2015年高考冲刺压轴山东卷数学(文卷三)(附答案解析)

更新时间:2024-03-29 15:51:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

2015年高考冲刺压轴卷·山东

数学(文卷三)

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 共 4页.满分150分,考试时间120分钟. 考试结束,将试卷答题卡交上,试题不交回.

第Ⅰ卷 选择题(共50分)

注意事项:

1.答卷前,考生务必将自己的姓名、准考证号、座号涂写在答题卡上.

2.选择题每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案.

3.第Ⅱ卷试题解答要作在答题卡各题规定的矩形区域内,超出该区域的答案无效. 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有

一项是符合要求的.

1. (2015·山东青岛市二模·1)已知

a?1?bi,其中a,b是实数,i是虚数单位,则1?i|a?bi|?( )

A.3 B.2 C.5 D.5 22.(2015·山东济宁市二模·2)已知集合A?x|x?1,B?x|y?1?log2x,则

????A(eRB)?( )

A.(2,??) C.(??,?1)

B.???,?1?D.??1,0?(2,??)

(2,??)

?2,???

3.(2015·山东德州市二模·3)给出下列两个命题,命题p:“x?3”是“x?5”的充分不必要条件;命题q:函数y?log2A. p?q C. p?q

?则下列命题是真命题的是( ) x2?1?x是奇函数,

B. p??q D. p??q

?4.(2015·山东淄博市二模·4)某工厂生产的甲、乙、丙三种型号产品的数量之比为2:3:5,现用分层抽样的方法抽取一个容量为n的样本,其中甲种产品有20件,则n=( )

A.50 B.100 C.150 D.200

xax5. (2015·山东聊城市二模·5)函数y??a?1?的图象的大致形状是( )

x

6.(2015·山东菏泽市二模·6)已知函数f(x)?sin(2x??)(???)的图象向左平移

?个6?单位后得到g(x)?cos(2x?),则?的值为( )

6A.?2? 3B.?? 3C.

? 3D.

2? 3(2015·山东烟台市二模·7)

8.(2015·山东潍坊市二模·8)

?3x?2y?4?0?设实数x,y满足约束条件?x?y?4?0,已知z?2x?y的最大值是8,最小值是-5,

?x?ay?4?0?则实数a的值是( )

A.6 B.-6 C.-

1 6D.

1 69.(2015·山东日照市高三校际联合检测·9)函数y?2sin?x?零点之和为( )

A.2

B.4

C. 6

1??2?x?4?的所有1?x D. 8

10. (2015·山东青岛市二模·10)如果函数y?f(x)在区间I上是增函数,而函数y?f(x)x在区间I上是减函数,那么称函数y?f(x)是区间I上的“缓增函数”,区间I叫做“缓增区间”,若函数f(x)?123x?x?是区间I上的“缓增函数”,则其“缓增区间”I为( ) 22,??) B.[0,3] C.[0,1] D.[1,3] A.[1第Ⅱ卷(非选择题 共100分)

二、填空题:本大题共5小题,每小题5分,共25分.

11.(2015·山东济宁市二模·11)在△ABC中,内角A,B,C所对的边分别是a,b,

c.若bsinA?3csinB,a?3,cosB?2,则边长b等于 . 312.(2015·山东德州市二模·12)已知:P是直线l:3x?4y?13?0的动点,PA是圆

C:x2?y2?2x?2y?2?0的一条切线,A是切点,那么?PAC的面积的最小值是

____________.

13.(2015·山东淄博市二模·13)已知a?0,b?0,方程为x?y?4x?2y?0的曲线关于直线ax?by?1?0对称,则

22a?2b的最小值为________. ab??x?y?1??2214. (2015·山东聊城市二模·14)记集合A??x,y?x?y?1,B???x,y??x?0??y?0?????????构成的平面区域分别为M,N,现随机地向M中抛一粒豆子(大小忽略不计),则该豆子落入N中的概率为_________.

15.(2015·山东省济宁市曲阜市第一中学三模·13)已知几何体的三视图如图所示,则该几何体的体积为 ___ .

三、解答题:本大题共6小题,共75分. 把解答写在答题卡中.解答应写出文字说明,证

明过程或演算步骤.

???16.(2015·山东菏泽市二模·16)(本小题满分12分)已知函数f?x??sin?x???cosx.

6??(1)求函数f?x?的最小正周期;

??4????(2)若?是第一象限角,且f?????,求tan????的值.

3?54???

17.(2015·山东济宁市二模·16)(本小题满分12分)近年来,我国许多省市雾霾天气频发.为增强市民的环境保护意识,我市面向全市征召n名义务宣传志愿者,成立环境保护宣传组织.现把该组织的成员按年龄分成5组:第1组?20,25?,第2组?25,30?,第3组

?30,35?,第4组?35,40?,第5组?40,45?,得到的频率分布直方图如图所示.已知第2

组有35人.

(Ⅰ)求该组织的人数;

(Ⅱ)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加某社区的宣传活动,应从第3,4,5组各抽取多少名志愿者?

(Ⅲ)在(Ⅱ)的条件下,该组织决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,用列举法求出第3组至少有一名志愿者被抽中的概率.

18.(2015·山东淄博市二模·17) (本小题满分12分)如图1,在直角梯形ABCD中,

?A??B?90,AD?2,BC?3,EF//AB,且AE=1,

M,N分别是FC,CD的中点.将梯形ABCD沿EF折起,使得BM?1,连接AD,BC,AC得到(图2)所示几何体. (I)证明:BC?平面ABFE; (II)证明:AF//平面BMN.

19. (2015·山东聊城市二模·19) (本小题满分12分)在公比为2的等比数列?an?中,

a2?1是a1与a2的等差中项.

(I)求数列?an?的通项公式;

(II)记数列?an?前n项的和为Sn,若数列?bn?满足bn?anlog2?Sn?2?,试求数列?bn?前n项的和Tn.

本文来源:https://www.bwwdw.com/article/xnlr.html

Top