South Korea together will be producing 1.1 million and North America will be The United States Department of Energy $25 billion program to develop electric-powered cars and improve battery technology, and will receive another $2 billion for battery development as part of the economic stimulus program enacted by Congress.

Premier Wen Jiabao Gang, a Shanghai-born former Audi auto engineer in Germany who later became the chief scientist for the Chinese government’s research panel on electric vehicles.

Mr. Wan is the first minister in at least three decades who is not a member of the Communist Party.

And Premier Wen connection to the electric car industry. He was born and grew up Tianjin, the longtime capital of China’s battery industry, 70 miles southeast of Beijing.

Tianjin the six years since Mr. Wen became premier. It now service (to Beijing), a new Airbus factory and an immaculate new airport. Tianjin -Qingyuan Electric Vehicle Company.

Electric cars China. Intercity driving is rare. Commutes are fairly short and frequently at low speeds because of traffic jams. So the limitations of all-electric cars — the latest models in China charges — are less of a problem.

First-time car buyers also make up four-fifths of the Chinese market, and these

buyers accustomed to the greater power and range of gasoline-powered cars.

But the electric car industry faces several obstacles Chinese live in apartments, and cannot install recharging devices in driveways, so more public charging centers need to be set up.

Rechargeable lithium-ion batteries also in China. Counterfeit lithium-ion batteries in cellphones occasionally explode, causing injuries. And Sony batteries in laptops in 2006 and 2008 after some overheated and caught fire or exploded.

These safety problems associated with lithium-ion cobalt batteries, phosphate batteries now being adapted to automotive use.

The tougher challenge is that all lithium-ion batteries are expensive, whether made with cobalt or phosphate. That will be a and put on the Olympics: immense amounts of energy, money and people.

BYD equal number of battery engineers, most of them living at its Shenzhen in a cluster of 15 yellow apartment buildings, each 18 stories less than $600 a month, including benefits.

When Tianjin-Qingyuan puts its entirely battery-powered Saibao midsize sedan on sale this autumn, the body will come from a sedan that normally sells for $14,600 when equipped with a gasoline engine. But the engine and gas tank will be replaced with a $14,000 battery pack and electric motor, said Wu Zhixin, the company’s general manager.

That means the retail price will nearly double, to almost $30,000. Even if the government awards the maximum subsidy of $8,800 to buyers, that is a could drive down the cost of the battery pack and electric motor by 30 or 40 percent, still leaving electric cars more expensive than gasoline-powered ones, Mr. Wu said.

But Mr. Wu interview at Thursday to take a call on offer from the caller, and , Fault Category format,the two fault lines together define one of four fault

categories.Table 4 describes the four fault categories,shows the state of the two outputs for each category,and lists the faults that might be present when each of the four fault category signals is transmitted. MAIN CONT INTR

The main contactor driver interlock parameter allows the manufacturer to define a dual switch requirement to operate the vehicle.When this parameter isset to“On,”the controller requires that both the KSI input(Pin 1)and the interlock input(Pin 2)be pulled contactor.The main contactor will open after the interlock

switch is openedand the sequencing and main open delays expire.If this parameter is set to“Off,”only the KSI input is required for the main contactor to be engaged.

MAIN OPEN DLY

The main contactor dropout delay parameter is applicable only if the main contactor driver interlock parameter set to“On.”The dropout delay parameter can then be set to allow the main contactor to remain closed for a period of time after the interlock switch is opened.The delay time is program-mable from zero to 40 seconds,in 1 second intervals.The delay is useful for preventing unnecessary cycling of the main contactor and for maintaining power to auxiliary functions,such as a steering pump motor,that may be used for a short time after the brake applied or the operator up from the seat.

44 页 MAIN CHECK

The main coil open check parameter defines whether the controller performs missing coil checks to ensure that the main contactor this parameter is set to“On,”the controller senses the voltage at the main driver input(Pin 17)to confirm that the main contactor coil is properly connected,and also tests that the main contactor and issue a fault.Neither of these tests is performed if the main check parameter is set to“Off.”

WELD CHECK

The main contactor weld check parameter defines whether the controller tests the main contactor to ensure that it is not welded closed.If the weld check parameter is set to“On,”this check is performed when the keyswitch is first engaged and then each time the main contactor is commanded to open.This check is not performed if the parameter is set to“Off.”

AUX DELAY

The auxiliary driver dropout delay parameter can be set to allow the auxiliary driver to remain active for a period of time after the interlock switch is opened. The delay time is programmable from 0 to 10 seconds,in 0.1 second intervals.

NOTE:The auxiliary driver dropout delay parameter is applicable only if the accessory driver enable specified“On.”The accessory driver enable is a factory-set parameter,and is described in Section 4.

AUX CHECK

The auxiliary coil open check parameter defines whether the controller performs

missing coil checks on the auxiliary driver output.When this parameter is set to “On,”the controller senses the voltage at the auxiliary driver output(Pin 18)to confirm that the auxiliary contactor coil is properly connected. If the criteria for this test are not met, the controller will inhibit operation and issue a fault.This test is not performed if the aux check parameter is set to“Off.”

NOTE:The aux check parameter is applicable only if the accessory driver enable specified“On.”The accessory driver enable is a factory-set parameter,and is described in Section 4.

45页

REV DRVR CHECK

The reverse signal open check parameter defines whether the controller per-forms missing load checks on the reverse signal driver output.When this parameter is set to“On,”the controller senses the voltage at the refiverse signal driver output(Pin 19)to confirm that the reverse signal driver load is properly connected. If the criteria for this test are not met, the controller will inhibit operation and issue a fault.This test is not performed if the reverse signal open check parameter is set to“Off.”

NOTE:The reverse signal open check parameter is applicable only if the accessory driver enable specified“On.”The accessory driver enable is a factory-set parameter,and is described in Section 4.

EM BRAKE DELAY

The electromagnetic brake delay parameter is applicable only if the accessory driver enable specified“On.”The accessory driver enable is a factory-set parameter,and is described in Section 4.

The electromagnetic brake delay parameter can be set to delay engaging the electromagnetic brake for a specified period of time after the controller senses that braking completed and the vehicle 0.1 second intervals.

EM BRAKE CHECK

The electromagnetic brake open check parameter defines whether the controller performs missing coil checks on the electroma gnetic brake driver output. When this parameter is set to“On,”the controller senses the voltage at the electromagnetic brake driver output(Pin 20)to confirm that the electromagnetic brake coil is properly connected. If the criteria for this test are not met,the controller will inhibit operation and issue a fault.This test is not performed if the electromagnetic brake open check

parameter is set to“Off.”

NOTE:The electromagnetic brake open check parameter is applicable only if the accessory driver enable specfied“On.”The accessory driver enable is a factory-set parameter,and is described in Section 4.

46页

CONT HOLDING

The contactor ,auxiliary,reverse,and electroma gnetic brake drivers.This parameter is adjustable from 20% to 100% of the battery voltage, in 2% increments. It allows the OEM to reduce the average applied voltage so that a contactor coil or other load that is not rated for the full battery voltage can be used. For example,contactor coils rated for 12V could be used with a 36V system if the contactor be set lower than the rated contactor coil voltage,as long as it is set conditions the vehicle will be subjected to.Low settings minimize the current required to power the coil,thereby reducing coil each driver must allow operation at the set addition,the loads on each driver must be compatible with a PWM signal(if the parameter is set to a value less than 100%),as the output is pulse width modulated.

CONT PULL IN

The contactor pull-in voltage parameter sets the peak voltage applied to the loads connected to the main,auxiliary,reverse and electromagnetic brake drivers.Typically these loads are contactor coils.The pull-in parameter allows a the driver first turns on,to ensure contactor closure.After 0.1 second,the driver voltage drops to the value specified by the contactor 2%increments.

VOLTAGE

The battery voltage parameter sets the overvoltage and undervoltage protection thresholds for the electronic system.This parameter determines when regen should be cut back to prevent damage to batteries and other electrical system components due to overvoltage.Similarly,the undervoltage threshold protects systems from operating at voltages below their design thresholds.This will ensure proper operation of all electronics whenever the vehicle is driven.The battery metersvoltage parameter can be set from 2 to 7,and should always be set to the system’s nominal battery pack voltage:

译后 43页

在故障分类的格式中,这两个断层线共同确定的四个故障类别。表格4描述就是4个类别的故障,表明该国每一类的两个产出,并列出了当四个类别故障信号传输时,可能会出现的故障。

主要控制中断

主接触器驱动联锁参数允许制造商定义一个双开关要求操作汽车。当此参数设置为“ 开”时,控制器要求KSI输入(引脚1 )和联锁输入(引脚2 )两种输入,撤出高压区(至B + )之前 ,控制器将从事主要接触工作。主要接触后会打开联锁开关和主要开放延误测试如果这个参数设定为“关” ,只有KSI参与输入所需的主要接触。

主开放延时

主要接触延迟参数只适用于主接触器驱动联锁参数设定为“开”。联锁开关打开后,延迟参数可以设置主要接触保持关闭一段时间。延迟时间可从零到40秒编程,时间间隔为1秒钟。 延迟也是有益的,从防止不必要的循环的主要联系人和维护辅助功能来看,如转向助力泵电机,在刹车系统已启动或驾驶者已离开座位之后在很短的时间起作用。

44页 主要检查

主要线圈检查参数限定是否控制器执行丢失线圈检查,以确保主要的接触已正确关闭。当这个参数设定为“开” ,该控制器感应电压的主要动力输入(引脚17 ) ,以确认主要接触线圈是正确连接,并测试,每次都这样做。如果标准或者这些测试不符合要求,控制器将抑制运作,并发出错误提示. 如果主要参数设置为“关闭”所有的检测系统将不工作。

焊缝检查

主要接触焊接检查参数限定是否控制器试验的主要接触人,以确保不是关闭焊接的焊缝检查。如果参数设置为“开” ,进行检查, 但关键开关首先是参与,并且每次主要控制器的命令是开。如果参数设置为“关闭” ,检查将不能进行。

延时辅助

联锁开关打开后,辅助驱动延迟参数可以设置为允许辅助驱动系统保持活跃一段时间。延迟时间可从0到10秒进行编程,时间间隔是0.1秒。

注意:辅助驱动延迟参数只适用于配件驱动已经定义为“开 ”,辅助驱动能够设置参数,更详细的描述在第4节。

辅助检查系统

辅助线圈检查参数限定是否控制器执行丢失线圈检查辅助操作系统。当这个参数设定为“开” ,控制器的感应电压由辅助驱动器输出(引脚18 ),以确认辅助触头线圈是正确连接的。如果这个测试标准没有得到满足,该控制器将抑制运行,并发出错误提示。如果辅助检查参数设置为“关闭”, 则没有进行测试。

注意:辅助检查参数只适用于驱动配件使已经指定“开 ”, 辅助驱动能够设置参数,更详细的描述在第4节。

45页

混响DRVR检查

相反的信号参数公开检查是否控制器丢失负荷检查反向信号驱动输出。当这个参数设定为“开”,感应控制器的电压由信号驱动器输出(引脚19 ) ,以确认该反向信号驱动程序加载连接正确。如果这种测试不符合标准要求,控制器将抑制运行,并发出错误提示。如果没有相反信号,打开检查参数设置为“关闭”这将停止进行测试。

注意:打开检查反向信号参数只适用于配件驱动已经指定“开”, 辅助驱动能够设置参数,更详细的描述在第4节。

电磁制动延迟

电磁制动延迟参数只适用于配件驱动使已经指定为“开”, 辅助驱动能够设置参数,更详细的描述在第4节。

电磁制动器一段规定的时间后电磁制动延迟参数可设定延迟,控制器的感应制动已经完成,车辆已停驶。 延迟时间可从0到5秒钟编程,时间间隔为0.1秒。

电磁制动查看

电磁制动检查参数定义是否丢失线圈控制器执行的制衡,由制动器驱动器输出。当这个参数设定为“开” ,控制器的感应电压又电磁制动器驱动器输出(引脚20 ) ,以确认电磁制动线圈是正确连接。如果这个测试标准没有得到满足,该控制器将抑制运行,并发出错误指示。如果电磁制动器打开检查参数设置为“关闭” ,则没有进行测试。

注意:检查电磁制动参数打开只适用于如果配件驱动已经指定“开”, 辅助驱动能够设置参数,更详细的描述在第4节。

46页 保持电压

接触电压参数定义输出占空比的主要,辅助,扭转,并采用制动驱动。这个电池电压参数从20 %至100 %可调,在20%递增。它使原始设备制造商减少

了平均施加的电压,使接触器线圈或其他负荷不额定电池电压都可以使用。例如,如果接触举行电压参数设定为34 % ,接触器线圈额定12V的可用于36V的系统。该参数可设定为低于接触器线圈的额定电压,只要它是建立在所有冲击和振动完全接触关闭条件下,车辆将受到较低的设置,最大限度地减少所需线圈的电源电流,从而减少线圈加热和增加电池寿命值。建议采用的接触电压参数应符合规格或生产厂家建议。这个参数会影响到所有的驱动器输出。因此,每个车的荷载必须是允许运行的一整套保持电压。此外,加载每个驱动必须符合的PWM信号(如果该参数设置为一个值小于100 % ) ,作为调制输出脉宽。

接触器

该接触器吸合电压参数设置的峰值电压适用于负载连接到主,辅机上,扭转和电磁制动驱动。这些是典型负载接触线圈。当参数允许初始电压时,应提供的辅助驱动首先打开,以确保接触安全。在 0.1秒之后,电压下降的驱动程序所指明的保持电压参数.建议这个参数值的确定应符合规格或接触制造商建议。这个电池电压名义参数从20 %至100 %可调,在2 %递增。

电池电压

电池电压参数设置过压和欠压保护阈值电子系统。当这个参数确定时,过压应减少,以防止电池和其他电子系统的组成部分受到损坏。相似的,在电压低于其设计电压值时,欠压保护阈系统的运作也一样。确保所有电子产品的车辆驱动正常运行。电池电压参数可设定为2到7 ,并应总是被设置为系统的标称电池电压。

本文来源:https://www.bwwdw.com/article/xscr.html

Top