浙江省湖州市2014年中考数学试题(word版,含解析)

更新时间:2023-08-06 02:19:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

浙江省湖州市2014年中考数学试题(word版,含解析)

2014年浙江省湖州市中考数学试卷

一、选择题(共10小题,每小题3分,共30分)

1.(2014?湖州)﹣3的倒数是()

A.﹣3 B.3C.D.﹣

分析:根据乘积为的1两个数倒数,可得到一个数的倒数.

解:﹣3的倒数是﹣,故选:D.

点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.

2.(2014?湖州)计算2x(3x2+1),正确的结果是()

A.5x3+2x B.6x3+1 C.6x3+2x D.6x2+2x

分析:原式利用单项式乘以多项式法则计算即可得到结果.

解:原式=6x3+2x,故选C

点评:此题考查了单项式乘多项式,熟练掌握运算法则是解本题的关键.

3.(2014?湖州)二次根式中字母x的取值范围是()

A.x<1 B.x≤1 C.x>1 D.x≥1

分析:根据被开方数大于等于0列式计算即可得解.

解:由题意得,x﹣1≥0,解得x≥1.故选D.

点评:本题考查的知识点为:二次根式的被开方数是非负数.

4.(2014?湖州)如图,已知AB是△ABC外接圆的直径,∠A=35°,则∠B的度数是()A.35°B.45°C.55°D.65°

分析:由AB是△ABC外接圆的直径,根据直径所对的圆周角是直角,可求得∠C=90°,

又由∠A=35°,即可求得∠B的度数.

解:∵AB是△ABC外接圆的直径,∴∠C=90°,

∵∠A=35°,∴∠B=90°﹣∠A=55°.故选C.

点评:此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.5.(2014?湖州)数据﹣2,﹣1,0,1,2的方差是()

A.0 B.C.2D.4

分析:先求出这组数据的平均数,再根据方差的公式进行计算即可.

解:∵数据﹣2,﹣1,0,1,2的平均数是:(﹣2﹣1+0+1+2)÷5=0,

∴数据﹣2,﹣1,0,1,2的方差是:[(﹣2)2+(﹣1)2+02+12+22]=2.故选C.

点评:本题考查了方差:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.

6.(2014?湖州)如图,已知Rt△ABC中,∠C=90°,AC=4,tanA=,则BC的长是()A.2 B.8C.2D.4

分析:根据锐角三角函数定义得出tanA=,代入求出即可.

浙江省湖州市2014年中考数学试题(word版,含解析)

解:∵tanA==,AC=4,∴BC=2,故选A .

点评:本题考查了锐角三角函数定义的应用,注意:在Rt △ACB 中,∠C=90°,sinA=

,cosA=,tanA=.

7.(2014?湖州)已知一个布袋里装有2个红球,3个白球和a 个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为,则a 等于( )

A .1

B . 2

C . 3

D . 4 分析:首先根据题意得:=,解此分式方程即可求得答案. 解:根据题意得:=,解得:a=1,经检验,a=1是原分式方程的解,

∴a=1.故选A .

点评:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.

8.(2014?湖州)如图,已知在Rt △ABC 中,∠ABC=90°,点D 是BC 边的中点,分别以B 、C 为圆心,大于线段BC 长度一半的长为半径圆弧,两弧在直线BC 上方的交点为P ,直线PD 交AC 于点E ,连接BE ,则下列结论:①ED ⊥BC ;②∠A=∠EBA ;③EB 平分∠AED ;

④ED=AB 中,一定正确的是( )

A .①②③

B . ①②④

C . ①③④

D . ②③④

分析:根据作图过程得到PB=PC ,然后利用D 为BC 的中点,得到PD 垂直平分BC ,从而利用垂直平分线的性质对各选项进行判断即可.

解:根据作图过程可知:PB=CP ,∵D 为BC 的中点,

∴PD 垂直平分BC ,∴①ED ⊥BC 正确;∵∠ABC=90°,∴PD ∥AB ,

∴E 为AC 的中点,∴EC=EA ,∵EB=EC ,

∴②∠A=∠EBA 正确;③EB 平分∠AED 错误;④ED=AB 正确,

故正确的有①②④,故选B .

点评:本题考查了基本作图的知识,解题的关键是了解如何作已知线段的垂直平分线,难度中等.

9.(2014?湖州)如图,已知正方形ABCD ,点E 是边AB 的中点,点O 是线段AE 上的一个动点(不与A 、E 重合),以O 为圆心,OB 为半径的圆与边AD 相交于点M ,过点M 作⊙O 的切线交DC 于点N ,连接OM 、ON 、BM 、BN .记△MNO 、△AOM 、△DMN 的面积分别为S 1、S 2、S 3,则下列结论不一定成立的是( )

A .S 1>S 2+S 3

B . △AOM ∽△DMN

C . ∠MBN=45°

D . M N=AM+CN

浙江省湖州市2014年中考数学试题(word版,含解析)

分析:(1)如图作MP∥AO交ON于点P,当AM=MD时,求得S1=S2+S3,

(2)利用MN是⊙O的切线,四边形ABCD为正方形,求得△AMO∽△DMN.

(3)作BP⊥MN于点P,利用RT△MAB≌RT△MPB和RT△BPN≌RT△BCN来证明C,D成立.解:(1)如图,作MP∥AO交ON于点P,

∵点O是线段AE上的一个动点,当AM=MD时,S梯形ONDA=(OA+DN)?AD

S△MNO=MP?AD,∵(OA+DN)=MP,∴S△MNO=S梯形ONDA,∴S1=S2+S3,

∴不一定有S1>S2+S3,

(2)∵MN是⊙O的切线,∴OM⊥MN,

又∵四边形ABCD为正方形,∴∠A=∠D=90°,∠AMO+∠DMN=90°,∠AMO+∠AOM=90°,

∴∠AOM=∠DMN,

在△AMO和△DMN中,,∴△AMO∽△DMN.故B成立,

(3)如图,作BP⊥MN于点P,

∵MN,BC是⊙O的切线,∴∠PMB=∠MOB,∠CBM=∠MOB,

∵AD∥BC,∴∠CBM=∠AMB,∴∠AMB=∠PMB,

在Rt△MAB和Rt△MPB中,∴Rt△MAB≌Rt△MPB(AAS)

∴AM=MP,∠ABM=∠MBP,BP=AB=BC,

在Rt△BPN和Rt△BCN中,∴Rt△BPN≌Rt△BCN(HL)

∴PN=CN,∠PBN=∠CBN,∴∠MBN=∠MBP+∠PBN,

MN=MN+PN=AM+CN.故C,D成立,综上所述,A不一定成立,故选:A.

点评:本题主要考查了圆的切线及全等三角形的判定和性质,关键是作出辅助线利用三角形全等证明.

10.(2014?湖州)在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()

A.B.

C.D.

浙江省湖州市2014年中考数学试题(word版,含解析)

分析:分别构造出平行四边形和三角形,根据平行四边形的性质和全等三角形的性质进行比较,即可判断.

解:A选项延长AC、BE交于S,∵∠CAE=∠EDB=45°,∴AS∥ED,则SC∥DE.

同理SE∥CD,∴四边形SCDE是平行四边形,∴SE=CD,DE=CS,

即乙走的路线长是:AC+CD+DE+EB=AC+CS+SE+EB=AS+BS;

B选项延长AF、BH交于S1,作FK∥GH,

∵∠SAB=∠S1AB=45°,∠SBA=∠S1BA=70°,AB=AB,∴△SAB≌△S1AB,

∴AS=AS1,BS=BS1,∵∠FGH=67°=∠GHB,∴FG∥KH,

∵FK∥GH,∴四边形FGHK是平行四边形,∴FK=GH,FG=KH,

∴AF+FG+GH+HB=AF+FK+KH+HB,∵FS1+S1K>FK,

∴AS+BS>AF+FK+KH+HB,即AC+CD+DE+EB>AF+FG+GH+HB,

同理可证得AI+IK+KM+MB<AS2+BS2<AN+NQ+QP+PB,又∵AS+BS<AS2+BS2,故选D.点评:本题考查了平行线的判定,平行四边形的性质和判定的应用,注意:两组对边分别平行的四边形是平行四边形,平行四边形的对边相等.

二、填空题(共6小题,每小题4分,共24分)

11.(2014?湖州)方程2x﹣1=0的解是x=.

分析:此题可有两种方法:

(1)观察法:根据方程解的定义,当x=时,方程左右两边相等;

(2)根据等式性质计算.即解方程步骤中的移项、系数化为1.

解:移项得:2x=1,系数化为1得:x=.

点评:此题虽很容易,但也要注意方程解的表示方法:填空时应填x=,不能直接填.

本文来源:https://www.bwwdw.com/article/xjum.html

Top