深入浅出密码学习题答案
更新时间:2023-08-26 19:32:01 阅读量: 教育文库 文档下载
- 深入浅出密码学pdf推荐度:
- 相关推荐
奇数题号答案
奇数题号答案
SolutionstoHomeworkProblems(OddNumbered
Problems)
UnderstandingATextbookforStudentsandCryptographyPractitioners
byChristofPaarandJanPelzl
1
奇数题号答案
ProblemsofChapter1
1.1
1.Letterfrequencyanalysisoftheciphertext:
countfreq[%]
A
B
C
D
E
F
G
H
I
J
K
L
Mletter177307841713242247201902.631.084.641.0813.002.632.013.723.417.283.102.940.00
2.BecausethepracticeofthebasicmovementsofkataisthefocusandmasteryofselfistheessenceofMatsubayashiRyukaratedo,Ishall
trytoelucidatethemovementsofthekataaccordingtomyinterpretationbasedonfortyyearsofstudy.
Itisnotaneasytasktoexplaineachmovementanditssignificance,andsomemustremainunexplained.Togiveacompleteexplanation,onewouldhavetobequalifiedandinspiredtosuchanextentthathecouldreachthestateofenlightenedmindcapableofrecognizingsoundlesssoundandshapelessshape.Idonotdeemmyselfthefinalauthority,butmyexperiencewithkatahasleftnodoubtthatthefollowingistheproperapplicationandinterpretation.IoffermytheoriesinthehopethattheessenceofOkinawankaratewillremainintact.
3.ShoshinNagamine,furtherreading:TheEssenceofOkinawanKarate-DobyShoshinNagamine,TuttlePublishing,1998.
1.3
Onesearchenginecosts$100includingoverhead.Thus,1milliondollarsbuyus10,000engines.
1.keytestspersecond:5·108·104=5·1012keys/sec
Onaverage,wehavetocheck(2127keys:
(2127keys)/(5·1012keys/sec)=3.40·1025sec=1.08·1018years
Thatisabout108=100,000,000timeslongerthantheageoftheuniverse.Goodluck.
2.LetibethenumberofMooreiterationsneededtobringthesearchtimedownto24h:
1.08·1018years·365/2i=1day
2i=1,08·1018·365days/1dayi=68.42
Weroundthisnumberupto69assumingthenumberofMooreiterationsisdiscreet.Thus,wehavetowaitfor:
1.5·69=103.5years
NotethatitisextremelyunlikelythatMoore’sLawwillbevalidforsuchatimeperiod!Thus,a128bitkeyseemsimpossibletobrute-force,evenintheforeseeablefuture.
1.5
1.
2.
3.
4.15·29mod13≡2·3mod13≡6mod132·29mod13≡2·3mod13≡6mod132·3mod13≡2·3mod13≡6mod132·3mod13≡2·3mod13≡6mod13
奇数题号答案
15,2and-11(and29and3respectively)arerepresentationsofthesameequivalenceclassmodulo13andcanbeused“synonymously”.
1.7
1.
MultiplicationtableforZ4
×0
0123
2
0321
2.
AdditiontableforZ5
+
12340
2
34012
4304321102413MultiplicationtableforZ50123400000
3.
AdditiontableforZ6
+
123450
2
345012
4
50123440543212030303MultiplicationtableforZ6×0012345
4.ElementswithoutamultiplicativeinverseinZ4are2and0
ElementswithoutamultiplicativeinverseinZ6are2,3,4and0
ForallnonzeroelementsofZ5existsbecause5isaprime.Hence,allnonzeroelementssmallerthan5arerelativelyprimeto5.
1.9
1.
2.
3.
4.
5.x=9mod13x=72=49≡10mod13x=310=95≡812·9≡32·9≡81≡3mod13x=7100=4950≡1050≡( 3)50=(310)5≡35≡32=9mod13bytrial:75≡11mod131.11
1.FIRSTTHESENTENCEANDTHENTHEEVIDENCESAIDTHEQUEEN
2.CharlesLutwidgeDodgson,betterknownbyhispennameLewisCarroll
1.13
a≡(x1 x2) 1(y1 y2)modm
b≡y1 ax1modm
Theinverseof(x1 x2)mustexistmodulom,i.e.,gcd((x1 x2),m)=1.
奇数题号答案
ProblemsofChapter2
2.1
1.yi=xi+Kimod26
xi=yi Kimod26
ThekeystreamisasequenceofrandomintegersfromZ26.
2.x1=y1 K1=”B” ”R”=1 17= 16≡10mod26=”K”etc···
DecryptedText:”KASPARHAUSER”
3.Hewasknifed.
2.3
Weneed128pairsofplaintextandciphertextbits(i.e.,16byte)inordertodeterminethekey.siisbeingcomputedby si=xiyi;i=1,2,···,128.
2.5
1
1
1
0
1
0
0
1 0 1 1 1 0 1 0 0 0 0 1 1 1 0 1
0 = Z 0 = Z 1 = Z 2 = Z 3 = Z 4 = Z 5 = Z 6 = Z 7 = Z 0
1.Sequence 1: z 0 = 0 0 1 1 1 0 1 0 0 1 1 1 0 1 ...
0
1
0
0
1
1
1
0 1 0 1 0 0 1 1 1 1 1 0 1 0 0 1
1 = Z 0 = Z 1 = Z 2 = Z 3 = Z 4 = Z 5 = Z 6 = Z 7 = Z 0
2.Sequence 2: z 0 = 1 1 0 1 0 0 1 1 1 0 1 0 0 1 ...
奇数题号答案
3.Thetwosequencesareshiftedversionsofoneanother.
2.7
Thefeedbackpolynomialfrom2.3isx8+x4+x3+x+1.
1
1
1
1
1
1
01100001001110010111000010011100111110000100111001111100001001110111111000010011111111110000100111111111100001001= Z0= Z1= Z2= Z14= Z15
So,theresulting rsttwooutputbytesare(1001000011111111)2=(90FF)16.
2.9
1.Theattackerneeds512consecutiveplaintext/ciphertextbitpairsxi,yitolaunchasuccessfulattack.
2.a.First,theattackerhastomonitorthepreviouslymentioned512bitpairs.
b.Theattackercalculatessi=xi+yimod2,i=0,1,...,2m 1
c.Inordertocalculatethe(secret)feedbackcoef cientspi,Oscargenerates256linearlydependentequationsusingtherelationshipbetweentheunknownkeybitspiandthekeystreamoutputde nedbytheequation
m 1
si+m≡j=0∑pj·si+jmod2;si,pj∈{0,1};i=0,1,2,...,255
withm=256.
d.Aftergeneratingthislinearequationsystem,http://www.77cn.com.cningGaussianElimination,revealingthe256feedbackcoef cients.
3.Thekeyofthissystemisrepresentedbythe256feedbackcoef cients.SincetheinitialcontentsoftheLFSRareunalteredlyshiftedoutoftheLFSRandXORedwiththe rst256plaintextbits,itwouldbeeasytocalculatethem.
2.11 xiyi=xi(xizi)=zi
W 22=101102
5 31=111112
奇数题号答案
I 8=010002
zi=111111000001000
1.InitializationVector:(Z0=1,1,1,1,1,1)
2.
C0111 C1 111 C2 111 = C3 111 C4 110
C5100 1 1 0 = 0 0 0
3.yi=01001
zi=11111
J 1 1110 0 110 100 · 0 0 000 0 000 0001 1111110000 5 0000001000 A 1101001100 0 0010001010 E 0001101111 D 0100101000 J 1110011100 2 0000110010 B
奇数题号答案
P(S)=D8D8DBBC
(L1,R1)=00000000D8D8DBBC(1)
3.5
IP(x)mapsbit57toposition33,whichisposition1inR0.
E-Expansionboxmapsbitposition1topositions2and48. InputtoS-Boxes:S1:010000
S2=S3=···=S7:000000
S8:000001
TwoS-Boxesgetadifferentinput.P(S)=D0585B9E
(L1,R1)=80000000D0585B9E
1.2S-Boxes,S1andS8
2.Accordingtodesigncriteria,aminimumof2bits/bit.
2·2=4bits3.See(1).
4.6bitshavechanged:
3fromS1
2fromS8
1inthelefthalf
3.7
1.K1+i=K16 ifori=0,1,...7.
2.Following(a),twoequationsareestablished:
C1+i=C16 i
D1+i=D16 i
Theseequationsyield
C0,j=0undD0,j=0or
C0,j=0undD0,j=1or
C0,j=1undD0,j=0oder
C0,j=1undD0,j=1
HencethefourweakkeysafterPC-1aregivenby:
w1=[0...0K
w2=[0...0K
w3=[1...1K
w4=[1...1K
3.P(randomlychoseaweakkey)=22fri=0,1,...,7.frj=1,2,...,28.0...0]1...1]0...0]1...1]
奇数题号答案
255encryptionsforasuccessfullbrute-forceattackonDES,255/(4.8·1010)≈750600secondsarerequired(whichapproximatelyis8.7days).˙≈18machinesarerequired.2.Forasuccessfullaverageattackinonehour,8.724
3.Themachineperformsabrute–forceattack.However,theremightbemorepowerfulanalyticalat-tackswhichexploreweaknessesofthecipher.Hence,thekey–searchmachineprovidesonlyalowersecuritythreshold.
3.13
1.ThestateofPRESENTaftertheexecutionofoneroundisF00000000000000F.Belowyoucan ndallintermediatevalues.
Plaintext
Roundkey
StateafterKeyAdd
StateafterS-Layer
StateafterP-Layer
BBBB55555555EEEEFFFF
Keystateafterrotation
KeystateafterS-box
KeystateafterCounterAdd
RoundkeyforRound2
1
x+1
x2+1
x2+x+10010xx2x2+xx0x2x+1x2+x+1x+10x2+xx2+x+11x20x+1x2+xx2+1x2+101xx+1x2+x0x2+x+1x2+1xx2+x+10x2+11x2
奇数题号答案
1.A(x) B(x)=(x2+1)(x3+x2+1)=x5+x4+x2+x3+x2+1
A(x) B(x)=x5+x4+x3+1
x+1
4543x+x+1x+x+x+152x+x+x
x4+x3+x2+x+1
x4+x+1
x3+x2
C=x3+x2≡A(x) B(x)modP(x).2.A(x) B(x)=(x2+1)(x+1)=x3+x+x2+1
C=x3+x2+x+1≡A(x) B(x)modP(x)
ThereductionpolynomialisusedtoreduceC(x)inordertoreducetheresulttoGF(24).Otherwise,a’simple’multiplicationwithoutreductionwouldyieldaresultofahigherdegree(e.g.,withx5)whichwouldnotbelongtoGF(24)anymore.
4.7
1.BytheExtendedEuclideanalgorithm:
x+x+1=[x3](x)+[x+1]t2(x)=t0 q1t1= q1= x3=x3
x=[1](x+1)+1t3(x)=t1 q2t2=1 1 x3=1 x3=x3+1
x+1=[x+1](1)+04
So,A 1=x3+1.
Check:x (x3+1)=x4+x≡(x+1)+xmodP(x)=1modP(x).
2.BytheExtendedEuclideanalgorithm:4x+x+1=[x2+x+1](x2+x)+[1]t2=t0 q1t1= q1=x2+x+1
x2+x=[x2+x]1+[0]
So,A 1=x2+x+1.
Check:(x2+x)(x2+x+1)=x4+2x3+2x2+x=x4+x≡(x+1)+xmodP(x)=1modP(x).
4.9
16161616 16161616 B=ByteSub(A)= 16161616 16161616
TheShiftRowsoperationdoesnotchangeanythingsinceallbytesofBequaleachother.TheMixComumnoperationisequalforeveryresultigbyteCiandisdescribedby
(01+01+02+03)hex·(16)hex.Wehavetoremind,thatallcalculationshavetobedoneinGF(28),sothat(01+01+02+03)hex=(01)hexandhence,allresultingbytesofCremain(16)hex 16161616 16161616 C=MixColumn(B)= 16161616 16161616
The rstroundkeyequalskey. So,theoutputof the rstis the unmodi edAES E9E9E9E9FFFFFFFF16161616 16161616 FFFFFFFF E9E9E9E9 C⊕K= 16161616 ⊕ FFFFFFFF = E9E9E9E9 E9E9E9E9FFFFFFFF16161616
4.11
奇数题号答案
1.d=01,b=1 (b7x7+...+b0)=b.
d0=b0,d1=b1,...,d7=b7.
2.d=02 b=x(b7x7+...+b0)=b7x8+b6x7+...+b0x
x8≡x4+x3+x+1modP(x).
d=b6x7+b5x6+b4x5+[b3+b7]x4+[b2+b7]x3+b1x2+[b0+b7]x+b7
d7=b6d6=b5
d5=b4d4=b3+b7
d3=b2+b7d2=b1
d1=b0+b7d0=b7
3.d=03 b=(x+1)b=xb+b
Usingsolutionsfroma)andb):
d=(b6+b7)x7+(b5+b6)x6+(b4+b5)x5+(b3+b4+b7)x4+(b2+b3+b7)x3+(b1+b2)x2+(b0+b1+b7)x+(b0+b7)
d7=b6+b7d6=b5+b6
d5=b4+b5d4=b3+b4+b7
d3=b2+b3+b7d2=b1+b2
d1=b0+b1+b7d0=b0+b7
4.13
1.A=01h,A(x)=1
A 1(x)=1=01h
A 1(x)isnowtheinputtotheaf netransformationofRijndaelasdescribedinSubsection4.2.1oftheRijndaelSpeci cations:
M·A 1+V
whereMandVarea xedmatrixandvector,respectively.
11110 0 1 1 1 0 0 0 1 0 1 0 0 1 0 1 1 M·A+V=M· 0 + 0 = 1 + 0 = 1 0 1 0 1 1 0 1 0 1 1 00000
ByteSub(01h)=7Ch
2.A=12h,A(x)=x4+x
ApplyextendedEuclideanalgorithm:A 1(x)=x7+x5+x3+x=AAh.
01011 1 1 1 1 0 0 0 0 0 0 1 0 1 0 1 1 M·A+V=M· 0 + 0 = 0 + 0 = 0 1 1 1 1 0 0 1 0 1 1 10101
Remark:Itis(big)coincidencethatM·A 1=A 1.Thisonlyholdsforthisspeci cvalueofA 1.ByteSub(12h)=C9h
4.15
1.RC[8]=x7=(10000000)2
2.RC[9]=x8=x4+x3+x+1=(00011011)2
3.RC[10]=x9=x8·x=x5+x4+x2+x=(00110110)2
奇数题号答案
ProblemsofChapter5
5.1
Sincetherecordsarenotrelated,wetypicallywanttoaccessonlyasinglerecordandnotitsadjacentones.TheuseofCBCmodeisthusnotwellsuited.ECBmostseemstobethebestchoice.
5.3
Thedecryptionofan”CBC-encrypted” leisde nedbyxi=dK(yi)⊕yi 1.SinceyouknowthekeyKandthepair(x0,y0)(fromthe rst le),theunknownIVcaneasilybeobtainedbyconvertingtheequation:
IV=y 1=dk(y0)⊕x0
Afterthat,thesecond(unidenti ed) lecaneasilybedecryptedbyusingthedecryptionequationmen-tionedabove(withy 1=IV).
5.5
IfthesameIVisusedfortheOFBencryption,thecon dentialitymaybecompromized.Ifaplaintextblockxjofsuchamessagemisknown,theoutputcanbecomputedeasilyfromtheciphertextblockyjofthemessagem.Thisinformationthenallowsthecomputationoftheplaintextblockx′jofanyothermessagem′thatisencryptedusingthesameIV.
5.7
1.
2.Theproblemwiththeschemeisthatthereareonly256differentinputsFBitotheAESalgorithm.Thatmeansthereareonly256differentoutputvectorsoflength128bitthatformthekeystream.Tomakethingsworse,thecipheroutputwillrunintoacyclequickly.Let’sdenotethesequenceoffeedbackbytesbyFB1,FB2,...AssoonasafeedbackbyteFBjisgeneratedthatisequaltoanearlieroneFBi,i.e.,i<j,thesequence
FBi,FBi+1,...,FBj=FBi,FBi+1,...,FBj=FBi,FBi+1,...
repeatsperiodically.Sincethereareonly256differentvaluesforFB,themaximumsequencelengthis256.Sinceeachvalueisassociatedwitha128(16byte)AESoutput,thekeystreamsequencesihasamaximumcyclelengthof:
128×16=2048byte=2kbyte.
Afterthis,thestreamcipheroutputmustrepeat(andoddsarethatthecyclelenghtismuchshorter).Thus,ifanattackerhastoknowatmost2kBofplaintextinordertorecovertheentirestreamcipheroutputwithwhichhecandecryptallotherciphertext.
3.No,westillonlygenerateamaximumof256keystreamwordsoflength16byte.
Remark:Inthechapteronhashfunctionswewilllearnaboutthebirthdayparadox.This√isapplicableheretooandtellsusthattheexpectedlengthofthesequenceisinfactapproximately
奇数题号答案
ForachievingthesameprobabilitywithAES-256,2127plaintextsandciphertextsarerequired(whichisveryveryunlikely)!
5.15y′=eK3(eK2(eK1(x′)))
1.Pre–computeeKi(x′)=zi;i=1,2,...,256andstoreallpairs(zi,Ki)
(2)1 1′56562.Decryptza,b=e Kb(eKa(y));a=1,2,...,2;b=1,2,...,2
Ifamatchisfound,ifthereisaza,b=zitestfurtherkeypairs(x′′,y′′),(x′′′,y′′′),...,withthethreekeysinvolvedinthematch:
Ifthethreekeysgenerateavalidencryptionforallpairs,thesearemostlikelythecorrectkeys.OtherwisecontinuewiththenextpairKa,Kb.
l=3;t=3pairs
23·56 3·64=2 3·8=2 24 t=3pairs(x,y)aresuf cient(2)(1)(1)(1)
ProblemsofChapter6
6.1Fromatheoreticalpointofview,publickeycryptographycanbeusedasareplacementforsymmet-riccryptography.However,inpracticalapplications,symmetriccipherstendtobeapproximately1000timesfasterthanpublickeyschemes.Hence,symmetricciphersareusedwhenitcomestobulkdataencryption.
6.3Ifeverypairoutofn=120employeesrequiresadistinctkey,weneedinsum
n·n 1
2=7140
keypairs.Remarkthateachofthesekeypairshavetobeexchangedinasecureway(overasecurechannel)!
6.5
1.gcd(7469,2464)=77
2.gcd(4001,2689)=1
6.7
1.gcd(26,7)=1
q1=3,q2=1,q3=2
t2= 3,t3=4,t4= 11
a 1≡t4modm≡ 11mod26=15
2.gcd(999,19)=1
q1=52,q2=1,q3=1,q4=2,q5=1
t2= 52,t3=53,t4= 105,t5=263,t6= 368
a 1≡t6modm≡ 368mod999=631
6.9
1.φ(p)=(p1 p0)=p 1
2.φ(p·q)=(p 1)·(q 1)
φ(15)=φ(3·5)=2·4=8
φ(26)=φ(2·13)=1·12=12
6.11
1.m=6;φ(6)=(3 1)·(2 1)=2;
Euler’sTheorem:a2≡1mod6,ifgcd(a,6)=102≡0mod6;12≡1mod6;22≡4mod6;
奇数题号答案
32≡9≡3mod6;42≡16≡4mod6;52≡25≡1mod62.m=9;φ(9)=32 31=9 3=6;
Euler’sTheorem:a6≡1mod9,ifgcd(a,9)=106≡0mod9;16≡1mod9;26≡64≡1mod9;36≡(33)2≡02≡0mod9;46≡(26)2≡12≡1mod9;56≡1mod9;66≡26·36≡1·0≡0mod9;76≡1mod9;86≡1mod96.13
Euclid’sAlgorithm:
Iteration2:r0=q1r1+r2
Iteration3:r1=q2r2+r3r2=r0 q1r1=s2r0+t2r1r3=[ q2]·r0+[1+q1q2]·r1=s3r0+t3r1(1)(2)
from(1),(2):s2=1;s3= q2(3)
t2= q1;t3=1+q1q2(4)
TheiterationformulafortheEuclideanAlgorithmgives:
(5)
(6)
(7)
(8)s2=s0 q1s1=1EA(3)EA(3)(3)s3=s1 q2s2=s1 q2= q2 s1=0EAEA(6)t2=t0 q1t1= q1(4) s0=1(4)(5)t3=t1 q2t2=t1+q1q2=1+q1q2
t1=1(8)(4) t0=0(7)
ProblemsofChapter7
7.1
1.Onlye=31isavalidpublickey,becauseΦ(n)=(p 1)(q 1)=40·16=640=27·5.Furthermoregcd(ei,φ(n))=1hastobeful lled.Hence,onlye2=49maybeusedaspublicexponent.
2.Kpub=(n,e)=(697,49)
Calculationofd=e 1modφ(n)=49 1mod640usingEEA:
640=13·49+3
49=16·3+1
1=49 16·3
49 1mod640≡209.=49 16(640 13·49)=209·49 16·640
7.3
1.e=3;y=26
2.d=27;y=14So,theprivatekeyisde nedbyKpr=(p,q,d)=(41,17,209).
奇数题号答案
7.5
1.Inthiscase,abrute-forceattackonallpossibleexponentswouldbeeasilyfeasible.
2.Asanabsoluteminimum,abitlengthof128bitisrecommendedinordertoprecludebrute-forceattacksontheprivateexponent.However,theexponentmustevenbelargersincethereexistanalyticalattackswhicharemorepowerful.Inpractice,alengthfordofleast0.3timesthebitlengthofnisrecommended,i.e.forRSA-2048theexponentshouldatleast615bit.
7.7
p=31,q=37,e=17,y=2
n=31·37=1147d=17 1=953mod1080dp=953≡23mod30dq=953≡17mod36xp=ydp=223≡8mod31xq=ydq=217≡18mod37cp=q 1=37 1≡6 1≡26mod31cq=p 1=31 1≡6mod37x=[qcp]xp+[pcq]xq=
[37·26]8+[31·6]18=
8440=721mod1147
AliceBob
setup:kpr=d;kpub=e
publishe,n
y7.9chooserandomsessionkeyksesemodny=ekpub(kses)=kses
→kses=dkpr(y)=ydmodn
Alicecompletelydeterminesthechoiceofthesessionkeykses.
Notethatinpracticeksesmightbemuchlongerthanneededforasymmmetric-keyalgorithm.Forinstance,ksesmayhave1024bitsbutonly128actualkeybitsareneeded.Inthiscasejustusethe128MSB(orLSB)bitareusedandtheremainingbitarediscarded.Often,itissafepracticetoapplyacryptographichashfunction rsttoksesandthentaketheMSBorLSBbits.
7.11
1.Encryptionequation:y≡xemodn.Wecannotsolvetheequationanalytical,becausetheexponenti-ationtakesplaceina nitering,wherenoef cientalgorithmsforcomputingrootsisknown.
2.
Φ(n)=p·q
No!ThecalculationofΦ(n)presumestheknowledgeofpandq,whichwedonothave.
3.Factorizationyields:p=43andq=61
Φ(n)=42·60=2520
d≡e 1mod2520≡191
x=1088
7.13
1.Amessageconsistsof,let’ssay,mpiecesofciphertexty0,y1,...,ym 1.However,theplaintextspaceisrestrictedto95possiblevaluesandtheciphertextspacetoo.Thatmeansweonlyhavetotest95possibleplaintextcharacterstobuildupatablecontainingallpossibleciphertextcharacters:
?Test:yi=jemodn;j=32,33,...,126
2.SIMPSONS
奇数题号答案
3.WithOAEPpaddingarandomstringseedisusedwitheveryencryption.Sinceseedhasinpracticealengthof128–160bit,thereexistmany,manydifferentciphertextsforagivenplaintext.
7.15
Thebasicideaistorepresenttheexponentinaradix2krepresentation.Thatmeanswegroupkbitsoftheexponenttogether.The rststepofthealgorithmistopre-computealook-uptablewiththevalueskA0=1,A1=A,A2,...,A2 1.Notethattheexponentsofthelook-uptablevaluesrepresentallpossiblebitpatternsoflengthk.Thetablecomputationrequires2k 2multiplications(notethatcomputingA0andA1isforfree).Afterthelook-uptablehasbeencomputed,thetwoelementaryoperationsinthealgorithmarenow:
Shiftintermediateexponentbykpositionstotheleftbyperformingksubsequentsquarings(Recall:Thestandards-a-malgorithmshiftstheexponentonlybyonepositionbyperformingonesquaringperiteration.)Theexponenthasnowktrailingzerosattherightmostbitpositions.Fillintherequiredbitpatternfortheexponentbymultiplyingthecorrespondingvaluefromthelook-uptablewiththeintermediateresult.
Thisiterationisonlyperformedl/ktimes,wherel+1isthebitlengthoftheexponent.Hence,thereareonlyl/kmultiplicationsbeingperformedinthispartofthealgorithm.
Anexactdescriptionofthealgorithm,whichisoftenreferredtoask-aryexponentiation,isgivenin
[120].Notethatthebitlengthoftheexponentinthisdescriptionistkbit.Anexampleforthecasek=3isgivenbelow.
Thecomplexityofthealgorithmforanl+1bitexponentis2k 3multiplicationsintheprecompu-tationphase,andaboutl 1squaringsandl(2k 1)/2kmultiplicationsinthemainloop.
Example13.2.Thegoalistocomputegemodnwithk-arywheren=163,g=12,k=3,e=14510=2218=23=100100012
Precomputation:
g0:=1
g1:=12
g2:=g1·12=144g3:=g2·12=1728mod163=98g4:=g3·12=1176mod163=35g5:=g4·12=420mod163=94g6:=g5·12=1128mod163=150g7:=g6·12=1800mod163=7Exponentiation:
Iteration
10000
1b
10010000
2bA:=A·g1=1680mod163=50A:=A·g2=6768mod163=853SQCalculationA:=g2=1443SQ
奇数题号答案
a
ord(a)
123456
136362
3.Z 13:
a
ord(a)
奇数题号答案
OscarsharesnowasecretkeywithAliceandBob.AliceandBobbothdon’tknowaboutitandthinktheyshareakeywitheachother.Oscarcannowdecrypt,read,andencryptanymessagesbetweenAliceandBobwithoutthemlearningaboutitifhecontinuestointerceptallencryptedmessages.
Thisistheinfamousman-in-the-middleattack.Thisattackis,inessence,responsibleforthingssuchascerti cates,public-keyinfrastructures,etc.
8.13
Computeβ:β=αdmodp.
Encrypt:(kE,y)=(αimodp,x·βimodp).d) 1modp.Decrypt:x=y(kE
1.
2.
3.
4.(kE,y)=(29,296),x=33(kE,y)=(125,301),x=33(kE,y)=(80,174),x=248
(kE,y)=(320,139),x=248
CausedbythepreviouslymentionedPRNG,beginningwithkM,n 1,kM,j 1caneasilycalculatedrecur-sivleythrough
kM,j 1=βij 1=βij f(j)=βij·β f(j)=kM,j 1·β f(j)modp8.15Oscarknowsxn,ynandn(byjustcountingthenumberofciphertexts).The rststepofapossibleattackistocalculate1kM,n=yn·x (13.3)nmodp.(13.4)
wherethevaluesofallvariablesareknown.WiththeknowledgeofkM,jforallj,Oscarisnowabletodecryptthewholeciphertextbysolvingtheusualdecryptionequation
1xj=yj·kM,jmodp(13.5)
8.17
1.Bychoosingadifferentsecretexponenti,theciphertextyofthesameplaintextxisdifferentevery-time.Evenifapairofplaintext/ciphertextiscompromised,suchapairwillmostlikelynotrepeatasecondtimeinanon-deterministicencryptionscheme!
2.Ingeneral,thereare#{2,3,···,p 2}=p 3differentvalidciphertextsforasingleplaintext.I.e.,wehave464differentpossibilitiesforp=467.
3.TheplainRSAcryptosystemisdeterministic.Aspeci cplaintextalwaysyieldsthesameciphertextassumingthesamepublicparameters.
ProblemsofChapter9
9.1a=2,b=2
4·23+27·22=4·8+27·4=32+108=140≡4=0mod17√17≈26,25q.e.d.9.317+1 2
9.5
1.ThepointsofEare
{(0,3),(0,4),(2,3),(2,4),(4,1),(4,6),(5,3),(5,4)}
2.Thegrouporderisgivenby
#G=#{O,(0,3),(0,4),(2,3),(2,4),(4,1),(4,6),(5,3),(5,4)}=9
奇数题号答案
http://www.77cn.com.cnputeallmultiplesofα:
0·α=O
1·α=(0,3)
2·α=(2,3)
3·α=(5,4)
4·α=(4,6)
5·α=(4,1)
6·α=(5,3)
7·α=(2,4)
8·α=(0,4)
9·α=O=0·α
ord(α)=9=#G
9.7
1.9·P=(1001|2)P=(2·(2·(2·P)))+P=(4,10)
2.20·P=(10100|2)P=(2·(2·(2·(2·P)+P)))=(19,13)
9.9
K=aB=6·B=2(2B+B)
2B=(x3,y3):x1=x2=5;y1=y2=9 1 1=76·18 1mod11s=(3x21+a)·y1=(3·25+1)(2·9)
s≡10·8=80≡3mod11
x3=s2 x1 x2=32 10= 1≡10mod11y3=s(x1 x3) y1=3(5 10) 9= 15 9= 24≡9mod11
2B=(10,9)
′3B=2B+B=(x′3,y3):x1=10,x2=5,y1=9,y2=9
s=(y2 y1)(x2 x1) 1=0mod11
x′3=0 x1 x2= 15≡7mod11
y′3=s(x1 x3) y1= y1= 9≡2mod11
3B=(7,2)
′′6B=2·3B=(x′′3,y3):x1=x2=7,y1=y2=2
1 1≡5·4 1≡5·3=15≡4mod11s=(3x21+a)·y1=(3·49+1)·422x′′3=s x1 x2=4 14=16 14=2mod11y′′3=s(x1 x3) y1=4(7 2) 2=20 2=18≡7mod11
6B=(2,7) KAB=2 αisprimitivesinceitgeneratesthegroup!
9.11
Abrute-forceattackona128bitkeycurrentlyiscomputitionalinfeasible!
Inthiscontext,amuchmoreef cientattackistomakeuseofthecorrelationbetweenthex andy coordinateofapoint.SinceitisknownthatthereisaninverseforeverypointP=(x,y)with P=(x, y),itwouldbetheeasiestapproachtotestall264possiblex coordinatesbysolvingthecurveequation.Theeffectivekeylengthisthenreducedto65bit,whichmaybeinsuf cientinafewyears(ifthisproblemhasnotalreadybeenbrokenbywell-fundedintelligenceservices).
ProblemsofChapter10
10.1
正在阅读:
深入浅出密码学习题答案08-26
第一次作业(交际用语)01-19
变压器相间短路后备保护整定计算05-07
村党风廉政工作总结08-23
ISO IEC 27004-2009信息安全测量中文版 - 图文01-06
浅析市政道路养护问题02-29
申报省级优秀班级申报材料03-03
我国水文行业现状及发展04-22
如何看股票的曲线图08-12
第四章作业 答案08-19
- exercise2
- 铅锌矿详查地质设计 - 图文
- 厨余垃圾、餐厨垃圾堆肥系统设计方案
- 陈明珠开题报告
- 化工原理精选例题
- 政府形象宣传册营销案例
- 小学一至三年级语文阅读专项练习题
- 2014.民诉 期末考试 复习题
- 巅峰智业 - 做好顶层设计对建设城市的重要意义
- (三起)冀教版三年级英语上册Unit4 Lesson24练习题及答案
- 2017年实心轮胎现状及发展趋势分析(目录)
- 基于GIS的农用地定级技术研究定稿
- 2017-2022年中国医疗保健市场调查与市场前景预测报告(目录) - 图文
- 作业
- OFDM技术仿真(MATLAB代码) - 图文
- Android工程师笔试题及答案
- 生命密码联合密码
- 空间地上权若干法律问题探究
- 江苏学业水平测试《机械基础》模拟试题
- 选课走班实施方案
- 密码学
- 深入浅出
- 习题
- 答案
- 银行职工5月份最新入党申请书范文
- 2019-2025年中国阿胶行业市场运行态势研究报告(目录)
- 中国商标专利行业市场前景分析预测报告(目录)
- 雅思写作核心词汇
- 网上商城后台管理模块的设计与实现
- 浅析莎士比亚戏剧对英语词汇的影响
- 高等学校教育教学改革项目(新闻学专业实践教学)
- 永康市实验幼儿园评价机制
- 2014国家公务员面试专业强度较高部门展示
- 2012年咨询工程师考试《项目决策分析与评价》模拟试题(4)
- 中国航天科技集团公司第一研究院硕士研究生入学考试09年真题
- 朝花夕拾》阅读题及答案
- “十三五”规划重点-通信产业园项目建议书(立项报告)
- 影子价格的经济意义
- chapter 5 business organisations
- 全省经济形势分析工作座谈会议交流材料
- 人教版(部编版)2017-2018学年七年级下学期《道德与法治》期中考试精品试卷
- 第六章 z变换与离散系统的频域分析
- 第六章 辐射度学与光度学基础
- 小学缩句练习题及答案