中国草原土壤呼吸作用研究进展

更新时间:2023-05-30 02:21:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

植物生态学报 2010, 34 (6): 713–726 doi: 10.3773/j.issn.1005-264x.2010.06.011

Chinese Journal of Plant Ecology

中国草原土壤呼吸作用研究进展

鲍 芳1,2 周广胜3,1*

1

23中国科学院植物研究所植被与环境变化国家重点实验室, 北京 100093; 中国科学院研究生院, 北京 100049; 中国气象科学研究院, 北京 100081

摘 要 中国草原面积约占国土面积的40%, 且大都位于生态脆弱区, 对气候和环境变化十分敏感, 在未来大气CO2调控中有着重要的作用。为增进对中国草原土壤呼吸作用的理解, 该文综述了近10年来中国草原土壤呼吸作用的最新研究进展, 指出中国草原土壤呼吸作用的研究主要集中在东北平原、内蒙古高原和青藏高原。草原土壤呼吸作用日动态的主导控制因子是温度, 季节动态的主导控制因子可以是温度、水分或二者的交互作用, 取决于研究地点的限制性环境因子, 而年际动态的主导控制因子为水分。草原土壤呼吸作用还存在着巨大的空间变异, 年降水和土壤全氮含量是不同类型草原土壤呼吸作用空间异质性的主导控制因子。土壤呼吸作用对全球变化的响应比较复杂, 取决于各因子之间相互影响的贡献。现有的土壤呼吸作用模型大多只考虑了水热因子, 很少包含土壤因子和生物因子及其协同作用的影响。在此基础上, 指出未来中国草原土壤呼吸作用拟加强的研究重点: 1)温带荒漠草原土壤呼吸作用研究; 2)非生长季土壤呼吸作用研究; 3)多时空尺度草原土壤呼吸作用的比较研究; 4)草原土壤呼吸作用过程模拟研究; 5)草原土壤呼吸作用的遥感监测评估研究。 关键词 控制因子, 中国草原, 模拟模型, 土壤呼吸, 时空动态

Review of research advances in soil respiration of grassland in China

BAO Fang1,2 and ZHOU Guang-Sheng3,1*

State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; 2Graduate University of Chinese Academy of Sciences, Beijing 100049, China; and 3Chinese Academy of Meteorological Sciences, Beijing 100081, China

1

Abstract

Grasslands in China cover vast, continuous areas and account for about 40% of Chinese land area. Most are lo-cated in the eco-geographical fragile region, are sensitive to climate change, and play important roles in regulating the carbon dioxide concentration in the atmosphere. Our objective was to review recent studies on soil respiration of grassland in China. Most studies were conducted in Northeast Plain, Inner Mongolia and Tibetan Plateau. Di-urnal dynamics of soil respiration are controlled by temperature, seasonal patterns are controlled by temperature and/or water depending on the limiting environmental factors, and inter-annual variability is mainly determined by water. In addition, there is great spatial heterogeneity driven by mean annual precipitation and soil total nitro-gen content. Responses of soil respiration to global changes were complicated and depended on the interaction of each factor. Most recent soil respiration models failed to incorporate the modulation of soil and biotic factors and their interaction. Key issues and suggested future research topics are 1) soil respiration in temperate desert grass-land, 2) soil respiration during non-growing season, 3) comparison study of grassland soil respiration on different spatial and temporal scales, 4) simulation study of grassland soil respiration and 5) remote sensing of grassland soil respiration.

Key words driving factors, grassland in China, simulation model, soil respiration, spatio-temporal variation

陆地生态系统2/3以上的碳储存在土壤中。土壤呼吸作用是陆地生态系统向大气输出碳的主要途径, 是陆地生态系统碳循环的重要组成部分。全球每年因土壤呼吸排放到大气中的碳是化石燃料燃烧排放量的10倍以上(Marland et al., 2006; IPCC, 2007)。土壤碳库及其碳排放量如此巨大, 使得土壤

——————————————————

收稿日期Received: 2009-05-07 接受日期Accepted: 2010-03-24 * 通讯作者Author for correspondence (E-mail: gszhou@)

呼吸速率的微小变化都会导致土壤碳素的周转速率, 特别是大气CO2浓度发生重大改变, 从而可加剧或减缓全球气候变暖(Schlesinger & Andrews, 2000)。在全球范围内, 土壤呼吸作用在不同生态系统类型之间和之内都存在很大变异, 不同生物群区之间年平均土壤呼吸速率与其年平均气温、年平均

714 植物生态学报Chinese Journal of Plant Ecology 2010, 34 (6): 713–726

降雨量及年平均净初级生产力显著相关(Raich & Schlesinger, 1992; Raich & Pooter, 1995; Raich & Tufekcioglu, 2000)。草地占全球陆地总面积的1/3 (Scurlock & Hall, 1998), 在相同环境条件下, 草地土壤呼吸速率较森林高约20%, 在碳循环对全球变化的响应和反馈过程中发挥着重要作用(Raich & Tuf- ekcioglu, 2000)。因此, 弄清草地土壤呼吸作用的变化规律及其控制机制, 不仅是准确评估全球碳收支的关键, 而且是制定应对全球变化措施的关键。

中国草原面积约占国土面积的40% (陈佐忠和汪诗平, 2000), 且大多位于生态脆弱地带, 正在经受着越来越严重的人为与自然因素的干扰, 如土地利用变化、大气氮沉降增加、施肥、CO2浓度和温度升高等。对中国草原土壤呼吸作用研究现状的系统考察, 有助于认识和把握中国草原碳循环研究取得的成果, 找出存在的不足。为此, 本文试图从研究区域、时空变异及其控制因子对全球变化的响应及模拟模型等方面, 综述中国草原土壤呼吸作用的最新研究进展, 探讨未来中国草原土壤呼吸作用的研究重点, 为全球碳收支的准确评估和草原碳增汇减排对策的制定提供参考。

等, 2000)和克氏针茅草原(师广旭等, 2008; Liu et al., 2009; Xia et al., 2009a)、荒漠草原(珊丹等, 2009; Wang et al., 2009)、高寒草甸草原(Cao et al., 2004; Zhao et al. 2006; 陶贞等, 2007; Hu et al., 2008; Pei et al., 2009; Zhang et al., 2009)以及部分高山森林草原(常宗强等, 2005)、高山荒漠草原(常宗强等, 2007)和新疆亚高山草原(董自红等, 2007)等。

2 时空变异及其控制因子

2.1 时间变异及其控制因子 2.1.1 日动态及其控制因子

不同类型的草原土壤呼吸作用的日变化多呈单峰型曲线, 土壤呼吸速率早晚低、中午高。温度是草原土壤呼吸作用日变化的主要控制因子(崔骁勇等, 1999; 李明峰等, 2003; 孙伟, 2003; Cao et al., 2004; Jia & Zhou, 2009), 其他环境因子, 如土壤含水量、生物量和土壤特性等在一天当中的变化相对较小, 对土壤呼吸作用的影响不明显(Han et al., 2007)。如果发生降水事件, 土壤呼吸作用会迅速激增, 持续一段时间后逐渐下降 (Fierer & Schimel, 2003; Huxman et al., 2004; Sponseller, 2007; Chen et al., 2008, 2009)。

2.1.2 季节动态及其控制因子

不同类型的草原土壤呼吸作用的季节动态基本一致, 夏季高、秋冬低。峰值通常出现在植物的生长盛期。土壤呼吸作用日均CO2排放量在植物的不同生长期差异显著, 这种差异的80%是由地上活体生物量变化引起的(齐玉春等, 2005a; 师广旭等, 2008)。不同类型草原土壤呼吸作用的季节变化的主导因子可以是温度、水分或二者的交互作用, 取决于研究地点的限制性环境因子。如在水分不受限制的草甸草原, 温度是土壤呼吸作用季节变化的主要控制因子(王娓和郭继勋, 2006); 在水分较差的荒漠草原, 土壤呼吸作用的季节变化主要受水分控制, 其次才是温度(Wang et al., 2009); 在水热配置较好的典型羊草草原, 温度、水分和植物绝对生长速率共同驱动土壤呼吸作用的季节变化(Jia & Zhou, 2009); 在气温较低的高寒草甸, 温度是土壤呼吸作用的季节变化的主要控制因子(张金霞等, 2001; Cao et al., 2004; Saito et al., 2009)。 2.1.3 年际动态及其控制因子

草原土壤呼吸作用还表现出明显的年际波动,

1 研究区域

中国草原资源丰富, 集中分布于东北平原、内蒙古高原和青藏高原, 少数分布在暖温带和热带地区(Ni, 2002)。其中, 内蒙古草原是欧亚大陆草原的重要组成部分, 受水分和温度驱动, 自东向西依次分布着草甸草原、典型草原和荒漠草原, 是中国草地的主体, 也是中国畜牧业生产的主要基地(陈佐忠和汪诗平, 2000)。青藏高原被称为世界的“第三极”, 草原覆盖了整个青藏高原面积的1/3, 海拔多在3 000 m以上, 特殊的地形和大气环流模式, 使得该地区有着独特的生物地球化学过程, 对气候和环境变化反应非常敏感(Pei et al., 2009)。因此, 目前中国草原土壤呼吸作用的研究主要集中在这两个地区, 其他地区如新疆、黄土高原等草地也有零星研究。土壤呼吸作用研究的草原类型主要涉及到草甸草原(如贝加尔针茅草原(孙伟, 2003; 李明峰等, 2004a)、羊草草原(郭继勋和张宏一, 1991; 王娓等, 2002a, 2002b; 王娓和郭继勋, 2002, 2006))、典型草原(如羊草草原(Jia et al., 2006, 2007a, 2007b; Jia & Zhou, 2009)、大针茅草原(陈四清等, 1999; 崔骁勇

鲍芳等: 中国草原土壤呼吸作用研究进展 715

年际间的差异一般表现为年CO2排放量的差异, 年际间土壤呼吸作用的季节动态基本一致(李凌浩等, 2000; 王跃思等, 2003)。如降水是驱动一个混生针叶林土壤呼吸作用年际变异的主导因素(Concilio et al., 2009)。降水是中国温带草原土壤呼吸作用年际变化的第一控制因子(Liu et al., 2009)。在世界上其他存在季节性干旱的生物群区, 土壤呼吸作用的年际变化与年降水之间也存在显著的相关关系, 而全球尺度的土壤呼吸作用的年际变化与年平均气温的相关性更强, 气候变暖有可能导致全球土壤CO2排放量增加(Raich et al., 2002)。 2.2 空间变异及其控制因子

Raich和Schlesinger (1992)综述了全球范围内土壤呼吸作用的实测数据, 指出土壤呼吸的平均速率在不同植被类型之间和之内存在着很大的变异, 冻原和荒漠生态系统的呼吸速率最低, 热带雨林的土壤呼吸速率最大。即使在同一生态系统内, 不同空间尺度的土壤呼吸作用差异也很大(Martin & Bolstad, 2009)。中国不同类型草原的生长季平均土壤呼吸速率及其日、季节动态峰值出现的时间均不

表1 中国草原土壤呼吸作用空间异质性

Table 1 Spatial variation of soil respiration of grassland in China

草原类型 Grassland type

群落类型

Community type

测定方法 Measurement method 静态暗箱法 Static closed chamber method

相同(表1), 体现出巨大的空间异质性。加上不同研究者对土壤呼吸作用的观测时间和测定方法不同, 使得不同研究结果之间的可比性降低。有关土壤呼吸作用测定方法的分析可参考文献(Jensen et al., 1996; Norman et al., 1997; Kuzyakov, 2006; 苏永红等, 2008)。至于哪种方法可作为土壤呼吸作用测量的标准, 目前仍没有一致的看法, 但开放式动态气室法被认为是最可靠的一种方法(Luo et al., 2006)。

在全球尺度上, 不同类型草原的土壤呼吸作用与年平均气温呈显著的线性正相关关系, 与年降水量呈二次函数关系(Wang & Fang, 2009)。中国不同类型草原的土壤呼吸作用与年降水和年平均气温之间均呈显著的指数相关关系(图1A、1B), 降水梯度不够大可能是造成土壤呼吸作用与年降水量之间的相关关系与全球尺度不同的主要原因; 土壤呼吸作用与经度呈显著的指数关系, 与纬度呈显著的线性负相关关系(图1C、1D)。

除水热因子外, 植被组成(Raich & Tufekcioglu, 2000; Smith & Johnson, 2004; Johnson et al., 2008)、光合作用(Moyano et al., 2008)、土壤微生物生物量

草甸草原

Meadow steppe 典型草原 Typical steppe

贝加尔针茅 Stipa baicalensis 克氏针茅 Stipa krylovii 羊草

Leymus chinensis 大针茅

Stipa grandis

土壤呼吸速率 峰值出现时间 Soil respiration Maximum value occurrence time* rate 日动态 季节动态 (mg CO2·m–2·h–1) Daily variationSeasonal variation 316.8 10:00–13:00 6–8月

Jun.–Aug. 78.8 10:00–13:00 6–8月

Jun. –Aug. 218.9 13:00–15:00 6–8月

Jun. –Aug. 189.4 13:00–17:00 6–8月

Jun.–Aug. 72.8 14:00 8月

Aug.

13:00–15:00 8月

Aug.

315–3 685 14:00–16:00 168.7 15:00–18:00 7–8月

Jul.–Aug.

49.1–1105.6 14:00–16:00 7–8月

Jul.–Aug. 307.3–1476.2

7–8月 Jul.–Aug.

参考文献 Reference

紫花针茅 Stipa purpure 矮蒿草

Kobresia humilis

亚高山草原 针茅

Sub-alpine steppe Stipa capillata

LI-6400 荒漠草原 短花针茅

Desert steppe Stipa breviflora

高山森林草原 大针茅-黄花蒿 Mountain forest Stipa grandis- grassland Artemisia annua 高山荒漠草原 大针茅-黄花蒿 Mountain desert Stipa grandis- grassland Artemisia annua *不同研究地点间的时区差异忽略不计。

*The time zone differences at each site were ignored.

高寒草甸 Alpine steppe

Li et al., 2004a; Dong et al., 2005

Li et al., 2004a; Dong et al., 2005

Li et al., 2004a; Dong et al., 2005

Li et al., 2004a; Dong et al., 2005

Pei et al., 2003; Hu et al., 2008 Dong et al., 2007

Shan et al., 2009

Chang et al., 2005 Chang et al., 2007

doi: 10.3773/j.issn.1005-264x.2010.06.011

716 植物生态学报Chinese Journal of Plant Ecology 2010, 34 (6): 713–726

图1 中国草原土壤呼吸作用和年平均降水量(A)、年平均气温(B)、经度(C)及纬度(D)的相关关系。

Fig. 1 Relationships of soil respiration of grassland in China with mean annual precipitation (A), mean annual temperature (B), lon-gitude (C) and latitude (D).

(Ruess & Seagle, 1994)、地表特征(Maestre & Cortina, 2003)等因素也会导致土壤呼吸作用产生空间差异。其中, 年降水量通常是预测区域尺度上土壤呼吸作用空间变异性的重要因子(Luo & Zhou, 2006; Herbst et al., 2009)。如年降水可以解释北美大平原土壤呼吸作用区域变异的56% (McCulley et al., 2005), 水分是匈牙利黄土草原土壤呼吸作用空间异质性的主导控制因子(Foti et al., 2008)。对中国温带草原土壤呼吸作用及其影响因子(包括年平均气温、年降水量、土壤有机碳和全氮含量、碳氮比)进行逐步多元线性回归分析, 结果表明, 年降水量和土壤全氮含量是中国温带草原土壤呼吸作用空间变异的主导控制因子(方程(1)) , 二者共同解释了中国温带草原土壤呼吸作用空间变异的84%, 年降水量可以单独解释72%。

Rs = 1.85MAP + 1024.54N – 578.10 (R2 = 0.84, p < 0.0001) (1) 其中, Rs为土壤呼吸作用(g C·m–2·a–1), MAP为年降水量(mm), N为土壤全氮含量(%)。

不同空间尺度上, 土壤呼吸作用异质性的主导

影响因子不同: 在0–1 m尺度上, 根系和凋落物是决定土壤呼吸作用的空间变异的主要因素; 在1–10 m尺度上, 根系生物量、土壤碳/氮含量、根系含氮量是土壤呼吸作用空间异质性的主要影响因子; 在景观尺度上, 地形通过改变土壤含水量等理化特性而间接主导土壤呼吸作用的空间变异(Martin & Bolstad, 2009)。

3 对全球变化的响应

全球变化(主要包括CO2浓度升高、全球变暖、大气氮沉降和施肥、土地利用变化等)将对草原碳循环产生重要的影响, 而土壤呼吸作用在对全球变化的响应与反馈过程中起着非常重要的作用。模拟试验表明: CO2浓度升高通常会使土壤呼吸作用增加(Pendall et al., 2003)。CO2浓度升高通常使植物的光合作用增加, 导致植物生物量和凋落物量增加, 使得向地下输入的呼吸底物增加; 同时, CO2浓度升高有利于增加土壤湿度, 促进细菌运动和呼吸底物扩散, 进而导致土壤呼吸作用增加(Pendall et al., 2003; Nelson et al., 2004; Luo & Zhou, 2006; Luo et

鲍芳等: 中国草原土壤呼吸作用研究进展 717

al., 2006), 缓解干旱胁迫的不利影响(高素华等, 2003)。

由于土壤呼吸作用对温度的敏感性, 通常认为增温可以导致土壤呼吸增加(Schimel et al., 1994; Cox et al., 2000; Scheffer et al., 2006; Schindlbacher et al., 2009)。研究发现, 增温对土壤呼吸作用的影响因地点而异。如温度升高对美国高草草原土壤呼吸作用的刺激效应会因土壤呼吸作用的“适应性”逐渐减弱(Luo et al., 2001; Zhou et al., 2007a); 但也有研究指出, 德国南部一个农场的土壤呼吸作用经历了10年的持续增温后并没有观察到“适应现象” (Reth et al., 2009)。增温对土壤呼吸作用的影响还会随着草原类型、水分条件及观测时间的不同而改变(Wan et al., 2005, 2007; Lellei-Kovács et al., 2008; 珊丹等, 2009; Xia et al., 2009a)。水分对增温效果具有明显的影响, 在水分不受限制时, 增温使美洲中北部大草原土壤呼吸速率显著增加; 而当水分受限时, 增温对土壤呼吸作用的刺激效应会被水分缺乏导致的负效应抵消(Bontti et al., 2009)。在中国, 模拟增温使温带克氏针茅草原的土壤呼吸作用降低(Liu et al., 2009), 且白天和夜间增温对土壤呼吸作用的影响机制不同, 二者之间不具有加和性(Xia et al., 2009a)。白天增温对土壤呼吸作用产生的正效应会被土壤水分降低和生态系统碳同化速率降低产生的负效应抵消(Liu et al., 2009; Xia et al., 2009a), 珊丹等(2009)也观察到增温导致短花针茅草原土壤呼吸作用降低的现象; 夜间增温则可以促进土壤呼吸作用, 因为夜间呼吸作用使白天积累的同化产物被消耗, 进而刺激植物第二天产生更多的同化产物, 这种“光合过补偿”作用可以使中国温带草原积累更多的碳, 并使其由碳源向碳汇转变(Wan et al., 2009)。也有研究发现, 夜间增温由于阻碍了潘诺尼亚平原夜间露水的形成, 使其土壤含水量降低, 而导致土壤呼吸作用下降(Lellei-Kovács et al., 2008)。

降水可以使克氏针茅草原土壤呼吸作用和微生物呼吸作用显著提高(Liu et al., 2009), 干旱则导致其土壤呼吸作用下降(Wan et al., 2007; Shen et al., 2009)。降水量不同, 对土壤呼吸作用的影响也不同。如低于5 mm的降水只能激发土壤异养呼吸作用, 且持续时间较短; 高于5 mm的降水才能激发自养呼吸作用, 但持续时间短, 高于10 mm的降水才能使土壤呼吸作用对降水的响应时间延长; 其中异

养呼吸在响应过程的早期贡献较大, 自养呼吸在后期起主导作用, 并决定土壤呼吸作用对降水的响应时间(Chen et al., 2008, 2009)。因此, 将土壤呼吸区分为自养呼吸和异养呼吸对了解生态系统碳交换对气候和植被变化的响应非常重要(Edward & Schuur, 2006; Zhou et al., 2007b)。

全球变化多因子之间的交互作用非常复杂, CO2浓度升高、增温、增水三者对土壤呼吸作用的影响不存在加和效应, 但两两因素之间存在促进或拮抗效应(Luo et al., 2008)。如增温可以增强CO2浓度升高、增水对土壤呼吸作用的影响; 而CO2浓度升高和增水对土壤呼吸作用的影响之间则表现为拮抗效应(Shen et al., 2009)。增温主要通过刺激微生物的呼吸作用增加总的土壤呼吸作用, 而降水通过增强自养呼吸作用导致总的土壤呼吸作用增加(Shen et al., 2009)。

中国温带草原土壤呼吸作用对温度升高和添加氮肥的响应在不同降水年景之间没有显著差异, 这意味着增温、添加氮肥对中国温带草原碳通量的影响不依赖于水分变化(Xia et al., 2009b)。但水分和土壤氮含量是美国科罗拉多州东部半干旱草原对气候变化响应的主要驱动因子(Parton et al., 2007)。放牧和刈割通常会使草原土壤呼吸作用降低(崔骁勇等, 2000; 李凌浩等, 2000; Johnson & Matchett, 2001; 张金霞等, 2001; Wan & Luo, 2003; Cao et al., 2004; 贾丙瑞等, 2004; 齐玉春等, 2005b; Jia et al., 2007a; 陈海军等, 2008; Wang et al., 2009)。放牧使草原地下生物量明显下降(Johnson & Matchett, 2001; Jia et al., 2007a)、微生物和根的呼吸底物供应降低(Cao et al., 2004)、土壤呼吸作用对土壤温度和水分的敏感性改变(Cao et al., 2004; Jia et al., 2007a); 长期的刈割移走了部分本该返还到土壤中的植物生物量, 使土壤库中的碳、氮含量降低(Luo & Zhou, 2006); 草原开垦也会影响土壤呼吸作用, 如草甸草原开垦为农田后, 土壤呼吸作用上升了81% (李明峰等, 2004b)。

4 模拟模型

目前, 土壤呼吸作用模拟模型主要包括日尺度和季节尺度的土壤呼吸作用模型, 如线性模型、幂函数模型、对数模型、指数模型、二次函数模型等 (附表1), 尤其是机理性较强的Arrhenius模型越来越

doi: 10.3773/j.issn.1005-264x.2010.06.011

718 植物生态学报Chinese Journal of Plant Ecology 2010, 34 (6): 713–726

受到重视(Lloyd & Tailor, 1994; Hibbard et al., 2005)。这些模型大多只考虑了水热因子, 很少包含土壤因子与生物因子及其协同作用的影响(Zhou et al., 2008a)。越来越多的研究表明, 除气象因子外, 植物光合作用、净第一性生产力(NPP)、根系生物量、土壤呼吸作用底物数量与质量等均显著地影响土壤呼吸作用(Craine et al., 1999; Wan & Luo, 2003; Wang et al., 2003; Davidson et al., 2006; Daidson & Janssens, 2006; Flanagan, 2009; Martin & Bolstad, 2009; Savage et al., 2009)。土壤呼吸作用模拟不能只考虑水热因子, 不同时空尺度的土壤呼吸作用底物供应量等生物因子也应该纳入土壤呼吸作用模拟模型(Raich & Tufekcioglu, 2000; Wan & Luo, 2003; Savage et al., 2009)。Jia和Zhou (2009)将绝对生长速率耦合到土壤呼吸作用模型中, 建立了同时包括水热因子和生物因子在内的中国温带草原土壤呼吸作用模拟模型。由于目前发表的各种模型所采用的温度指标(如气温、5 cm和10 cm土壤温度等)、土壤水分取样深度(如0–10和10–20 cm等)以及土壤呼吸作用测定方法不统一, 使得模型之间缺乏可比性, 且这些模型考虑的水热因子和生物因子存在空间与时间的局限性, 只适应于特定的研究类型或地点, 难以从时间和空间尺度上推广应用到区域或全球尺度(Zhou et al., 2008a)。因此, 为了准确地评估中国草原的碳收支, 弄清楚土壤呼吸作用的时空动态及其控制因子, 必须采用统一的、高时间分辨率的土壤呼吸作用观测仪器, 开展土壤呼吸作用空间异质性及其影响因子的长期综合观测实验, 以获取长期的土壤呼吸作用、水热因子、生物因子及其土壤养分的综合观测资料, 发展和建立耦合多因子影响的土壤呼吸作用普适性评估模型(Zhou et al., 2008a; 韩广轩和周广胜, 2009)。

由于土壤呼吸作用的不同组分, 自养呼吸作用和土壤异养呼吸作用对环境变化及其控制因子的响应规律不一致(Boone et al., 1998), 如土壤异养呼吸作用的Q10 (表观温度敏感性, 温度每升高10 ℃, 土壤呼吸作用的变化率)为4.6, 自养呼吸作用的Q10为2.5 (Boone et al., 1998), 且只有土壤异养呼吸作用与土壤碳库中碳素的损失过程密切相关(Kuzyakov et al., 1999; Kuzyakov & Cheng, 2001)。因此, 将土壤呼吸作用各组分进行分离, 分别建立土壤异养呼吸作用和自养呼吸作用的模拟模型, 对

准确地评估生态系统碳收支及其对全球变化的响应将具有重要意义。

5 研究展望

近十年来, 关于草原土壤呼吸作用已经开展了大量的观测研究工作, 取得了较大进展, 但是关于中国草原土壤呼吸作用的控制机理及其过程认识尚不统一, 对于草原土壤呼吸作用的评估仍具有较大的不确定性。主要表现在以下5个方面:

1)温带荒漠草原土壤呼吸作用研究缺乏。内蒙古温带荒漠草原东起锡林郭勒盟苏尼特, 西至巴彦淖尔市乌拉特, 北面与蒙古国荒漠草原相接, 南至阴山北麓的山前地带, 总面积约11.2万km2。在气候上, 荒漠草原处于半干旱与干旱区的边缘地带, 受气候和人为干扰严重, 生态系统十分脆弱, 在中国草地碳循环研究中具有非常重要的地位(马治华等, 2007)。目前关于中国温带荒漠草原土壤呼吸的观测研究非常缺乏, 极大地制约了国家尺度草地碳收支的准确评估及碳减排增汇措施的实施。因此, 在现有资料的基础上, 大量补充温带荒漠草原土壤呼吸作用的观测数据, 有助于从整体上认识和把握中国草原土壤呼吸作用的规律, 合理地制定草原土壤呼吸作用的减排对策。

2)非生长季土壤呼吸作用研究不足。从草原碳循环来看, 土壤呼吸年排放量是准确地评估草原碳收支的最重要的资料(李凌浩和陈佐忠, 1998)。非生长季土壤呼吸主要来自微生物异养呼吸, 是地面和大气之间CO2交换过程不可忽略的一部分(方精云和王娓, 2007; 王娓等, 2007)。目前, 中国草原非生长季土壤呼吸作用及其关键生态学过程研究非常有限。因此, 未来应当对草原土壤呼吸作用及其主导因子进行长期的全年定位观测研究, 以准确地评估草原碳收支。

3)多时空尺度草原土壤呼吸作用的比较研究不足。不同时间尺度(日尺度、季节尺度、年际间)和空间尺度草原土壤呼吸作用的控制因子不同。目前, 大多数研究集中在土壤呼吸作用的短期流量、季节动态及其影响因素方面(李凌浩和陈佐忠, 1998), 对不同时空尺度草原土壤呼吸作用的比较研究较少。精确地估算草原碳收支必须了解不同时空尺度土壤呼吸作用的变化规律及其控制因子。因此, 开展多时空尺度草原土壤呼吸作用的比较研究是将来

鲍芳等: 中国草原土壤呼吸作用研究进展 719

土壤呼吸作用研究发展的方向。

4)草原土壤呼吸作用模拟模型研究。目前, 研究者通常利用土壤温度、土壤湿度或者两者的交互作用模拟土壤呼吸作用, 但是这些模型很难揭示土壤呼吸作用与其控制因子之间的时空变化规律(方精云和王娓, 2007)。为了提高模型模拟的准确性, 还需要考虑生物因子的影响(Raich & Tufekcioglu, 2000; Wan & Luo, 2003; Zhou et al., 2008a; 韩广轩和周广胜, 2009; Savage et al., 2009)。在全球变化的背景下, 综合考虑环境因子、生物因子及人为干扰对土壤呼吸作用的影响, 发展同时反映多时空尺度土壤呼吸作用异质性的模型是土壤呼吸作用模拟研究中的关键。

5)草原土壤呼吸作用的遥感监测评估研究。发展多时空尺度土壤呼吸作用模型必须要解决土壤呼吸作用测定结果的时空尺度转换问题, 虽然涡度相关技术可以直接测定不同时间尺度(从小时到数年)的生态系统碳通量的连续变化, 但其结果依然不能直接外推到区域或更大尺度上(严燕儿等, 2008)。遥感作为一种具有高时空分辨率的现代技术, 已经被广泛应用于生态学研究(Gilmanov et al., 2005), 为开展多尺度草原土壤呼吸作用长期定量观测提供了可能。建立土壤呼吸作用的遥感监测评估方法, 有助于实现中国草原土壤呼吸作用的快速和准确评估。

致谢 国家自然科学基金(90711001和30770413)和国家高科技研究发展计划项目(2006AA10Z225)共同资助。感谢中国科学院植物研究所隋兴华、胡天宇在作图过程中给予的大力帮助。 参考文献

Bo LJ (博力健), Dang DE (党德尔), Jia HT (贾宏涛), Dong

ZH (董自红) (2006). Effects of temperature on summer soil CO2 release of mountain grassland. Xinjiang Animal Husbandry (新疆畜牧业), (4), 20–23. (in Chinese)

alpine meadow on the Tibetan plateau. Soil Biology & Biochemistry, 36, 237–243.

Chang ZQ (常宗强), Feng Q (冯起), Si JH (司建华), Su YH

(苏永红), Xi HY (席海洋) (2007). Influence of soil moisture-temperature conditions on surface CO2 efflux in desert steppe of the Qilian Mountains, the Northwest of China. Arid Land Geography (干旱区地理), 30, 812–819. (in Chinese with English abstract)

Chang ZQ (常宗强), Shi ZM (史作民), Feng Q (冯起), Su YH

(苏永红) (2005). Temporal variation of soil respiration on sloping pasture of Heihe River basin and effects of tem-perature and soil moisture on it. Chinese Journal of Ap-plied Ecology (应用生态学报), 16, 1603–1606. (in Chi-nese with English abstract)

Chen HJ (陈海军), Wang MJ (王明玖), Han GD (韩国栋), Wu

ZY (吴志毅) (2008). Effect of different grazing intensities on soil respiration and soil microorganism in Stipa bai-calensis steppe. Journal of Arid Land Resources and En-vironment (干旱区资源与环境), 22, 165–169. (in Chinese with English abstract)

Chen QS (陈全胜), Li LH (李凌浩), Han XG (韩兴国), Yan

ZD (阎志丹), Wang YF (王艳芬), Yuan ZY (袁志友) (2003). Influence of temperature and soil moisture on soil respiration of a degraded steppe community in the Xilin river basin of Inner Mongolia. Acta Phytoecologica Sinica (植物生态学报), 27, 202–209. (in Chinese with English abstract)

Chen QS (陈全胜), Li LH (李凌浩), Han XG (韩兴国), Yan

ZD (阎志丹), Wang YF (王艳芬), Zhang Y (张炎), Xiong XG (熊小刚), Chen SP (陈世苹), Zhang LX (张丽霞), Gao YZ (高英志), Tang F (唐芳), Yang J (杨晶), Dong YS (董云社) (2004). Temperature sensitivity of soil res-piration in relation to soil moisture in 11 communities of typical temperate steppe in Inner Mongolia. Acta Ecologica Sinica (生态学报), 24, 831–836. (in Chinese with English abstract)

Chen SP, Lin GH, Huang JH, He M (2008). Responses of soil

respiration to simulated precipitation pulses in semiarid steppe under different grazing regimes. Journal of Plant Ecology, 1, 237–246.

Chen SP, Lin GH, Huang JH, Jenerette GD (2009). Depend-ence of carbon sequestration on the differential responses of ecosystem photosynthesis and respiration to rain pulses in a semiarid steppe. Global Change Biology, 15, 2450–2461.

Bontti EE, Decant JP, Munson SM, Gathany MA,

Przeszlowska A, Haddix M, Owens S, Burke IC, Parton WJ, Harmon ME (2009). Litter decomposition in grass-lands of Central North America (US Great Plains). Global Change Biology, 15, 1356–1363.

Chen SQ (陈四清), Cui XY (崔骁勇), Zhou GS (周广胜), Li

Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP (1998). Roots

LH (李凌浩) (1999). Study on the CO2-release rate of soil exert a strong influence on the temperature sensitivity of

respiration and litter decomposition in Stipa grandis soil respiration. Nature, 396, 570–572.

steppe in Xilin river basin, Inner Mongolia. Acta Botanica Cao GM, Tang YH, Mo WH, Wang YA, Li YN, Zhao XQ

Sinica (植物学报), 41, 645–650. (in Chinese with English (2004). Grazing intensity alters soil respiration in an

doi: 10.3773/j.issn.1005-264x.2010.06.011

720 植物生态学报Chinese Journal of Plant Ecology 2010, 34 (6): 713–726

abstract)

Chen ZZ (陈佐忠), Wang SP (汪诗平) (2000). Typical Grass-land Ecosystem in China (中国典型草原生态系统). Sci-ence Press, Beijing. 1. (in Chinese)

Concilio AJ, Chen JQ, Ma SY, North M (2009). Precipitation

drives interannual variation in summer soil respiration in a Mediterranean-climate, mixed-conifer forest. Climate Change, 92, 109–122.

Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000).

Acceleration of global warming due to carbon-cycle feed-backs in a coupled climate model. Nature, 408, 184–187. Craine JM, Wedin DA, Chapin SF (1999). Predominance of

ecophysiological controls on soil CO2 flux in a Minnesota grassland. Plant and Soil, 207, 77–86. Cui XY (崔骁勇), Chen SQ (陈四清), Chen ZZ (陈佐忠)

(2000). CO2 release from Stipa grandis grassland soil. Chinese Journal of Applied Ecology (应用生态学报), 11, 390–394. (in Chinese with English abstract)

Cui XY (崔骁勇), Wang YF (王艳芬), Du ZC (杜占池)

(1999). Primary study on soil respiration of main plant communities in typical grasslands in Inner Mongolia. Acta Agrestia Sinica (草地学报), 7, 245–250. (in Chinese with English abstract)

Davidson EA, Janssens IA (2006). Temperature sensitivity of

soil carbon decomposition and feedbacks to climate change. Nature, 440, 165–173.

Davidson EA, Janssens IA, Luo YQ (2006). On the variability

of respiration in terrestrial ecosystems: moving beyond Q10. Global Change Biology, 12, 154–164. Dong YS (董云社), Qi YC (齐玉春), Liu JY (刘纪远), Geng

YB (耿元波), Domroes M, Yang XH (杨小红), Liu LX (刘立新) (2005). Characteristics of soil CO2 flux in 4 communities of temperate steppe along the precipitation gradient in Inner Mongolia. Chinese Science Bulletin (科学通报), 50, 473–480. (in Chinese)

Dong ZH (董自红), Jiang PA (蒋平安), Jia HT (贾洪涛), Li H

(李慧), Cheng LM (程路明) (2007). The analysis of daily variation of CO2 flux in alpine meadow of Xinjiang. Xin-jiang Agricultural Sciences (新疆农业科学), 44, 1–5. (in Chinese with English abstract)

Edward AG, Schuur SET (2006). Partitioning sources of soil

respiration in boreal black spruce forest using radiocarbon. Global Change Biology, 12, 165–176. Fang JY (方精云), Wang W (王娓) (2007). Soil respiration as

a key belowground process: issues and perspectives. Journal of Plant Ecology (Chinese Version) (植物生态学报), 31, 345–347. (in Chinese with English abstract) Fierer N, Schimel JP (2003). A proposed mechanism for the

pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil. Soil Science Society of America Journal, 67, 798–805.

Flanagan LB (2009). Phenology of plant production in the

Northwestern Great Plains: relationships with carbon iso-tope discrimination, net ecosystem productivity and eco-system respiration. Phenology of Ecosystem Processes: Applications in Global Change Research, 169–185.

Foti S, Balogh J, Nagy Z, Urmos Z, Bartha S, Tuba Z (2008).

Temporal and spatial variability and pattern of soil respi-ration in loess grassland. Community Ecology, 9, 57–64. Gao SH (高素华), Guo JP (郭建平), Zhou GS (周广胜), Yang

LM (杨利民) (2003). Response of Stipa baicalensis to soil drought stress at high CO2 concentration. Journal of Ap-plied Meterological Science (应用气象学报), 14, 252– 256.

Gilmanov TG, Tieszen L, Wylie B, Flanagan LB, Frank AB,

Haferkamp MR, Meyers TP, Morgan JA (2005). Integra-tion of CO2 flux and remotely-sensed data for primary production and ecosystem respiration analyses in the Northern Great Plains: potential for quantitative spatial extrapolation. Global Ecology and Biogeography, 14, 271–292. Guo JX (郭继勋), Zhang HY (张宏一) (1991). Soil respiration

and litter decomposition in an Eurolepidium chinensis range. Grassland of China (中国草地), 5, 39–47. (in Chi-nese with English abstract)

Han GX (韩广轩), Zhou GS (周广胜) (2009). Review of spa-tial and temporal variation of soil respiration and driving mechanisms. Chinese Journal of Plant Ecology (Chinese version) (植物生态学报), 33, 197–205. (in Chinese with English abstract)

Han GX, Zhou GS, Xu ZZ, Yang Y, Liu JL, Shi KQ (2007).

Soil temperature and biotic factors drive the seasonal variation of soil respiration in a maize (Zea mays L.) agri-cultural ecosystem. Plant and Soil, 291, 15–26.

Herbst MN, Prolingheuer GA, Huisman JA, Weihermuller L,

Vanderborght J (2009). Characterization and understand-ing of bare soil respiration spatial variability at plot scale. Vadose Zone Journal, 8, 762–771.

Hibbard KA, Law BE, Reichstein M, Sulzman J (2005). An

analysis of soil respiration across northern hemisphere temperate ecosystems. Biogeochemistry, 73, 29–70.

Hu QW, Wu Q, Cao GM, Li D, Long RJ, Wang YS (2008).

Growing season ecosystem respirations and associated component fluxes in two alpine meadows on the Tibetan Plateau. Journal of Integrative Plant Biology, 50, 271–279.

Huxman TE, Snyder KA, Tissue D, Leffler AJ, Ogle K, Pock-man WT, Sandquist DR, Potts DL, Schwinning S (2004). Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia, 141, 254–268.

IPCC (Intergovernmental Panel on Climate Change) (2007).

Climate Change 2007: The Physical Science Basis. Con-tribution of Working group I to the Fourth Assessment

鲍芳等: 中国草原土壤呼吸作用研究进展 721

Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. Jensen LS, Mueller T, Tate KR, Ross DJ, Magid J, Nielsen NE

(1996). Soil surface CO2 flux as an index of soil respira-tion in situ: a comparison of two chamber methods. Soil Biology & Biochemistry, 28, 1297–1306. Jia BR (贾丙瑞), Zhou GS (周广胜), Wang FY (王风玉),

Wang YH (王玉辉) (2004). A comparative study on soil respiration between grazing and fenced typical Leymus chinensis steppe, Inner Mongolia. Chinese Journal of Ap-plied Ecology (应用生态学报), 15, 1611–1615. (in Chi-nese with English abstract)

Jia BR (贾丙瑞), Zhou GS (周广胜), Wang FY (王风玉),

Wang YH (王玉辉) (2005). Soil respiration and its influ-encing factors at grazing and fenced typical Leymus chinensis steppe, Nei Monggol. Environmental Science (环境科学), 26(6), 1–7. (in Chinese with English abstract) Jia BR, Zhou GS, Wang YH, Wang FY, Wang X (2006). Ef-fects of temperature and soil water-content on soil respira-tion of grazed and ungrazed Leymus chinensis steppes, Inner Mongolia. Journal of Arid Environments, 67, 60–76. Jia BR, Zhou GS, Wang FY, Wang YH, Weng ES (2007a).

Effects of grazing on soil respiration of Leymus chinensis steppe. Climatic Change, 82, 211–223.

Jia BR, Zhou GS, Yuan WP (2007b). Modelling and coupling

of soil respiration and soil water content in fenced Leymus chinensis steppe, Inner Mongolia. Ecological Modelling, 201, 157–162.

Jia BR, Zhou GS (2009). Integrated diurnal soil respiration

model during growing season of a typical temperature steppe: effects of temperature, soil water content and bio-mass production. Soil Biology & Biochemistry, 41, 681–686.

Johnson LC, Matchett JR (2001). Fire and grazing regulate

below ground processes in tallgrass prairie. Ecology, 82, 3377–3389.

Johnson D, Phoenix GK, Grime JP (2008). Plant community

composition, not diversity, regulates soil respiration in grasslands. Biology Letters, 4, 345–348.

Kuzyakov Y (2006). Sources of CO2 efflux from soil and re-view of partitioning methods. Soil Biology & Biochemis-try, 38, 425–448.

Kuzyakov Y, Cheng W (2001). Photosynthesis controls of

rhizosphere respiration and orgainc matter decomposition. Soil Biology & Biochemistry, 33, 1915–1925.

Kuzyakov Y, Kretzschmar A, Stahr K (1999). Contribution of

Lolium perenne rhizodeposition to carbon turnover of pasture soil. Plant and Soil, 213, 127–136.

Lellei-Kovács E, Kovács-Lang E, Kalapos T, Botta-Dukát Z,

Barabás S, Beier C (2008). Experimental warming does not enhance soil respiration in a semiarid temperate forest-steppe ecosystem. Community Ecology, 9, 29–37.

Li LH (李凌浩), Chen ZZ (陈佐忠) (1998). Soil respiration in

grassland communities in the world. Chinese Journal of Ecology (生态学杂志), 17(4), 45–51. (in Chinese with English abstract)

Li LH (李凌浩), Wang QB (王其兵), Bai YF (白永飞), Zhou

GS (周广胜), Xing XR (邢雪荣) (2000). Soil respiration of a Leymus chinensis grassland stand in the Xilin river basin as affected by over-grazing and climate. Acta Phy-toecologica Sinica (植物生态学报), 24, 680–686. (in Chinese with English abstract)

Li MF (李明峰), Dong YS (董云社), Geng YB (耿元波), Qi

YC (齐玉春) (2004a). Analyses of the correlation between the fluxes of CO2 and the distribution of C & N in grass-land soils. Environmental Science (环境科学), 25, 7–11. (in Chinese with English abstract)

Li MF (李明峰), Dong YS (董云社), Qi YC (齐玉春), Geng

YB (耿元波) (2004b). Impact of reclamation of grassland on the fluxes of CO2, CH4 and N2O in temperate grassland ecosystem. Scientia Agricultura Sinica (中国农业科学), 37, 1960–1965. (in Chinese with English abstract) Li MF (李明峰), Dong YS (董云社), Qi YC (齐玉春), Geng

YB (耿元波), Lü Y (吕晔) (2003). The analysis of diurnal variation of CO2 flux in Leymus chinensis grassland of Xilin River Basin. Grassland of China (中国草地), 25(3), 9–14. (in Chinese with English abstract)

Liu WX, Zhang Z, Wan SQ (2009). Predominant role of water

in regulating soil and microbial respiration and their re-sponses to climate change in a semiarid grassland. Global Change Biology, 15, 184–195.

Lloyd J, Taylor JA (1994). On the temperature dependence of

soil respiration. Functional Ecology, 8, 315–323.

Luo YQ, Gerten D, Maire GL, Parton WJ, Weng ES, Zhou XH,

Keough C, Beier C, Ciais P, Cramer W, Dukes J, Emmett B, Hanson PJ, Knapp A, Linder S, Nepstad DN, Rustad L (2008). Modeled interactive effects of precipitation, tem-perature, and [CO2] on ecosystem carbon and water dy-namics in different climatic zones. Global Change Biol-ogy, 14, 1986–1999.

Luo YQ, Wan SQ, Hui DF, Wallace LL (2001). Acclimatiza-tion of soil respiration to warming in a tall grass prairie. Nature, 413, 622–625.

Luo YQ, Zhou XH (2006). Soil Respiration and the Environ-ment. Academic Press, San Diego, CA, USA.

Luo YQ, Hui DF, Zhang DQ (2006). Elevated CO2 stimulates

net accumulations of carbon and nitrogen in land ecosys-tems: a meta-analysis. Ecology, 87, 53–63. Ma ZH (马治华), Liu GX (刘桂香), Li JP (李景平), Li J (李

洁) (2007). The evaluation of desert-steppe eco-environ- ment quality in Inner Mongolia. Chinese Journal of Grassland (中国草地学报), 29, 17–21. (in Chinese with English abstract)

doi: 10.3773/j.issn.1005-264x.2010.06.011

722 植物生态学报Chinese Journal of Plant Ecology 2010, 34 (6): 713–726

Marland G, Boden TA, Andres RJ (2006). Trends: A Compen-dium of Data on Global Change. Carbon Dioxide Infor-mation Analysis Center, Oak Ridge National Laboratory,

U.S. Department of Energy, Oak Ridge, TN. Available via DIALOG, http://cdias.esd.ornl.gov/trends/emis/tre_glob. htm. Cited 09 April 2009

Maestre FT, Cortina J (2003). Small-scale spatial variation in

soil CO2 efflux in a Mediterranean semiarid steppe. Ap-plied Soil Ecology, 23, 199–209.

Martin JG, Bolstad PV (2009). Variation of soil respiration at

three spatial scales: components within measurements, intra-site variation and patterns on the landscape. Soil Biology & Biochemistry, 41, 530–543.

McCulley RL, Burke IC, Nelson JA, Lauenroth WK, Knapp

AK, Kelly EF (2005). Regional patterns in carbon cycling across the great plains of North America. Ecosystems, 8, 106–121.

Moyano FE, Kutsch WL, Rebmann C (2008). Soil respiration

fluxes in relation to photosynthetic activity in broad-leaf and needle-leaf forest stands. Agricultural and Forest Me-teorology, 148, 135–143.

Ni J (2002). Carbon storage in grassland of China. Journal of

Arid Environments, 50, 205–218.

Nelson JA, Morgan JA, LeCain DR, Mosier AR, Milchuans

DG, Parton BA (2004). Elevated CO2 increases soil mois-ture and enhances plant water relations in a long-term field study in semi-arid shortgrass steppe of Colorado. Plant and Soil, 259, 169–179.

Norman JM, Kucharik CJ, Gower ST, Baldocchi DD, Crill PM,

Rayment M, Savage K, Striegl RG (1997). A comparison of six methods for measuring soil-surface carbon dioxide fluxes. Journal of Geophysical Research, 102(D24), 28771–28777.

Parton WJ, Morgan JA, Wang GM, del Grosso S (2007). Pro-jected ecosystem impact of the Prairie Heating and CO2 enrichment experiment. New Phytologist, 174, 823–834. Pei ZY (裴志永), Ouyang H (欧阳华), Zhou CP (周才平)

(2003). A study on carbon fluxes from alpine grassland ecosystem on Tibetan Plateau. Acta Ecologica Sinica (生态学报), 23, 231–236.

Pei ZY, Ouyang H, Zhou CP, Xu XL (2009). Carbon balance in

an alpine steppe in the Qinghai-Tibet Plateau. Journal of Integrative Plant Biology, 51, 521–526.

Pendall E, Grosso SD, King JY, LeCain DR, Milchunas DG,

Morgan JA, Mosier AR, Ojima DS, Parton WA, Tans PP, White JWC (2003). Elevated atmospheric CO2 effects and soil water feedbacks on soil respiration components in a Colorado grassland. Global Biogeochemistry Cycles, 17, 1046. doi:10.1029/2001GB001821. Qi YC (齐玉春), Dong YS (董云社), Liu JY (刘纪远), Geng

YB (耿元波), Li MF (李明峰), Yang XH (杨小红), Liu LX (刘立新) (2005a). Daily dynamics of soil CO2 flux

and contributions of environmental factors in semi-arid steppe, Inner Mongolia. Science in China Series D: Earth Sciences (中国科学D辑: 地球科学), 35, 493–501. (in Chinese)

Qi YC (齐玉春), Dong YS (董云社), Yang XH (杨小红),

Geng YB (耿元波), Liu LX (刘立新), Li MF (李明峰) (2005b). Effects of grazing on carbon dioxide and meth-ane fluxes in typical temperate grassland in Inner Mongo-lia, China. Resources Science (资源科学), 27, 103–109. (in Chinese with English abstract)

Raich JW, Potter CS (1995). Global patterns of carbon dioxide

emissions from soils. Global Biogeochemical Cycles, 9, 23–26.

Raich JW, Potter CS, Bhagawati D (2002). Interannual vari-ability in global soil respiration, 1980–1994. Global Change Biology, 8, 800–812.

Raich JW, Schlesinger WH (1992). The global carbon dioxide

flux in soil respiration and its relationship to vegetation and climate. Tellus, 44B, 81–99.

Raich JW, Tufekcioglu A (2000). Vegetation and soil respira-tion: correlations and controls. Biogeochemistry, 48, 71– 90.

Reichstein M, Beer C (2008). Soil respiration across scales: the

importance of a model-data integration framework for data interpretation. Journal of Plant Nutrition and Soil Science, 171, 344–354.

Reth S, Graf W, Reichstein M, Munch JC (2009). Sustained

stimulation of soil respiration after 10 years of experi-mental warming. Environmental Research Letters, 4, 024005. doi:10.1088/1748–9326/4/2/024005.

Ruess RW, Seagle SW (1994). Landscape patterns in soil mi-crobial processes in the Seregeti national park, Tanzania. Ecology, 75, 892–904.

Saito M, Kato T, Tang Y (2009). Temperature controls ecosys-tem CO2 exchange of an alpine meadow on the northeast-ern Tibetan Plateau. Global Change Biology, 15, 221–228. Savage K, Davidson EA, Richardson AD, Hollinger DY

(2009). Three scales of temporal resolution from auto-mated soil respiration measurements. Agricultural and Forest Meteorology, 149, 2012–2021.

Scheffer M, Brovkin V, Cox PM (2006). Positive feedback

between global warming and atmospheric CO2 concentra-tion inferred from past climate change. Geophysical Re-search Letters, 33, L10702. doi:10.1029/2005GL025044. Schimel DS, Braswell BH, Holland EA, McKeown R, Ojima

DS, Painter TH, Parton WJ, Townsend AR (1994). Cli-matic, edaphic, and biotic controls over storage and turn-over of carbon in soils. Global Biogeochemical Cycles, 8, 279–293.

Schindlbacher A, Zechmeister-Boltenstern S, Jandl R (2009).

Carbon losses due to soil warming: Do autotrophic and heterotrophic soil respiration respond equally? Global

鲍芳等: 中国草原土壤呼吸作用研究进展 723

Change Biology, 15, 901–913.

Schlesinger WH, Andrews JA (2000). Soil respiration and the

global carbon cycle. Biogeochemistry, 48, 7–20.

Scurlock JM, Hall DO (1998). The global carbon sink: a grass-land perspective. Global Change Biology, 4, 229–233. Shan D (珊丹), Han GD (韩国栋), Zhao ML (赵萌莉), Wang

Z (王珍), Han X (韩雄) (2009). The effects of experi-mental warming and nitrogen addition on soil respiration in desert steppe. Journal of Arid Land Resources and En-vironment (干旱区资源与环境), 23(9), 106–112. (in Chi-nese with English abstract)

Shen WJ, Reynolds JF, Hui DF (2009). Responses of dryland

soil respiration and soil carbon pool size to abrupt vs. gradual and individual vs. combined changes in soil tem-perature, precipitation, and atmospheric CO2: a simulation analysis. Global Change Biology, 15, 2274–2294. Shi GX (师广旭), Geng HL (耿浩林), Wang YL (王云龙),

Wang YH (王玉辉), Qi XR (齐晓荣) (2008). Daily and seasonal dynamics of soil respiration and their environ-mental controlling factors in Stipa krylovii steppe. Acta Ecologica Sinica (生态学报), 28, 3408–3416. (in Chinese with English abstract)

Smith DL, Johnson L (2004). Vegetation-mediated changes in

microclimate reduce soil respiration as woodlands expand into grasslands. Ecology, 85, 3348–3361.

Sponseller RA (2007). Precipitation pulses and soil CO2 flux in

a Sonoran desert ecosystem. Global Change Biology, 13, 426–436. Su YH (苏永红), Feng Q (冯起), Zhu GF (朱高峰), Si JH (司

建华), Chang ZQ (常宗强) (2008). Progress in research on soil respiration. Journal of Desert Research (中国沙漠), 28, 57–65.

Sun W (孙伟) (2003). Study on Soil Respiration of Stipa bai-calensis Community and Water Physiological Character-istics of Stipa baicalensis on the Songnen Grasslands (松嫩草原贝加尔针茅群落土壤呼吸与个体水分生理生态研究). Master Degree Dissertation, Northeast Normal University, Changchun, China. 5–14. (in Chinese) Tao Z (陶贞), Shen CD (沈承德), Gao QZ (高全州), Sun YM

(孙彦敏), Yi WX (易惟熙), Li YN (李英年) (2007). Soil organic matter stock and CO2 flux in alpine meadow steppe. Science in China Series D: Earth Sciences (中国科学D辑: 地球科学), 37, 553–563. (in Chinese)

Wan SQ, Hui DF, Wallace L, Luo YQ (2005). Direct and indi-rect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie. Global Biogeochemical Cycles, 19, GB2014.

Wan SQ, Luo YQ (2003). Substrate regulation of soil respira-tion in a tallgrass prairie: results of a clipping and shading experiment. Global Biogeochemical Cycles, 17, 1054.

Wan SQ, Norby RJ, Ledford J, Weltzin JF (2007). Responses

of soil respiration to elevated CO2, air warming, and changing soil water availability in a model old-field grassland. Global Change Biology, 13, 2411–2424.

Wan SQ, Xia JY, Liu WX, Niu SL (2009). Photosynthetic

overcompensation under nocturnal warming enhances grassland carbon sequestration. Ecology, 90, 2700–2710. Wang W, Fang JY (2009). Soil respiration and human effects

on global grasslands. Global and Planetary Change, 67, 20–28. Wang W (王娓), Guo JX (郭继勋) (2002). Contribution of CO2

emission from soil respiration and from litter decomposi-tion in Leymus chinensis community in Northeast Songnen grassland. Acta Ecologica Sinica (生态学报), 22, 655–660. (in Chinese with English abstract)

Wang W (王娓), Guo JX (郭继勋) (2006). Contribution of root

respiration to total soil respiration in Puccinellia tenuiflora community in Northeast Songnen grassland. Chinese Sci-ence Bulletin (科学通报), 51, 559–564. ( in Chinese) Wang W (王娓), Song R (宋日), Guo JX (郭继勋) (2002b).

The study on soil respiration and CO2 release rate of litter decomposition in Puccinellia tenuiflora community of Songnen grassland in Northeast China. Acta Prataculturae Sinica (草业学报), 11(2), 45–50. (in Chinese with English abstract)

Wang W (王娓), Wang T (汪涛), Peng SS (彭书时), Fang JY

(方精云) (2007). Review of winter CO2 efflux from soils: a key process of CO2 exchange between soil and atmos-phere. Journal of Plant Ecology (Chinese Version) (植物生态学报), 31, 394–402. (in Chinese with English ab-stract)

Wang W (王娓), Zhou XM (周晓梅), Guo JX (郭继勋)

(2002a). Effect of environmental factors on CO2 release rate of soil respiration of two main communities in Lymus chinensis grassland in northeastern China. Acta Pratacul-turae Sinica (草业学报), 11, 12–16. (in Chinese with Eng-lish abstract)

Wang WJ, Dalal RC, Moody PW, Smith CJ (2003). Relation-ships of soil respiration to microbial biomass, substrate availability and clay content. Soil Biology & Biochemistry, 35, 273–284. Wang XL (王小玲) (2004). Soil Respiration of Typical Grass-land in Inner Mongolia (内蒙古典型草原土壤呼吸作用的研究). Master Degree Dissertation, Inner Mongolia University, Huhhot, China. 4–40. (in Chinese)

Wang YS (王跃思), Xue M (薛敏), Huang Y (黄耀), Liu GR

(刘广仁), Wang MX (王明星), Ji BM (纪宝明) (2003). Greenhouse gases emission or uptake in Inner Mongolia natural and free-grazing grasslands. Chinese Journal of Applied Ecology (应用生态学报), 14, 372–376. (in Chi-nese with English abstract)

Wang ZW, Jiao SY, Han GD, Zhao ML, Walter WD (2009).

doi: 10.3773/j.issn.1005-264x.2010.06.011

724 植物生态学报Chinese Journal of Plant Ecology 2010, 34 (6): 713–726

Soil respiration response to different stocking rates on

Stipa breviflora Griseb. desert steppe. Journal of Inner Mongolia University, 40, 186–193.

Xia JY, Han Y, Zhang Z, Wan SQ (2009a). Effects of diurnal

warming on soil respiration are not equal to the summed effects of day and night warming in a temperate steppe. Biogeosciences, 6, 1361–1370.

Xia JY, Niu SL, Wan SQ (2009b). Response of ecosystem

carbon exchange to warming and nitrogen addition during two hydrologically contrasting growing seasons in a tem-perate steppe. Global Change Biology, 15, 1544–1556. Yan YE (严燕儿), Zhao B (赵斌), Guo HQ (郭海强), Wu QH

(吴千红) (2008). On the coupling between eddy covari-ance and remote sensing techniques in ecosystem carbon flux estimation. Advances in Earth Science (地球科学进展), 23, 884–894. (in Chinese with English abstract) Zhang JX (张金霞), Cao GM (曹广民), Zhou DW (周党卫),

Zhao XQ (赵新全) (2001). The rate of carbon dioxide re-lease from alpine scrubby meadow soil under different grazing intensity. Acta Agrestica Sinica (草地学报), 9,

183–190. (in Chinese with English abstract)

Zhang PC, Tang YH, Hirota M, Yamamoto A, Mariko S

(2009). Use of a regression method to partition sources of ecosystem respiration in an alpine meadow. Soil Biology & Biochemistry, 41, 663–670.

Zhao L, LI YN, Xu SX, Zhou HK, Gu S, Yu GR, Zhao XQ

(2006). Diurnal, seasonal and annual variation in net eco-system CO2 exchange of an alpine shrub land on Qinghai- Tibetan plateau. Global Change Biology, 12, 1940–1953. Zhou GS, Jia BR, Han GX, Zhou L (2008a). Toward a general

evaluation model for soil respiration (GEMSR). Science in China Series C: Life Sciences, 51, 254–262.

Zhou XH, Liu XZ, Wallace LL, Luo YQ (2007a). Photosyn-thetic and respiratory acclimation to experimental warm-ing for four species in a tallgrass prairie ecosystem. Jour-nal of Integrative Plant Biology, 49, 270–281.

Zhou XH, Wan SQ, Luo YQ (2007b). Source components and

interannual variability of soil efflux under experimental warming and clipping in a grassland ecosystem. Global Change Biology, 13, 761–775.

责任编委: 贺金生 责任编辑: 王 葳

鲍芳等: 中国草原土壤呼吸作用研究进展 725

doi: 10.3773/j.issn.1005-264x.2010.06.011

726 植物生态学报Chinese Journal of Plant Ecology 2010, 34 (6): 713–726

本文来源:https://www.bwwdw.com/article/xq74.html

Top