A novel 3D mesh compression using mesh segmentation with multiple principal plane analysis
更新时间:2023-08-11 04:48:01 阅读量: 人文社科 文档下载
- 阿根廷vs荷兰推荐度:
- 相关推荐
PatternRecognition43(2010)267--
279
ContentslistsavailableatScienceDirect
PatternRecognition
journalhomepage:/locate/p
r
Anovel3Dmeshcompressionusingmeshsegmentationwithmultipleprincipalplaneanalysis
Shyi-ChyiChenga, ,Chen-TsungKuob,c,Da-ChunWub
a
DepartmentofComputerScienceandEngineering,NationalTaiwanOceanUniversity,2Pei-NingRoad,Keelung202,Taiwan
InstituteofEngineeringScienceandTechnology,NationalKaohsiungFirstUniversityofScienceandTechnology,1UniversityRoad,Yenchao,Kaohsiung824,Taiwanc
DepartmentofInformationManagement,LongcyuanVeteransHospital,VAC,ExecutiveYuan,1AnpingLane1JhaoshengRoad,Pingtung912,Taiwan
b
ARTICLEINFOABSTRACT
Articlehistory:
Received24July2007
Receivedinrevisedform20May2009Accepted26May2009Keywords:3DmeshCompressionSegmentation
Principleplaneanalysisk-meansclustering
Thispaperproposesanovelschemefor3Dmodelcompressionbasedonmeshsegmentationusingmul-tipleprincipalplaneanalysis.Thisalgorithmfirstperformsameshsegmentationscheme,basedonfusionofthewell-knownk-meansclusteringandtheproposedprincipalplaneanalysistoseparatetheinput3Dmeshintoasetofdisjointedpolygonalregions.Theboundaryindexingschemeforthewholeobjectiscreatedbyassemblinglocalregions.Finally,thecurrentworkproposesatriangletraversalschemetoencodetheconnectivityandgeometryinformationsimultaneouslyforeverypatchundertheguidanceoftheboundaryindexingscheme.Simulationresultsdemonstratethattheproposedalgorithmobtainsgoodperformanceintermsofcompressionrateandreconstructionquality.
©2009ElsevierLtd.Allrightsreserved.
1.Introduction
Inrecentyears,three-dimensional(3D)meshmodelshavebeenwidelyusedingeographicaldatabases,manufacturingassemblies,virtualrealityforentertainmentapplications,orotherinteractiveapplications.Thesemodelsareoftenrepresentedascomplextrian-gularmeshes,whichmayhavethousandsorevenmillionsofver-ticesandpolygons.Alloftheseapplicationsrequirelargestorage,computerpowerandaccessoverbandwidth-limitedlinks.Thus,itisessentialtocompressthe3Dmodelsefficiently.SinceDeering[1]firstintroducedtheconceptofgeneralizedtriangularmeshcompres-sion,manyalgorithmscategorizedaslosslessorlossy,single-rateorprogressive,andsingleresolutionormulti-resolution,havebeenproposedtocompress3Dmeshes[1–18].Agoodreviewon3Dmeshcompressiontechnologycanbefoundin[12,13].
Comparedwiththelossy3Dmeshcoding,alosslesstechniquere-constructsmeshdataidenticaltotheoriginal.Manyapplicationsuselosslessdatacompression,suchasinexecutablecode,wordprocess-ingfiles,etc.Tocomparesingle-ratecodingwithprogressivecoding,single-ratecodingfocusesonsavingthebandwidthbetweenCPUandthegraphiccard;however,progressivecompressionof3Dmeshesprovidesmultipleresolutionsfortransmittingcomplexmeshesovernetworkswithlimitedbandwidth.Earlyresearchconducted
Correspondingauthor.
E-mailaddresses:csc@mail.ntou.edu.tw(S.-C.Cheng),dcwu@ccms.nkfust.edu.tw(C.-T.Kuo),jmskuo@mail.vhlc.gov.tw(D.-C.Wu).
0031-3203/$-seefrontmatter©2009ElsevierLtd.Allrightsreserved.doi:10.1016/j.patcog.2009.05.016
single-ratecodingon3Dmeshcompression.Chow[2]presentedanalgorithmtoefficientlyproducegeneralizedtrianglemeshes.HismeshifyingalgorithmsandvariablecompressionmethodachievedcompressionratioshigherthanDeering'smethod[1].Toumaetal.[3]proposedthevalence-drivenapproachthatrecordsthedegreeofeachvertexalongaspiralingvertextree.Progressivemeshcom-pressionhasbeenalsointensivelyresearched,sinceitenablesthedecodertoreconstruct3Dmodelscontinuouslyfromcoarsetofinelevels-of-details(LODs)[4–8].TheEdgebreakermethodproposedbyRossignac[9]canhandlemanifoldmesheswithmultipleboundaryloopsandhandles.Gumholdetal.[10]improvedthisconnectivityupperboundto3.522bpv.
Trianglemeshcompressionhasbeenthefocusofmuchstudy.Thisrepresentationcontainstwokindsofinformation:geometryandconnectivity.Geometrycodingdescribesvertexcoordinatesinthe3Dspace,andconnectivitycodingdescribeshowtoconnecttheseposi-tions.Theconnectivitycompressionproblemhasbeenwellstudied,withmanyexistingmethods[12,13]achievingbit-ratesoflessthantwobitspertrianglefortheconnectivityportionofamesh[11].Lessefforthasgoneintogeometrycompression,oftensimplyperformedbypredictioncodingandquantization[14].Recently,researchershaveproposedothergeometrycompressiontechniques,includingwavelettransform[15],spectralcompression[16],andk–dtreeoroctreedecomposition[17].Althoughtheperformanceofthese3Dmeshcompressiontechniquesachievingbit-ratesbetween1and2bytespervertexisgood,theoutputbitstreamremainslargeforcomplexobjectswithhighnumbersofverticesandtriangles.Thus,developingeffectivecompressiontechniquesforthevertexdatato
268S.-C.Chengetal./PatternRecognition43(2010)267--279
transmit3Dmeshmodelsinabandwidth-limitednetworkisimpor-tant.Simetal.[18]proposedanalgorithmtoencodeconnectivitydataandgeometrydatausingatrianglefanstructure.Mostprevi-ousworkstypicallydiscussconnectivitycompressionandgeometrycompressionissuesindividually.Thisworkproposesasegmentation-based3Dmeshcompressionmethodthatsimultaneouslyconsidersconnectivityandgeometrycompressionproblems.
Meshsegmentationisthefirststeptowardsregion-based3Dmeshcompression[19].Segmentationismorecommonintheimageprocessingarea,andhasbeenrecentlyintroducedintothe3Dmesharea[20–25].Amongexistingalgorithms,thewatershed-basedap-proachhasreceivedmoreattention.Thisapproachusesdiscretecurvatureateachmeshvertexastheheightfieldthatdriveswa-tershedsegmentation.Thecurvatureestimationfor3Dmeshesiscomputationallyexpensive[20–22],asitismathematicallydefinedforasmoothsurfaceonly.Featuresensitivemeshsegmentationthatmaintainssalientfeaturesisimportantformanycomputergraphicsandgeometricmodelingapplications[23].Chengetal.[24]proposedapatch-growingapproachusingashortest-pathlabelingtechniquetosegmentthemodelintomultipleregions.Zhang[25]proposedasimplesegmentationalgorithmusingGaussiancurva-tureanalysis,efficientforcertain3Dmodels.However,similartootherexistingmethods,thisalgorithmisdefectivewhenprocessingahigh-resolution3Dmodel,asthegeometriccharacteristicsofad-jacentpolygonsinsuchamodelaretooclosetobedifferentiated.Therefore,anefficientandrobustalgorithmisneededfor3Dmeshsegmentation.
Thecurrentworkproposesanefficientsegmentation-based3Dmeshcompressionsystem,whichprovidesprogressivetransmissionfor3Dmodelsoverabandwidth-limitednetwork.Thisalgorithmfirstperformsameshsegmentationscheme,basedonfusionofthewell-knownk-meansclusteringandtheproposedmultipleprinci-palplaneanalysistoseparatetheinput3Dmeshintoasetofdis-jointedpolygonalregions.Theboundaryindexingschemeforthewholeobjectiscreatedbyassemblinglocalregions.Finally,apro-posedtriangletraversalschemeencodesconnectivityandgeome-tryinformationsimultaneouslyforeveryregionundertheguidanceofboundaryindexing.Atthedecoder,basedonboundaryindexing,thisworkobtainseachindividualregionandreconstructsthewholeobjectusingconnectivityandgeometrycodinginformation.Simula-tionresultsdemonstratethattheproposedalgorithmobtainsgoodcompressionperformance.
Theremainderofthispaperisorganizedasfollows.Section2presentsthemethodtoseparatetheinputtrianglemeshintomul-tipleuniformregionsusingak-meansclusteringwiththeprincipalplaneanalysistechnique.Thecurrentapproachto3DmeshmodelcompressionisdescribedindetailinSection3.Section4presentsexperimentalresultsobtainedfromapplyingtheproposedmethodtotest3Dmodels.Section5outlinesabriefconclusion.2.Clustering-based3Dmeshsegmentation
Thissectionpresentsaclustering-based3Dmeshsegmentationmethodbasedonk-meansclustering[25–27]withtheproposedprincipalplaneanalysis[28].Toclearlyintroducetheproposedseg-mentationscheme,thek-meansmethodandprincipalplaneanalysisarefirstdescribed.2.1.k-meansclustering
In1967,MacQueenproposedthek-means[26]algorithmasoneofthesimplestunregulatedlearningalgorithmstosolvetheclus-teringproblem.Theprocedurefollowsasimpleandeasymethodtoclassifyagivendatasetintokofgroups.Themainideaistodefinekcentroids,oneforeachgroup.Thesecentroidsshouldbeproperly
placedbecausedifferentlocationscausedifferentresults.Choosingthemasfarawayaspossiblefromeachotheristhebetterchoice.Thenextsteptakeseachpointbelongingtoagivendatasetandassociatesittothenearestcentroid.Whennopointispending,thefirststepisaccomplishedwithanearlygrouping.Atthisstage,knewcentroidsofgroupsresultingfromthepreviousstepneedre-calculating.Afterobtainingknewcentroids,anewbindingmusttakeplacebetweenapointinthesamedatasetandthenearestnewcentroid,generatingaloop.Thisloopmaycausekcentroidstochangetheirlocationstepbystepuntilnomorechangesareaccom-plished.Inotherwords,centroidsdonotchangeanymore.Finally,thisalgorithmaimsatminimizinganobjectivefunction,inthiscaseasquarederrorfunction.TheobjectivefunctionJ k=
n x(j)
i uj 2
(1)
j=1i=1
where x(j)
(j)
i uj 2isachosendistancemeasurebetweenadatapointxiandthegroupcentroiduj,isanindicatorofthedistanceofndatapointsfromtheirrespectivegroupcenters.
Thealgorithmiscomposedofthefollowingsteps:(1)Datapointsareassignedatrandomtothekgroups.Thecentroid
iscomputedforeachgroup.
(2)Eachpointisassignedtothegroupwiththeclosestcentroid.(3)Whenallpointshavebeenassigned,recalculatethepositionsof
thekcentroids.
(4)RepeatSteps(2)and(3)untilcentroidsstopchanging.Thispro-ducesaseparationofthepointsintokgroupsfromwhichthemetrictobeminimizedcanbecalculated.k-meansisasimplealgorithmthathasbeenadaptedtomanyproblemdomains.Asthefollowingshows,itisagoodcandidateforextendingworkwith3Dmeshsegmentation.2.2.Principalplaneanalysisfor3Dmodels
In[29],thisworkproposesa3Dmodelretrievalmethodusingprincipalplaneanalysisthatdefinestheprincipleplaneasaskele-tonrepresentationcorrespondingtothesymmetricsurfacefora3Dobject.
Theprincipalplanecanbeconvenientlyrepresentedintermsofmoments.Inthecaseof3DfeaturespaceS3,theprincipalplaneHcanberepresentedasAx+By+Cz=D
(2)
whereA,B,andCarethedirectionalnumbersofHthatsatisfythefollowingrelationship:A2+B2+C2=1.
(3)
Thedistancefroma3Dvector c=(x,y,z)toHisgivenbyf(x,y,z)=Ax+By+Cz D.
(4)
Letthecentroid¯c
ofthe3Dspacebedefinedas N
(¯x,y¯,z¯)= 1 1 N1
NNxi,yi,zi
(5)
i=1
Ni=1
N
i=1
wherexi,yi,andziarethetri-stimulusvaluesoftheithvector.
Obviously,thedistancefromtheorigin(0,0,0)ofS3toHisD.Forprocessingconvenience,wesubtractthecentroidfromallthe3Dpointsinordertotranslatetheoriginofthe3Dspacetothecentroid.Inthiscase,thevalueofDin(2)iszero.
S.-C.Chengetal./PatternRecognition43(2010)267--279269
Tofindthedirectionnumbersofthe3DprincipalplaneH,taketheoriginatthecentroid;thentheinertiamomentofthepointsinS3abouttheplaneHis
I(A,B,C)=
(Ax+By+Cz)2.(6)
(x,y,z)∈S3
DifferentiateswithrespecttoA,BandC,andequatingtozerogives2
x(Ax+By+Cz)=0(x,y,z)∈S3
2
y(Ax+By+Cz)=0(x,y,z)∈S3
2
z(Ax+By+Cz)=0.
(x,y,z)∈S3
Hence,
m2,0,0A+m0,1,1B+m1,0,1C=0m1,1,0A+m0,2,0B+m0,1,1C=0m1,0,1A+m0,1,1B+m0,0,2C=0(7)
wherems,t,uisa3Dmomentgivenby
m
s,t,u=xsytzu.
(8)
(x,y,z)inS3
Tosolvethesetoflinearsystemin(6),wegetAm0,2,0m1,0,1 m1,1,0m0,1,1
B=
m(9)
2,0,0m0,1,11,1,0m1,0,1=k1Cm0,2,0m1,0,1 m0,1,1m1,1,0
B=
m=k2.(10)
0,0,2m1,1,00,1,1m1,0,1
Thevaluesofk1andk2canbeobtaineddirectlyfromthevaluesof3Dmomentswhichcanbecomputedinadvanceaccordingto(8).CombiningEqs.(3),(9),and(10),itissimpletoobtain
(A,B,C)= k1
,1k2 .1+k21+k2,21+k21+k2(11)21+k21+k22OncetheprincipalplaneHisobtained,foreach3Dvector c
=(x,y,z)wecancomputethedepthfrom ctoHbydH( c
)=Ax+By+Cz.(12)
3.Theproposed3Dmeshsegmentation
Clustering-basedsegmentationusesiterativeclusteringasatool
toseparatetheinputmeshintomultipleregionsaccordingtolocalpropertiesofvertices.Forexample,Shlafmanetal.[30]usedk-meansclusteringtoprovideameaningfulsegmentation.However,thepro-ducedregionshavejaggedboundaries,showninFig.1(a).Theprob-lemswithapplyingk-meansclusteringtosegment3Dmeshmodelsarethreefold:(1)k-meansclusteringdoesnotguaranteegeneratingcontiguousclustersandthusmightresultinseveralsmalluniformregions.(2)Themethodselectsanumberofseedverticesandthenassignseachtriangletotheclusterofthenearestseedvertex.Theresultingregionsaredependentontheinitialsetofseedvertices.Moreover,itisnotadaptivetotheshapesofmeshsurfaces.(3)Thenumberofclusters,i.e.,thevalueofkisingenerallyunknown.Thisworkpresentsasegmentationframeworkincorporatingk-meansclusteringandprincipalplaneanalysistosolvetheaboveproblems.Fig.1(b)showsasegmentationexampleusingtheproposedmethod.
Thispaperintroducesamultispacegeneralizationofthemulti-pleprincipalplaneanalysis(whichwecallMPPA),wheremoresub-spacesarecreatedtoapproximatethedifferentuniformregionsof
theinputmeshmodel.TheMPPAcanbeusedtogenerateacompactrepresentationoftheoriginalmeshmodelbymappingeachvertexonlyintothebest-suitedsubspace,showninFig.2.Then,allthesubspacesaresimultaneouslyusedtoencodeeachconnectivityandvertex,thusprovidingmultiplepointsofviewtotheinputmesh.
LetV={ v
i∈R3|i=1,...,n}beasetofn3DverticesofaninputmeshM,thenforagivenpartition ={P1,P2,...,P
k}ofVsuchthatPi=V,Pi∩Pj= i,i,j=1...k,i ji=1...k
theMPPAsegmentationisdefinedbythesetofsubspacesS={SSc¯i,Hi,i=1,...,k},where¯c1/|S
i|Si=
i=i|v ∈Pi v
isthecentroidcoordinateofSiandHiistheprincipalplaneofSidefinedin(2).Eachsubspacedeterminesaprincipalplane,andthesetofprincipalplanesprovidesacompactrepresentationoftheoriginalmeshmodel.
AhugenumberofMPPAsegmentationsmaybederivedfromthesameinputmeshmodelbyvaryingkand .Theapproachtoobtainbetterkand aimsatminimizingthemean-squareaveragerecon-structionerroron ,definedasaweightedsumofreconstructionerrorsrelatedtothesubspaceSiapproximatedbyHi
k(k, )=1
n
mi|dHi( v
)|(13)
i=1
v
∈Piwherem )isthedepthvaluev
HiisthecardinalityofPianddHi(v
from toidefinedin(12). (k, )isthenacostfunctionrepresentingtheinputmeshmodelMandusedasameritfunctionforchoosingkand .
Obviously,thelargervalueofkleadstoasmallervalueof (k, )usingtheunconstrainedminimizationprocess.Alimitcaseiswheneachtriangleconstructsaregionandenablesazero-errorsolution,i.e., (k, )=0.Ontheotherhand,employingafewelementsforcreatingaregionwouldnotachievehighcompressionrate.Thus,thisworkproposesapracticalstrategytodetermineanoptimalMPPAsegmentationusingk-meansclustering.Let maxbethemaximumerrorchosenfor (k, ).Thealgorithmproceedsbyincreasingkuntilfindingasolution(k, )suchthat (k, ) maxorthemaximum
allowednumberofregionskmaxisreached.Let betheoptimalsegmentationforapartition k
k.TheMPPAsegmentationalgorithmisseparatedintothreemainsteps:
MPPA(V, max,kmax){k=1;
=∞;//setstheoptimalreconstructionerrorfoundingtobeaverylargenumberdo{
k=k+1;
k = Generate(k,V);//generatesinitialsegmentationfork= Optimize(k, k);//ifk
optimizesthepartition k( > (k, )){= (k, k
k);//updatestheoptimalreconstructionerrorfound-ing
t=k;// tisthebestsegmentationfounding}
}while( > max∧k<kmax)return(t, t);}
Obviously,requiringsmallreconstructionerrors,i.e.,smallvaluesof max,allowstheregionstobetterfittheinputmeshmodel,butatthesametime,determinesthecreationofalargernumberofregions.Thefollowingdiscussestheoptimizationprocedure( -Optimize)andtheinitializationprocedure( -Generate)indetail.
270S.-C.Chengetal./PatternRecognition43(2010)267--279
k-means
0-20-40
-60-40
-60-40-20
0-20-40
-20
k-means with principal plane analysis
20
-60-40
-20
40
6080
2040
60
80
-60-40-20
Fig.1.Segmentationresultsusing(a)k-meansclusteringand(b)k-meansclusteringwithmultipleprincipalplaneanalysis.
3.1. -Optimize
Theprocedure -Optimizeiterativelyfinetuneaninitialpar-tition ksuchthatthevalueof (k, k)decreases.Theoptimiza-tioniscarriedoutbyrearranging fromtheircorrespondingprincipalktominimizethedistancesofverticesplanes,thusminimizingreconstructionerrors.Ateachstep,principalplanesarederivedtoapproximatetheshapesofcorrespondingsubspacesandeachver-texisreassignedtothenearestsubspaceaccordingtothedepthin-formation.Fig.3showsanexampleofseparatingtheinputmeshmodelintotworegions,eachapproximatedbyitsprincipalplane.The -Optimizeprocedureissummarizedasfollows:
-Optimize(k, ={P1,P2,...,Pk}){
t=0;//tistheiterationcounterrepeat{
i=1,...,kHi=PPA(Pi);//PPAcomputestheprincipalplaneHiforP i
Pold= ;
1 =P2=···=Pv
∈V{k= ;z=argmini=1,...,k(|dHi( v
)|);//dHi(v )isthedepthfromv toHidefinedin(12)
Pz=Pz∪{ v
};}
t=t+1;
}until( = old∨t=tmax);return( )}
3.2. -Generate
Analogoustothek-meansalgorithm,theinitialclusterscanberandomlygenerated.However,badinitialconditionsoftenresultinabadpartitionforthek-meanslikealgorithms.Thecurrentworkusesamoreeffectiveapproachtogeneratebetterinitialsolutions.
Thismethodisbasedonaclusterseparatingschemebysplittingaclusterwithalargereconstructionerrorintotwosets.Initially,alltheverticesintheinputmeshareplacedinthesetP1.Inthefirsttimecallofthe -Generateprocedure,theprincipalplaneH1ofP1isobtainedbyperformingthePAAtransformation.Foreachvertex
v
inP1,wecomputeitsdepthvaluedH1( v)using(12).Then,P1isseparatedintotwosetsaccordingtothedepthvaluesofvertices
v∈P11,if(dH1( v) d¯H1
)P,otherwise,d¯H1
=1 dH1( v).(14)121 v
∈P1
Ifitisthekthtimetousethe -Generateprocedure,theopti-mizationpartition obtainedfromthe -Optimizeprocedureinthepreviousiterationk 1
oftheMPPAsegmentationalgorithmis
used
Fig.2.AnMPPAsegmentationwherethree3Dsubspacesarecreatedandeach
subspaceisusedtorepresentasubsetofverticeshavingsimilarcharacteristics.
togeneratethecandidatepartition kforfurtheroptimizationpro-cessing.Thek 1vertexsets,i.e.,P1,P2,...,Pk 1,in ,andtheirprincipalplanesaregiven.ForeachvertexsetPin k 1reconstructionerrorasfollows:
k 1,wefirst
calculateitsweighted (P)=
m
n
|dH( v
)|(15)
v
∈PwheremandnarethenumbersofverticesbelongingtoPand respectively.Accordingly,thevertexsetwithlargersizeandrecon-k 1
,structionerrorhasalargervalueof ().Thesetwiththelargestvalue
of ()isselectedfrom toprovideanadditionalk forsplittingusingtheruledefinedin(13)vertex1
setfor issummarizedasfollows:
k.The -Generateprocedure -Generate(k,V){
if(k=2){//ThefirsttimeusingtheprocedureP1=V;
H1=PPA(P1);//PPAP2={ v|dH1(v )>d¯computestheprincipalplaneH1forP1
H1&v ∈P1};//d¯H1
istheaveragedepthvalueofP1
S.-C.Chengetal./PatternRecognition43(2010)267--279
271
Fig.3.Anexampleofrearrangingverticesintheinputmeshtothenearestneighborregionsusingmultipleprincipleplaneanalysis.
P1=P1 P2;}else{
foreachvertexsetPin ,computes (P)using(14);z=argmaxk 1
i=1,...,k 1( (Pi));//choosethesetwiththelargestreconstructionerror
Pk={ v|d¯&vPHZ(v )>dHZ
∈Pz};//splitPzintotwosetsPz=z Pk;}
return( k={P1,P2,...,Pk});}
4.Segmentation-based3Dmeshmodelcompression
Performingthesegmentationalgorithmmentionedabove,theinput3Dmeshmodelisseparatedintomultiplemeaningfulre-gions,whicharethenseparatelycompressedandtransmittedtothedecoder.Foreachregion,wehavetwocompressionjobstodo:geometrycodingandconnectivitycoding,oftentreatedastwoin-dependentcompressionphasesinexistingresearches[12,13].How-ever,theconnectivityandgeometryinformationfora3Dmeshshouldhavehighcorrelation.Thus,combininggeometrycodingandconnectivitycodingisessentialtoachievehighrate3Dmeshcom-pression.Fig.4showstheblockdiagramoftheproposed3Dmeshcompressionsystem.Basically,theproposedregion-based3Dmeshcompressionconsistsoftwophases:boundarycodingandinter-nalconnectivity–geometrycoding.Thishierarchicalrepresentationschemeprovidesaflexiblewaytoimplementaprogressive3Dmesh:intheformerstage,theboundariesofeachregioncorrespondingtothecompactshapeapproximationoftheinputmesharetransmit-ted.Then,theinternalconnectivityandgeometryinformationforeachregionistransmittedtofinetunethetopologystructureoftheregion.
4.1.Boundarycoding
Supposethattworegionsshareajointboundary.Atthedecoderside,regionswithjointboundariesshouldbezippedproperlytoreconstructtheoriginalmesh,showninFig.5.Eachedgeoftheinputmeshiseithersharedbytworegions,calledaboundaryedge,orbelongstoasingleregion,calledaninterioredge.Theshapeofaregionisdefinedbyaclosedloopformedbylinkingupitsboundaryedges.Tworegionsareadjacentregionsiftheyshareanedge.
Fig.4.Blockdiagramoftheproposed3Dmeshcompressionsystem.
Fig.5.Zippingtworegionstogetherbasedonthejointboundary:(a)regionsbeforezippingand(b)zippingresultof(a).
A3Dmeshcanberepresentedasoneormoreconnectedcompo-nents,eachconsistingofasetofregionswitheverypairofregionsreachablewitheachother.GivenaconnectedcomponentC,wecon-structagraphG=(N,E)tomodel,whereNisthesetofregionsinCandEisthesetofedges,eachofthemlinkseverypairofadja-centregions.ConstructingaspanningtreefromGiseasy,andthemeshregionsencodeonebyonebyfollowingthetreeedgesusingaspecifictreetraversalalgorithm.
Rememberthataprincipalplaneisusedtoapproximatearegion
mesh.Let v theverticesi
,i=1,...,mbeasetofverticescollectedfromprojecting v
i,i=1,...,mofaregionPontoitsprincipalplaneH.Thecoordinatesof v i,showninFig.6(a),canbeobtainedfrom v i= vi dH( v) nH,
i=1,...,m
(16)
where n
HistheunitnormalvectoroftheprincipalplaneH.Alltheprojectedvertices v ,i=1,...,mofPareonthecommonplaneH,showninFig.6(b).
i
TheproposedboundarycodingalgorithmstartsencodingtheboundaryBofaregionbyprojectingtheregionontoitsprincipalplaneH.TheprojectedboundaryB oftheregionformsaclosedlooponHbylinkinguptheprojectedboundaryedges.Theboundarymayhaveanorientation,inwhichcase,everyboundaryedgeisadirected
edge,withastartandendvertex.Let vibeavertexofB,and v i
be
272S.-C.Chengetal./PatternRecognition43(2010)267--279
→
1
Fig.6.ProjectingverticesofaregionPontoitsprincipalplaneH:(a)therelation-shipbetweentheoriginalvertices v
i,i=1,...,mandtheircorrespondingvertices v
i,i=1,...,monH;(b)Histhecommonplanefortheprojectedvertices v i,i=1,...,m.
v1′
v0
′Boundary
Fig.7.Boundarydescription.
thecorrespondingvertexofB
.Thevertex v
icanbereconstructedusing v
i)n H.Sincetheprincipalplaneisobtainedbyminimiz-ingthei+dH(vsumofabsolutedepthvaluesoftheverticeswithinaregion,
theabsolutevalueofdv H( v
i)isoftensmall.Thus,thecoordinatesof i
shouldbeeffectivelyencodedtoachievehighcompressionrate.Consideringthecentroid¯c
HofHasthereferencepoint,thebound-arycodingalgorithmstartsscanningtheprojectedboundaryB byarbitrarilychoosingavertexofB toformtheinitialvector.Acircle
centeredat¯c
HisformedtovisiteveryvertexinB inthecounterclockwisefashion.Duringthisscan,boundarycodingrecordsthefol-lowingboundarydescriptioncodeforB : u
0 VertexChainCode (17)
where u0=( v 0 ¯cH)isthestartingreferencevectorandVertexChain-Code(VCC)[31]isthesequenceofpolarcoordinates r
i , i foreach
boundaryvertex v iwith ui 1=(v i 1
¯cH)asthereferencevector,showninFig.7.Moreconcisely,thevaluesofr
i and ifor v i
aredefinedas r
i
= v i ¯cH 1( v ¯cH)·(v ¯cH)(18)
i=cosi 1i
.HHTheVCCtoencodetheprojectedboundaryB canbefurthertrans-formedintotheDifferentialVertexChainCode(DVCC)bysubtracting
thepolarcoordinatesof v removeredundantVCCinformation.ifromthoseofitspreviousvertex v toInthiscase,theboundaryi 1
de-scriptioncodeforB ischangedinto
u
0 r
1, 1 DVCCB (19)
whereDVCCB isdefinedasDVCCB ={ r
i , i | ri =ri ri 1,
i= i i 1,i=2,...,|B |}.
Thevaluesof r
i and inDVCCB arerelativelysmallcompared
withr
i andiinVCC,andthusrepresentingB intermsofDVCCB hasbettercompressionresult.ThisworkencodesDVCCforeachprojectedboundaryusingthewell-knownvariablelengtharithmeticcoding[32]tofurtherimprovecompressionrate.
Tocompletethediscussionoftheproposedboundarycoding,foreachregion,thetotalinformationtorecordincludes(1)thenormal
vector n
Hoftheprincipalplane,(2)thedepthvaluesequenceforeachvertex,(3)andtheboundarydescriptioncodedefinedin(19).Inordertozipthejointboundaries,thesharededgesandverticesareindexedatboththeencoderanddecoderends.Aboundarysep-aratingtworegionsisalsoencodedtwice.Thecurrentworkrecon-structsthejointboundaryusingthesamerule,sothatthedecoderzipsthetworegionsseamlesslywithoutadditionalinformation.4.2.Internalconnectivity–geometrycoding
Foreachregion,theinternalconnectivity–geometrycodedescribesthetopologystructurewithintheregionindetail.Theproceduretoencodetheinternalconnectivityandgeometryinfor-mationsimultaneouslyforaregionissimilartothatusedtoencodetheboundary.Onceagain,theprincipalplaneofeachregioncanbeusedtoprojecteveryvertexoftheregionontothesameplane.Thevertexscanningtechniquementionedabovecanbeappliedtovisitandencodealltheinternalverticesandedges.
ThisresearchchoosesthesimpletrianglemeshofFig.8toillus-tratehowtheproposedinternalconnectivity–geometryalgorithmspansthemeshwithsuccessivecirclescanning.ThemeshshowninFig.8istheversionofprojectingverticesaswellastheiredgesontheprincipalplaneofaregion.Thisworkconductstheencodingschemeonthisplane.
Initially,thealgorithmsupposesallmeshboundaryvertices(1–13)areencodedintheboundaryencodingstage(cf.Fig.8(a)).Toconductthecircularcanningprocedureforencodinginternalconnectivityandgeometryinformation,weneedtoselectanin-ternalvertexasthestartingreferencevectorconsistingoftwovertices—oneofwhichisinternal.Letvertices(15,13)constitutethestartingreferencevertices(c.f.Fig.8(b)).Startingwiththisrefer-encevector,theinternalconnectivity–geometrycodingalgorithmthenrecursivelyandcircularlyvisitstheinternalvertices.Theseedvertex15visitsthevertices(13,19,17,16,14)inclockwisedirec-tion(Fig.8(b)).Afterthisstep,thealgorithmoutputstheinternalconnectivity–geometrydescriptioncode
v15 v13 T, r19 1519 15
17 1517 15
13 15, 13 15 T, r19 15, 19 15 T, r16 1516 15
14 15
14 15
17 15, 17 15 T, r16 15, 16 15
(20)
S.-C.Chengetal./PatternRecognition43(2010)267--279
273
15
5
5
1011
5
1
1
Fig.8.Encodingtheinternalconnectivity–geometryinformationofasimplemeshusingtheproposedcircularscanning
algorithm.
5
555555
Fig.9.Reconstructingthestructureofasimplemeshusingtheinternalconnectivity–geometrydescriptioncodes.
s iisthecoordinateofvertexi, rji i v s v j v s wherev= vs
s,v j v s,and j s= i visthenormdifferencebetweenvectorsv
i v s)·(v j v s))/ v i v s v j v s istheanglebetweencos 1((v
i v sandv j v s,andT=0indicatesthattheaccompanyingvectorsv
informationforeachbracedpartisusedforreconstructingthevertex
coordinates.Notethateveryvisitedvertexihasanedgeconnecting
i s
totheseedvertexsandeverypairofconsecutivevisitedverticeshasanedge.ThisstudymaintainsavertexorderedsetSconsistingofinternalverticesvisitedinthepreviouscircularscanningprocesses.Afterthefirstrun,S=(13,19,17,16,14).ThevertexinSisoneoftheseedvertexcandidatestostartacircularscan.
Next,weselectthefirstinternalvertexvisitedbythepreviousscanprocessasthenextseedvertex.Inthiscase,13willbetheseed
274S.-C.Chengetal./PatternRecognition43(2010)267--279
vertexforthenextruntoscanunvisitedvertices.InS,vertex13hastwoneighboringvertices14and19.Again,wescanthevertices(4,3,2,1)fromtheedgebetween14and13totheedgebetween19and13(Fig.8(c))andoutputtheinternalconnectivity–geometrydescriptioncode T,4 T,3 T,2 T,1
whereT=1indicatesthattheaccompanyinginformationforeachbracedpartisavertexindexwhosecoordinateshavebeencoded.Inthiscase,(4,3,2,1)areboundaryverticescodedintheaboveboundarycodingprocedure.Afterthestep,vertex13willberemovedfromSandvertex14isthenextseed.FurtherstepsintheconquestareshowninFig.8(d)–(i).
Toreconstructtheinputmesh,thereconstructionalgorithmini-tiallyrestorestheboundary(0–12)usingtheboundarydescriptioncode(Fig.9(a)).Nowfromthefirstinternalconnectivity–geometrydescriptioncodedefinedin(19),thealgorithmrestorestheinternalnodes(13,19,16,17,14)(Fig.9(b)),resultinginsettingthevertex13asthenewseednodeandtheedgesfrom14to13andfrom19to13formthetwosidesofthenextrestorationrun.Thesuccessive
reconstructionoffanscontinuesuntiltheentiremeshisrecon-structedasshowninFig.9(c)–(i).
Theinternalconnectivity–geometrycodingalgorithmvisitstheinputregionverticesonitsprincipalplane.Foreachvertex,thedepthvalueshouldbeaddedintothecodingstreamtorestoreitsoriginalcoordinates.Theprojectedregionisona2DspaceifwerotatetheregionbyaligningtheaxiszwiththenormalvectoroftheprincipalplaneasshowninFig.10.5.Experimentalresults
Toevaluatetheeffectivenessoftheproposedsegmentation-basedcompression,thecurrentstudyimplementsa3Dmeshmodelcompressionsystemforgeometricandconnectiveencod-ing/reconstructionofmeshesonaPCwithPentiumIV1.8GHzCPUrunningtheWindowsXPoperatingsystem.Theexperimentsusedasetof3Dmeshmodels(Fig.11)forperformancemeasurementsthatarefreelyavailableontheInternet.
Thisinvestigationfirsttestedeffectivenessoftheproposedmeshsegmentationalgorithmusingthehybridofk-meansclusteringandthemultipleprincipalplanesanalysis.Fig.12showsthesegmenta-tionresultofthisapproachappliedtoanoisysimple“triceratops”modelwith90%verticesmovedalongthesurfacenormals.GiventhesegmentationresultoftheoriginalmeshmodelMasthegroundtruth,wemightderiveasimplecriterionSPtoverifyrobustnessoftheproposedmeshsegmentationalgorithm.SPisdefinedas
k1 i||Ri∩RSP=H
z
y
10
9
81718
71615
6
51413
34
i=1
11
19
12
1
2
Z’H
y’
x’
Fig.10.Theprojectedregionisonatwo-dimensionalspacebyrotatingtheregion
Hoftheprincipalplanewiththeaxisz:(a)thewithaligningthenormalvectorn
H)originalmeshinthex–y–zspace
and(b)theprojectedmeshinthex –y –z (n
space.
i|isthenum-where|M|isthenumberofverticesinMand|Ri∩R
berofverticeswhicharebothwithinthesegmentedregionRifor
iforthenoise-addedmeshmodel.ThevaluetheoriginalmeshandR
ofSPishighwhenthesegmentedregionsofanoise-addedmesharealmostthesameasthoseoftheoriginalmesh.InthecaseofFig.12,thevalueofSPachieves99%.Thus,theproposedsegmenta-tionalgorithmisrobustinresistingnoise.
Thecurrentsegmentationprocedureproducesthecorrectseg-mentationofthemodel.Thenumberofregionssegmentedfromacomplexmeshmodelaffectsprecisecompactrepresentation.Fig.13showsthatvaryingthenumberofsegments(kmax)usedintheseg-mentationprocedureleadstoadaptivemeshsmoothingwithsimul-taneoussharpeningofsurfacecreasesatdifferentgeometricscales.Fig.14showsdistributingreconstructionerrorsofFig.13(a)usingsegmentedregionstoapproximatetheoriginalinputmesh.Accord-ingly,theproposedmeshsegmentationprocedureprovidesaccuratecompactrepresentationtoapproximatetheinputmesh.Accordingto(15),wecancalculatethereconstructionerrorforaninputmesh.Fig.15showsothersegmentationresultsfordifferentmeshmodels,andTable1listsreconstructionerrorsusingthesegmentedregionstoapproximatetheinputmodels.
Fig.11.Examplesof3Dtriangularmodelsusedformeasurements:(a)“nefertiti”;(b)“body”;(c)“tiger”;(d)“bunny”;(e)“triceratops.”
S.-C.Chengetal./PatternRecognition43(2010)267--279
275
Fig.12.Segmentationresultsofasimplemodelusingtheproposedmethod:(a)original“triceratops”model;(b)and(c)arethesegmentationsof(a)withwireframeandflatshaded,respectively.(d)Noisy“triceratops”modelwith90%verticesmovedalongthesurfacenormals;(e)and(f)arethesegmentationsof(d)withwireframeandflatshaded,
respectively.
Fig.13.SegmentationresultsfortheStanfordbunnyusingtheproposedsegmentationprocedurewithdifferentnumbersofregions:(a)theoriginalmodel;(b)thesegmentationresultwith10regions;(c)thesegmentationresultwith50regions,and(d)thesegmentationresultwith100
regions.
0.110.10.09Reconstruction Error
0.080.070.060.050.040.030.02
2
4
6
8
10
12
14
16
18
Number of Segments
Fig.14.ThereconstructionerrorofFig.13(a)usingsegmentedregionstoapproxi-matetheoriginalmodelunderdifferentgeometryscales.
Second,wecompresstheinputmeshmodelsbyencodingthesegmentedregionsonebyonewiththeproposedcompressional-gorithm.Fig.16showsthecompressionresultsconsistingofase-riesofregionencodingstepsfor“Nefertiti”,andFig.17showsthecorrespondingreconstructionsteps.Fig.18showsasimulationoftheprogressiveregion-by-regiontransmission.Theusercanchoosetoresumeaparticularlyinterestedregion(Fig.18(a))orrestorethewholeobjectusinganinteractiveloopuntilreconstructingthewholeobject(Fig.18(b)).Theproposedcompressionschemeusesvariablelengtharithmeticcodingforfurthercompressingthegeometrycodesandboththelossyandlosslessgeometrycodingmodesareofferedinthesystem.TherelativedemonstrationsareshowninFig.19.
Finally,inordertofurtherverityeffectivenessoftheproposedmethod,thisworkalsosimulatestheDualParallelogramPrediction(DPP)method[18]andAsymptoticClosedLoopVectorQuantiza-tion(ACLVQ)scheme[14]forperformancecomparison.Eitheronefocusesonthedesignofgeometrycodingof3Dmeshes.Table2liststheresultsofcompressionrateandrunningtimeduringcodinganddecodingforeachtestmodelusingdifferentmethods.ThebpvslistedinTable2encodesboththeconnectivityandgeometryinfor-mationfortheproposedmethod,butthebpvsfortheDPPmethodandtheACLVQmethodincludeonlygeometryinformationwithver-texpositionsbeingpre-quantizedwith10bitspercoordinate(bpc).Theconnectivityinformationcontributesanadditional1–2bpvsto
276S.-C.Chengetal./PatternRecognition43(2010)267--
279
Fig.15.Thesegmentationexamples:(a)“body”segmentedintotworegions;(b)“nefertiti”segmentedintothreeregions;(c)“triceratops”segmentedintofiveregions;(d)“tiger”segmentedintosixregions.
Table1
Reconstructionerrorsusingthesegmentedregionstoapproximatetheinputmodels.Models
kmax
Constructionerrors0.13200.09680.01790.02280.2148
NefertitiBodyTigerBunny
Triceratops4413199
Fig.16.Region-by-regionencodingstagesofthe“nefertiti”model:(a)–(c)areaseriesofcircularscanprocessestoencodethefirstregionand(d)–(h)aretheconnectivity–geometryencodingsteptocompressregions2and3.
compressionratesoftheDPPmethodandtheACLVQmethodifweusestate-of-the-artconnectivitycoding[11].Accordingly,thepro-posedmethodoutperformsthecomparedmethods.Fig.20showscompressionperformancecomparisonfordifferentmethodsusingthetestmodelsintermsofcompressionrateanddistortioner-ror.Fig.21showsreconstructionqualitycomparisonforthe“Tiger”modelusingdifferentmethodswithnearlythesamecompressionrate.
TheproposedcircularscanningprocessforvisitingverticesissimilartothefanscanningprocessintheAdvancingFan-Front(AFF)methodproposedbyMuduretal.[11].TheAFFtraversesthefansofatrianglemeshusingaboundaryvertexandtwoboundaryedgesas
S.-C.Chengetal./PatternRecognition43(2010)267--279
277
Fig.17.Region-by-regionreconstructionstageofthe“nefertiti”model:(a)–(c)arethereconstructionstepstorestoreregion1and(d)–(h)arethereconstructionstepstorestoreregions2and
3.
Fig.18.Simulationoftheprogressiveregion-by-regiontransmission:(a)particularlyinterestingregionselectedbyuserand(b)wholeobjectstepby
step.
Fig.19.Demonstrationoflossyandlosslessgeometrycoding:(a)originalmodel;(b)losslesscodingand(c)–(e)lossycodingunder16,12,8bitspervertex.
theinitialseedandstartinggates,respectively.Theproposedschemechoosesaninteriorvertexastheinitialseedfortraversingthefansofthetrianglemesh.Theinteriorvertexastheinitialseedreducesthenumberoffansinboththeencodingandreconstructionstages.Theproposedalgorithmalsoencodesboththeconnectiveandge-ometryinformationsimultaneouslycomparedwithAFFwhichonly
278S.-C.Chengetal./PatternRecognition43(2010)267--279
Table2
PerformancecomparisonformeshcompressionusingtheproposedmethodA,DPPmethodB[18],andACLVQmethodC[14].Model
Vertices
Faces
No.FansinA
MethodAGC+IC
NefertitiBodyTigerBunny
Triceratops
2997115169348343124
562179610061694515660
1453542223160981254
15.0412.227.787.2310.56
T0.0320.0530.4523.3210.245
MethodBGC15.6113.129.237.4711.32
T0.0200.0640.5542.2310.292
MethodCGC15.2313.868.327.1111.62
T0.0430.1020.7245.0210.422
GCisthegeometrycodingintermofbitspervertex(bpv),ICistheconnectivitycoding,andTistheaverageexecutiontimeinsecondstocodinganddecodingamodel.
161514Bits Per Ve
rtex (bpv)
Mean Square Error
13121110987
Nefertiti
Venus
TigerModels
BunnyTriceratops
ProposedDPPACL VQ
10-5
ProposedDPPACL VQ
10-6
10-7
10-8
NefertitiVenusTigerModels
BunnyTriceratops
pressionperformancecomparisonfordifferentmethodsusingthetestmodelsintermsof(a)compressionrateand(b)distortionerror.
parisonofreconstructionqualityforthe“Tiger”modelusingdifferentmethodswithnearlythesamecompressionrate:(a)theoriginalmodel;(b),(c),and(d)arethereconstructionresultsof(a)usingtheproposedmethod,theDPP,andtheACLVQ,respectively.
focusesonencodingtheconnectivityinformationofamesh.Simula-tionresultsshowthattheproposedalgorithmprovidesapromisingencoding/decodingtechniquefor3Dmeshes.6.Conclusion
Thispaperproposesasegmentation-based3Dmeshcompres-sion.Ourcontributionslieinthreeaspects.Firstly,fusingthewell-knownk-meansclusteringandtheproposedprincipalplaneanalysistoseparatetheinput3Dmeshintoasetofdisjointedpolygonalregionsisefficientandrobust.Secondly,wecompressthemeshobjectintoindependentregionsandaboundary,sothedecoderobtainseachindividualpartandrestorestheoriginalobject.ThisisespeciallyusefulinsomeinteractiveapplicationssuchasInternetgamingandremotetraininginavirtualenviron-ment.Theusercanrestoretheparticularlyinterestedpart(s)orthewholeobjectstepbystep.Finally,theproposedcircularscanningprocedureprovidesanewmethodtoencodeconnectivityandge-ometryinformationoftheinputmeshsimultaneously.Traditionalmethodsbelongingtoeitherconnectivitycodingorgeometrycod-ingdonotofferatotalsolutiontotheproblemof3Dmeshcom-pression.
Experimentalresultsshowthatourschemeprovidesbettercom-pressionthanearlierknowntechniques.Ourfuturestudywillfocusoncontent-based3Dmodelretrievalinthecompressiondomainanderrorresilienceduringtriangularmeshreconstruction.
S.-C.Chengetal./PatternRecognition43(2010)267--279279
References
[1]M.Deering,Geometrycompression,in:ProceedingsoftheACMSIGGRAPH,
1995,pp.13–20.
[2]M.-M.Chow,Optimizedgeometrycompressionforreal-timerendering,in:
ProceedingsoftheEighthConferenceonVisualization'97(IEEEVisualization'97),SanFrancisco,CA,1997,pp.347–354.
[3]C.Touma,C.Gotsman,Trianglemeshcompression,in:Proceedingsofthe
GraphicsInterfaces'98,1998,pp.26–34.
[4]H.Hoppe,Progressivemeshes,in:ProceedingsoftheACMSIGGRAPH'96,1996,
pp.99–108.
[5]R.Pajarola,J.Rossignac,Compressedprogressivemeshes,IEEETransactionson
VisualizationandComputerGraphics6(1)(2000)79–93.
[6]S.-B.Park,C.-S.Kim,S.-U.Lee,Progressivemeshcompressionusingcosine
indexpredictorand2-stagegeometrypredictor,in:ProceedingsoftheIEEEICIP2002,vol.2,2002,pp.233–236.
[7]P.Alliez,M.Desbrun,Progressivecompressionforlosslesstransmissionof
trianglemeshes,in:ProceedingsoftheACMSIGGRAPH2001,2001,pp.195–202.[8]P.-M.Gandoin,O.Devillers,Progressivelosslesscompressionofarbitrary
simplicialcomplexes,ACMTransactionsonGraphics21(3)(2002)372–379.
[9]J.Rossignac,Edgebreaker:connectivitycompressionfortrianglemeshes,IEEE
TransactionsonVisualizationandComputerGraphics5(1)(1999)47–61.[10]S.Gumhold,W.Strasser,Realtimecompressionoftrianglemeshconnectivity,
ACMSIGGRAPH(1998)133–140.
[11]S.P.Mudur,S.V.Babji,D.Shikhare,Advancingfan-front:3Dtrianglemesh
compressionusingfanbasedtraversal,ImageandVisionComputing22(2004)1165–1173.
[12]J.Peng,C.-S.Kim,C.-C.J.Kuo,Technologiesfor3Dmeshcompression:asurvey,
JournalofVisualCommunicationandImageRepresentation16(2005)688–733.[13]P.Alliez,C.Gotsman,Recentadvancesincompressionof3Dmeshes,in:
N.A.Dodgson,M.S.Floater,M.A.Sabin(Eds.),AdvancesinMultiresolutionforGeometricModelling,Springer,Berlin,2004,pp.3–26.
[14]P.H.Chou,T.H.Meng,Vertexdatacompressionthroughvectorquantization,
IEEETransactionsonVisualizationandGraphics8(4)(2002)373–382.
[15]S.Valette,R.Prost,Awavelet-basedprogressivecompressionschemefor
trianglemeshes:wavemesh,IEEETransactionsonVisualizationandGraphics10(2)(2004)123–129.
[16]Z.Karni,C.Gotsman,Spectralcompressionofmeshgeometry,in:Proceedings
oftheACMSiggraphConference,2000,pp.279–286.
[17]J.Peng,C.-C.J.Kuo,Geometry-guidedprogressivelossless3Dmeshcodingwith
octree(OT)decomposition,ACMTransactionsonGraphics(2005)609–616.[18]J.-Y.Sim,C.-S.Kim,S.-U.Lee,3Dmeshcompressionusingtrianglefanstructure,
IEEEInternationalSymposiumonCircuitsandSystems2(2002)257–260.[19]S.-B.Park,C.-S.Kim,S.-U.Lee,Errorresilient3-Dmeshcompression,IEEE
TransactionsonMultimedia8(5)(2006)885–895.
[20]L.Chevalier,F.Jaillet,A.Baskurt,Segmentationandsuperquadricmodelingof
3Dobjects,JournalofWSCG11(1)(2003).
[21]A.Mangan,R.Whitaker,Partitioning3Dsurfacemeshesusingwatershed
segmentation,IEEETransactionsonVisualizationandComputerGraphics5(4)(1999)308–321.
[22]S.Pulla,A.Razdan,G.Farin,Improvedcurvatureestimationforwatershed
segmentationof3-Dimensionalmeshes,TechnicalReport,Tempe,AZ:ArizonaStateUniversity,2001.
[23]A.Razdan,M.Bae,Ahybridapproachtofeaturesegmentationoftriangle
meshes,Computer-AidedDesign35(9)(2003)783–789.
[24]S.-C.Cheng,C.-T.Kuo,i,Apatch-growingapproachto3Dmodel
segmentationusingtriangleinequality,JournalofChineseInstituteofEngineers30(4)(2007)675–687.
[25]Y.Zhang,J.K.Paik,A.Koschan,M.A.Abidi,D.Gorsich,Asimpleandefficient
algorithmforpartdecompositionof3Dtriangulatedmodelsbasedoncurvatureanalysis,ProceedingsoftheInternationalConferenceonImageProcessing,vol.3,Rochester,NewYork,2002,pp.273–276.
[26]J.B.MacQueen,Somemethodsforclassificationandanalysisofmultivariate
observations,in:ProceedingsofFifthBerkeleySymposiumonMathematicalStatisticsandProbability,vol.1,UniversityofCaliforniaPress,Berkeley,1967,pp.281–297.
[27]T.Kanungo,D.M.Mount,anyahu,C.Piatko,R.Silverman,A.Y.Wu,
Anefficientk-meansclusteringalgorithm:analysisandimplementation,IEEETransactionsonPatternAnalysisandMachineIntelligence24(2002)881–892.[28]T.Kanungo,D.M.Mount,anyahu,C.Piatko,R.Silverman,A.Y.Wu,A
localsearchapproximationalgorithmfork-meansclustering,ComputationalGeometry:TheoryandApplications28(2004)89–112.
[29]C.-T.Kuo,S.-C.Cheng,3Dmodelretrievalusingprincipalplaneanalysisand
dynamicprogramming,PatternRecognition40(2)(2007)742–755.
[30]S.Shlafman,A.Tal,S.Katz,Metamorphosisofpolyhedralsurfacesusing
decomposition,ComputerGraphicsForum21(3)(2002)219–228.
[31]E.Bribiesca,Anewchaincode,PatternRecognition32(2)(1999)235–251.[32]K.Sayood,IntroductiontoDataCompression,MorganKaufmannPublishers,
Inc.,LosAltos,CA,1996.
AbouttheAuthor—SHYI-CHYICHENGreceivedtheB.S.degreefromNationalTsingHuaUniversity,Hsinchu,Taiwanin1986,andtheM.S.andPh.D.degreesinElectronicsEngineeringandComputerScienceandInformationEngineeringin1988and1992,respectively,bothfromNationalChiaoTungUniversity,Hsinchu,Taiwan.From1992to1998,hewasaTechnicalStaffattheChunghwaTelecomLaboratories,Taoyuan,Taiwan.HejoinedthefacultyofDepartmentofComputerandCommunicationEngineering,NationalKaohsiungFirstUniversityofScienceandTechnology,Kaohsiung,Taiwanfrom1999to2005.HeiscurrentlyaProfessorwiththeDepartmentofComputerScienceandEngineering,NationalTaiwanOceanUniversity,Keelung,Taiwan.Hisresearchinterestsincludemultimediadatabases,image/videocompressionandcommunications,andintelligentmultimediasystems.
AbouttheAuthor—CHEN-TSUNGKUOreceivedthePh.D.degreeinComputerandCommunicationEngineeringfromNationalKaohsiungFirstUniversityofScienceandTechnology,Taiwanin2007.Since1995,hehasservedasaStaffattheComputerCenteroftheLongchuanVeteransHospital,Pingtung,Taiwan.Hisresearchinterestsincludeimageprocessing,computergraphics,datamininganddecisionsupportsystem.
AbouttheAuthor—DA-CHUNWUreceivedthePh.D.degreeinComputerSciencefromNationalChiaoTungUniversity,Taiwanin1996.HeiscurrentlyanAssociateProfessorwiththeDepartmentofComputerandCommunicationEngineering,NationalKaohsiungFirstUniversity,Kaohsiung,Taiwan.Hisresearchinterestsincludemultimediadatabases,image/videowatermarking,anddigitalrightmanagementsystems.
正在阅读:
A novel 3D mesh compression using mesh segmentation with multiple principal plane analysis08-11
三、营销系统操作:保定旅游怎么卖06-09
2015-2016苏教版三年级语文上册期末测试题(三)06-10
美丽的万山群岛作文400字06-23
高中英语选修7课文逐句翻译(人教版)07-09
人教版语文五年级上册期末复习资料01-14
关于春的作文600字06-26
比赛领导讲话稿(多篇范文)06-16
- 粮油储藏基础知识
- 论文范文(包括统一封面和内容的格式)
- 经典解题方法
- 综合部后勤办公用品管理办法+领用表
- 学生宿舍突发事件应急预案
- 16秋浙大《生理学及病理生理学》在线作业
- 四分比丘尼戒本(诵戒专用)
- 浙江财经大学高财题库第一章习题
- 九大员岗位职责(项目经理、技术负责人、施工员、安全员、质检员、资料员、材料员、造价员、机管员)
- 旅游财务管理习题(学生版)
- 德阳外国语高二秋期入学考试题
- 投资学 精要版 第九版 第11章 期权市场
- 控制性详细规划城市设计认识
- bl03海运提单3国际贸易答案
- 2010-2011学年湖北省武汉市武珞路中学七年级(上)期中数学试卷
- VB程序填空改错设计题库全
- 教师心理健康案例分析 - 年轻班主任的心理困惑
- 民间借贷司法解释溯及力是否适用?
- 三联书店推荐的100本好书
- 《化工原理》(第三版)复习思考题及解答
- mesh
- segmentation
- compression
- principal
- multiple
- analysis
- novel
- using
- plane
- with
- 3D
- 情景型名句默写(二)
- 惯习与场域大学生自主学习能力的影响因素——以中南大学为例的实证研究
- 2009年导游资格考试导游政策法规模拟试题
- 论民办教育公益性与营利性的博弈
- 物业管理节能大有可为——“既有建筑节能运行管理研讨会”在广州召开
- 瑞星企业终端安全管理系统软件用户手册_初稿
- 通过以太网与施耐德Premium的PLC通讯的问题 ccg
- 华东理工大学2012年春季管理学原理(本)网上作业1
- 神奇宝贝道馆
- 算法框图及推理与证明单元能力测试
- 第五届高数竞赛理工类答案
- 教育学基础(十二院校版)笔记
- 2013-2018年中国滚装船市场竞争及投资策略研究报告
- 蒸发冷却器除垢剂
- 高等职业教育旅游管理专业课程现状和对从业人员的要求
- 四年级语文下册期末专项练习题一
- 中世纪的艺术特点作业
- 人教版八年级物理上册第二次月考试题与答案
- 农村教师调动申请报告通用范本
- 英语同步练习题考试题试卷教案牛津小学英语一年级下学期期中测试题